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ABSTRACT. We consider the problem of estimating the coefficients in a system of differential equa-
tions when a trajectory of the system is known at a set of times. To do this, we use a simple Monte
Carlo sampling method, known as the rejection sampling algorithm. Unlike deterministic methods,
it does not provide a point estimate of the coefficients directly, but rather a collection of values that
"fits" the known data well. An examination of the properties of the method allows us not only to better
understand how to choose the different parameters when implementing the method, but also to intro-
duce a more efficient method by using a new two-step approach which we call sequential rejection
sampling. Several examples are presented to illustrate the performance of both the original and the
new methods.

RÉSUMÉ. On considère le problème d’estimer les coefficients d’un système d’équations différentielles
quand une trajectoire du système est connue en un petit nombre d’instants. On utilise pour cela une
méthode de Monte Carlo très simple, la méthode de rejet qui ne fournit pas directement une estimation
ponctuelle des coefficients comme le font les méthodes déterministes mais plutôt un ensemble de
valeurs de ces coefficients qui sont cohérentes avec les données. L’examen des propriétés de cette
méthode permet de comprendre non seulement comment bien choisir les différents paramètres de
la méthode lorsqu’on l’utilise mais aussi d’introduire une méthode plus efficace, en deux étapes,
que nous appelons la méthode de rejet séquentielle. Plusieurs exemples illustrent les performances
respectives de la méthode d’origine et de la nouvelle méthode.

KEYWORDS : Coefficient fitting, differential system, Monte Carlo method, sequential rejection sam-
pling.
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1. Introduction
Many natural phenomena, for example in biology, are modeled using systems of dif-

ferential equations that usually involve a large number of variables and a large number of
unknown coefficients. Often one would like to estimate the coefficients from some known
data, for example from the knowledge of one trajectory at several time points. This paper
focuses on the estimation of the coefficients of a differential system using a Monte Carlo
approach.

There is a large array of available methods to estimate the coefficients of a differential
system. One of the most popular class of methods are the quasi-Newton methods [4]. It
attempts to find a minimum value of an objective function by estimating iteratively the
value of the coefficients for which the gradient of this function is the zero vector. Other
methods, the collocation methods ([6],[8]), estimate the coefficients by first using the
known data to construct an approximation of each component of the solution in terms
of a basis function expansion. This approximation and the corresponding approximate
derivative are then substituted in the differential system, and the coefficients are the ones
that minimize the error.

While these methods can be very effective in estimating the coefficients, these meth-
ods usually require that the objective function be convex. As such, more recent studies
have focused on those methods which require weaker or even no conditions on the objec-
tive function. This includes the so-called stochastic search algorithms which have become
popular in the past decade, particularly the subset of “nature-inspired" algorithms such as
genetic algorithms and particle swarm optimization. Our method, while also stochastic
in nature, will have a slightly different approach from most of the available methods. In-
stead of obtaining just one set of “best" coefficients, we shall use a Monte Carlo method
to produce a distribution of points which are likely to be the true coefficients. This allows
us to not only take into consideration the errors and uncertainties in the known data, but
at the same time, to provide a point estimate if necessary. We will see that, even if this
method is rather naive and really easy to implement, it can already be quite effective.

This paper is organized into five sections. We introduce in Section 2 a simple, yet ef-
fective stochastic method known as the rejection sampling algorithm to generate a sample
of possible coefficients. Then in Section 3, we study some of the properties of the method,
and illustrate them using simulations. Section 4 shows how to improve the basic method,
and provides an application on a simplified circadian cycle model before the conclusion
in Section 5.

2. The rejection sampling algorithm
We will consider the system of l differential equations of the form

y′ = g(y; θ) (1)
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for y ∈ Rl with several unknown coefficients θ = (θ1, θ2, ..., θm) ∈ Rm. We assume
that we have known values of y(t) at times T = {t0, t1, ..., tk}. We denote these data as
ȳ(T ), where ȳ(T ) is defined as follows:

t t0 t1 · · · tk
ȳ(t) ȳ0 ȳ1 · · · ȳk

We shall denote by yi(t; θ) (or simply yi(t)), i = 1, 2, ..., l the ith component of y(t; θ)
and similarly ȳij , i = 1, 2, ..., l the ith component of ȳj , j = 0, 1, 2, ..., k.

The rejection sampling algorithm was introduced in 1984 by Rubin [7] and general-
ized by Pritchard et al. [5] in 1999 in the context of population genetics. One proceeds
as follows: We begin by generating a sample {θ∗i }i=1,2,...,N of possible values of the co-
efficients from a prior distribution π0(θ). We assume that this distribution has a support
S0 which is usually compact. For each element θ∗ of the sample, we compute the corre-
sponding solution y(t; θ∗) of the differential system (1) with initial condition (t0, ȳ0) and
keep the values of y(T ; θ) at times T = {t0, t1, ..., tk}. Then, for a convenient measure
ρ(θ∗) of the distance between the trajectory corresponding to the value θ∗ of the coeffi-
cients and the known data ȳ(T ), we keep θ∗ if ρ(θ∗) < ε, where ε is a specified threshold
constant, and consider it as part of the sample in the posterior; otherwise, we disregard
this value. This process can then be repeated N times or until we have kept some chosen
number, say n, of accepted values of θ. One can then construct the histogram of a sample
of values from this distribution or compute the summary statistics from the sample. The
measure

ρ(θ∗) = ρ({y(ti; θ
∗), i = 1, ..., k}, {yi, i = 1, ..., k})

can be, for example, the sum of squares of the Euclidean distance

ρ(θ∗) =
k∑
i=1

||y(ti; θ
∗)− yi||2.

We shall call the sample produced in this manner a rejection sample.

Definition 1. Let S0 ⊂ Rm and π0 be a distribution with support S0. Let θ1, θ2, ..., θN
be an i.i.d. sample from π0 and let n be the largest ν for which there exists a sequence of
integers (ik)k=1,2,...,ν such that 1 ≤ i1 < i2 < ... < iν ≤ N and ρ(θik) < ε for all k.
We call θi1 , θi2 , ..., θin a rejection sample of size n. The acceptance rate of this sample
is given by τRS = n/N . The acceptance region with maximum threshold ε is the set

Aε = {θ ∈ S0|ρ(θ) < ε}.

For simplicity, whenever no confusion arises, we denote a rejection sample of size n
as θ1, θ2, ..., θn instead of θi1 , θi2 , ..., θin .
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REMARK. — Notice that, by construction, for a given ε, the rejection sample θ1, θ2, ..., θn
is drawn from the distribution

πε(θ|ȳ) =
π0(θ)1Aε(θ)∫
Aε
π0(θ)dθ

,

where Aε is the acceptance region with maximum threshold ε. The distribution πε(θ|ȳ) is
precisely the posterior distribution for this algorithm.

Example 2. Before studying the properties of rejection samples, we first illustrate how
the method works on a very simple differential equation. Suppose we wish to estimate
the coefficients r and K in the logistic differential equation

y′ = ry
(

1− y

K

)
(2)

that best fit the following data:

t 0 1 2 3 4 5 6 7 8 9 10 12 14 18
y 4 7 12 19 28 48 70 103 140 176 205 238 256 265

Even if the coefficients θ = (r,K) are unknown, assume that we know that r ∈ [0, 1]
and that K ∈ [100, 300]. We then take the uniform distribution over [0, 1]× [100, 300] as
prior distribution π0 for sampling θ. Assume the value of ε is chosen as 1300, which
represents an average error of 10 units for each of the 13 time points which are al-
lowed to vary. The method is run for N = 5000 iterations, and for this particular
run, we ended up with 65 accepted coefficients. The mean of the accepted values is
approximately (0.5349, 267.61) while the minimum value of ρ occurred at about θ =
(0.5351, 265.94). In Figure 1(B), we can see that the resulting trajectory after substi-
tuting θ = (0.5351, 265.94) to (2) is very close to the given data. We also notice in
Figure 1(A) that, even with a relatively large value of ε, the resulting sample is distributed
uniformly, as in our prior distribution, in a small elliptical region which is nothing else
than Aε.

3. Main properties
In this section, we will first study the size and the shape of the acceptance region, then

give different ways to deduce a point estimate of θ from the posterior distribution. Finally,
we shall also study the different factors that affect the acceptance rate.

Assume that the observed data are the actual values of a trajectory y(T ; θ0) where the
time points are given by T = {t0, t1, ..., tk}. In this case, we shall call θ0 the “true" value
of the coefficient. While this may not be consistent with actual data, this assumption
allows the study of the accuracy of the method without worrying about the effect of errors
in the data.
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Figure 1. Results for logistic model using rejection sampling algorithm

3.1. The acceptance region
To study the acceptance region, we shall mainly focus on two-variable coefficient

estimation problems. Such a simple model will allow us to understand the properties
more easily, as this will make the graph of the acceptance region Aε easier to visualize.

The size and shape of the region Aε is clearly dependent on the value of ε and the
differential system through the function ρ(θ). Obviously, as soon as ε is larger than the
maximum of ρ(θ) for θ ∈ S0, the acceptance region will be the entire support S0. Oth-
erwise, it will be helpful to look at the contour map for ρ(θ) to understand the shape
of the acceptance region better. Consider the two-coefficient Lotka-Volterra model with
θ = (a, b):


dx

dt
= ax− xy

dy

dt
= bxy − y

(3)

Figure 2 gives the contour maps for ρ(θ) for two different values of θ0:
One can see that for ε small enough, the boundary of Aε looks like an ellipse. It turns

out that this is to be expected. As we have assumed in this section that θ0 is a “true”
value of the parameter, by definition ρ(θ0) = 0 and θ0 is the minimum of ρ. Moreover,
θ0 belongs to the support of the prior distribution. If we assume that the system is of
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Figure 2. Contour maps for the two-coefficient Lotka-Volterra model (3) for ρ =
0.1, 0.5, 1, 2, 3, 4. In both cases, we assume that the known values of (x, y) are at the
times T = {0, 1, 2, ..., 7}, ρ is the sum of squared differences, and we draw only those
values of (a, b) within the region [−1, 2]× [−1, 4]. The point in red corresponds to θ0.

class C2, then y(T ; θ) and consequently, ρ(θ), are both of class C2 as well. Thus, if
∆θ = θ − θ0 and H is the Hessian of ρ, the ellipse

1

2
∆θTH(ρ(θ0))∆θ < ε (4)

is an approximation of Aε for ε small enough. This implies that the region ρ < ε has the
shape of an ellipse around θ0 as soon as ε is small enough.

In contrast, for larger values of ε, there is no reason that the acceptance region will be
an ellipse, as we can see in Figure 2(B).

REMARK. — Although we did not encounter such a case in our previous example, it is
not difficult to see that when ρ has several local minima, the contour plot may consist of
multiple closed regions. For examples, one can refer to [1].

3.2. Point estimation
Although the rejection sampling algorithm does not directly provide a point estimate

of the unknown coefficients but rather a sample θ1, θ2, ..., θn, a point estimate is easy to
compute from this sample. There are at least two natural ways to do this: one can either
take the average θ̂ave of the entire rejection sample or take θ̂min, which is the element
of the rejection sample that gives the minimum distance with respect to the metric ρ.
We shall first explain in this section why, for the case where θ0 is the true value of the
coefficients, the one which produces the minimum distance is usually a better choice.
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Then we will introduce a less simple but more efficient estimator that we call the least
mean estimate which combines an average and a minimum.

Let θ̂ave denote the sample average:

θ̂ave =
1

n

n∑
i=1

θi,

where the sum is taken component-wise, and let θ̂min denote the minimum distance esti-
mate:

θ̂min = ArgMin
θ∈{θ1,θ2,...,θn}

ρ(θ).

By the Law of Large Numbers, we know that θ̂ave converges almost surely to the expec-
tation of θ with distribution π0(θ|ρ(θ) < ε). This need not be equal to θ0, especially for
large ε. This is true even for a uniform prior, as the region may not be centered on θ0. In
contrast, θ̂min has a very nice property as an estimator for θ0, as we shall now show.

Proposition 3. Let θ1, θ2,..., θn be a rejection sample for threshold value ε > 0 to
estimate the coefficients θ in a differential equation y′ = g(y; θ), and let

ρ̂n(θ) = min{ρ(θ1), ρ(θ2), ..., ρ(θn)}.

Assume also that the prior distribution π0 for the rejection sample is absolutely continu-
ous. If θ0 = ArgMin

θ∈S0

ρ(θ), then ρ̂n(θ)
P−→ ρ(θ0) as the sample size n tends to∞.

Proof. Let ρi denote the distance ρ(θi). For any K > 0, first note that, as θ1, ..., θn is
a rejection sample and thus i.i.d., we have

P(ρ̂n(θ) ≤ K) = 1− [P(ρ1 ≥ K)]n. (5)

Indeed:

P(min(ρ1, ρ2, ..., ρn) ≤ K) = 1− P(min(ρ1, ρ2, ..., ρn) ≥ K)

= 1− P(ρ1 ≥ K, ρ2 ≥ K, ..., ρn ≥ K)

= 1− [P(ρ1 ≥ K)]n

Thus, for any α > 0, n > 0,

{|ρ̂n(θ)− ρ(θ0)| < α} = {ρ(θ)− α < ρ̂n(θ) < ρ(θ0) + α}

= {ρ̂n < ρ(θ0) + α} \ {ρ̂n ≤ ρ(θ0)− α}
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Since {ρ̂n < ρ(θ0)− α} ⊂ {ρ̂n ≤ ρ(θ0) + α}, we have

P(|ρ̂n(θ)− ρ(θ0)| < α) = P(ρ̂n < ρ(θ0) + α)− P(ρ̂n ≤ ρ(θ0)− α)

= [P(ρ1 > ρ(θ0)− α)]n − [P(ρ1 ≥ ρ(θ0) + α)]n, (6)

where the last line follows from (5). The limit of the first term of (6) as n → ∞ is 1
since by definition, ρ(θ0) is the minimum. On the other hand, the limit of the second
term is 0 since P(ρ1 ≥ ρ(θ0) + α) < 1 from the absolute continuity of π0(θ). Thus,
lim
n→∞

P(|ρ̂n(θ)− ρ(θ0)| < α) = 1, and so ρ̂n(θ) converges in probability to ρ(θ0). �

As an illustration of Proposition 3, let us consider a simple example taken from [1] that
shows that increasing the number of iterations N does not improve θ̂ave but significantly
improves θ̂min. In Tables 1 and 2, we show how the resulting estimates θ̂ave and θ̂min
vary when estimating the coefficients (α, α0, γ, β) in the repressilator model of Elowitz
and Liebler [3] given by 

dm1

dt
= −m1 +

α

1 + pγ3
+ α0

dp1

dt
= −β(p1 −m1)

dm2

dt
= −m2 +

α

1 + pγ1
+ α0

dp2

dt
= −β(p2 −m2)

dm3

dt
= −m3 +

α

1 + pγ2
+ α0

dp3

dt
= −β(p3 −m3)

(7)

We increase the number of iterations N while holding everything else constant. As-
sume that the true values of the coefficients are (α, α0, γ, β) = (1000, 1, 2, 5) and ε =

2000. Looking at the results in Table 1, we can see that ρ̂N (θ̂ave) does not decrease for
the estimates using θ̂ave as N increases. However, the values of α̂ave, α̂0ave, γ̂ave and
β̂ave are consistently around 1010,1.30, 2.05, and 5.8, respectively, which we can assume
to be close to the actual expectation of the distribution π(θ|ρ(θ) < 2000). In contrast,
the results in Table 2 show that while the values of ρ̂N (θ̂min) may not always decrease
monotonically as N increases (due to the random nature of the sample), there is still a
clear trend of decrease for ρ as N →∞.

Even if the choice of the minimum distance estimate is usually better than the average,
we lose in taking the minimum distance estimate the benefit of taking an average between
several good estimates in order to average the different errors and get something in the
interior of all the estimates. This observation gives the idea of a new way to deduce
an estimate of the coefficient from the rejection sample, that we will explain now and
illustrate with an example.
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Table 1. Results of θ̂ave = (α̂ave, α̂0ave, γ̂ave, β̂ave) for ε = 2000. True value: α =
1000, α0 = 1, γ = 2, β = 5, prior distribution: uniform over [800, 1200]×[0, 4]×[0, 7]×[0, 10]

N α α0 γ β ρ̂N (θ̂ave)

500 1004.3 1.1800 2.0730 6.1476 265.03
1000 1008.0 1.3508 2.0534 5.6957 337.78
2000 1005.1 1.3364 2.0394 5.7085 412.41
4000 1022.3 1.2380 2.0354 5.8069 342.04
8000 1010.5 1.3224 2.0521 5.8860 403.34

16000 1011.0 1.2886 2.0409 5.8135 390.4

Table 2. Results of θ̂min = (α̂min, α̂0min, γ̂min, β̂min) for ε = 2000. True value: α =
1000, α0 = 1, γ = 2, β = 5, prior distribution: uniform over [800, 1200]×[0, 4]×[0, 7]×[0, 10]

N α̂min α̂0min γ̂min β̂min ρ̂N (θ̂min)

500 1158.6 0.2709 1.7097 3.8584 352.06
1000 1142.2 0.7723 1.9288 4.8699 138.67
2000 914.4 0.2616 1.801 4.0841 136.64
4000 819.77 0.9172 2.0406 5.143 37.59
8000 845.32 0.9282 2.0363 5.0312 38.71

16000 859.59 0.9781 2.0452 5.1839 26.57

The main idea is the following: if we average the d best values of the coefficients θ in
terms of the distance ρ, and if we increase the number of values in this average, the result
will initially be located around θ0 before it tends, as d increases, towards the mean of the
distribution π(θ|ρ(θ) < ε). In fact, taking the mean of these few initial θ’s can often give
a better result than just choosing the one with the minimum distance.

More precisely, let θ1, θ2, ..., θn be a rejection sample and denote by ρ(θ(1)),ρ(θ(2)),...,ρ(θ(n))
the distances ρ(θ1), ρ(θ2), ..., ρ(θn) arranged in increasing order. This consequently de-
fines the reordering of the sample from the best (lowest ρ) to the least θ(1), θ(2), ..., θ(n).
Let

θ̄d =
1

d

d∑
i=1

θ(i)

for some d, 1 ≤ d ≤ n. The least mean estimator is given by

θ̂leastmean(d) = ArgMin
θ∈{θ̄1,...,θ̄d}

ρ(θ). (8)
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After computing θ̂leastmean(d) for a large number of numerical experiments, it has
been observed that in most cases, this estimator produces coefficients with the least dis-
tance when d = 10. Note that θ̂min is equal to θ̂leastmean(1).

Example 4. We apply this choice of best estimate to compute a best guess of θ in
the simplified Lotka-Volterra model introduced in (3). Figure 3 shows the evolution of
θ̂leastmean(d) in estimating the coefficients of a Lotka-Volterra model as d increases.
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Figure 3. Evolution of θ̂leastmean(d) as the number of elements d increases for the coeffi-
cients in a Lotka-Volterra model with model coefficients (a, b) = (0.5, 2). The initial point
of the model data is at (1, 0.5) and the time points are at T = {0, 0.5, 1, ..., 3}. The prior
distribution is uniform over [0, 3]× [0, 3].

In Figure 3(A), we observe that ρ(θ̂leastmean(d)) initially decreases, and then in-
creases until it stabilizes at a certain point. By the Law of Large Numbers, this point
is the value of ρ for the center of Aε. Figure 3(B) illustrates why ρ(θ̂leastmean(d)) de-
creases initially before it increases again. The coefficients θ̄d are initially located around
θ0 for small values of d, before they tend towards the center of Aε as d increases.

3.3. The acceptance rate
As we have seen in the previous section, the larger the resulting rejection sample,

the higher the chances of obtaining a more accurate estimate for θ. In the next three
subsections, we will see how the acceptance rate is affected by the sample size N , the
maximum threshold ε, and the number of coefficients m.
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3.3.1. Dependence on the sample size
Let θ1, θ2, ..., θN be an i.i.d. sample from π0. Define the corresponding random vari-

ables Ii = 1{θi∈Aε}, i = 1, 2, ..., N . Then, I1, I2, ..., IN are i.i.d. Bernoulli random
variables with success probability

τ = P(θ ∈ Aε) =

∫
Aε

π0(θ)dθ. (9)

Thus, by the Law of Large Numbers, as N → ∞, the rejection sampler acceptance
rate τRS = 1

N

∑N
i=1 Ii converges in probability to τ .

REMARK. — When the prior distribution π0 is uniform, (9) implies that the acceptance
rate is simply the ratio of the volumes of Aε and S0.

Furthermore, by the Central Limit Theorem,

√
N

(
1

N

N∑
i=1

Ii − τ

)
D−→ N (0, τ(1− τ)).

This means that providedN is large enough, a 95% confidence interval for the acceptance

rate τRS is approximately given by τ ± 1.64
√

τ(1−τ)
N . Since the maximum of τ(1 − τ)

occurs when τ = 0.5, a conservative estimate for the length of the confidence interval
is 1.64/

√
N . In general, τ cannot be computed directly, and we will use its estimator

τRS instead. For large N , this confidence interval implies that we can actually expect the
acceptance rate to be more or less the same in each sample, and to be on a narrow range
around τ .

3.3.2. Dependence on ε

Although the sample size N may not play a large role on the acceptance rate of our
sample, it is clear that this is not the same with the maximum threshold ε. In fact, for any
sample θ1, θ2, ..., θN , the asymptotic acceptance rate τ is a nondecreasing function of ε.
To see why this is so, denote by τNε the acceptance rate associated with the threshold ε. If
ε1 < ε2, thenAε1 ⊂ Aε2 . Thus, τNε1 = P(θ ∈ Aε1) ≤ P(θ ∈ Aε2) = τNε2 . This inequality
also holds for the asymptotic acceptance rate.

When the prior distribution is uniform, we can say even more about τ . In particular, it
can be shown that the rate of increase of the acceptance rate is of the order l/2, where l is
the dimension of the coefficient space.

Proposition 5. Suppose that the rejection method is used to estimate θ in the differential
system y′ = g(y; θ), where the known data ȳ consists of the actual points for y(t; θ) when
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θ = θ0. Assume also that θ is l-dimensional, and that the prior distribution is uniform on
its support. Then, the acceptance rate τRS satisfies

lim
N→∞

τRS =
(2πε)l/2

Γ( l2 + 1)
√∏l

i=1 λi

, (10)

where λ1, λ2, ..., λl are the eigenvalues of the Hessian matrix of ρ(θ0) and Γ is the gamma
function

Γ(x) =

∫ ∞
0

ux−1e−udu.

For a proof, one can refer to Proposition 3.12 in [1].

Example 6. To illustrate this proposition, we return to the logistic model in Example 2 as
it simple enough to allow explicit computation. Recall that the best fit coefficients were
approximately r0 = 0.5351 and K0 = 265.94 and the prior distribution was chosen to
be uniform on the rectangle [0, 1] × [100, 300]. The objective function can be computed
exactly as

ρ(r,K) =
13∑
i=0

(
4Kerti

K − 4 + 4erti
− ȳi

)
,

where (ti, yi) are the 14 data points which were previously given. Assuming that θ0 =
(r0,K0), we shall use ε−ρ(θ0) ≈ 1266.2 on the right-hand side of (4). Using a symbolic
computation program such as Maple, one can compute the Hessian of ρ at θ0:

H =

(
2516643.593 2220.7277
2220.7277 6.264013

)
, (11)

which has eigenvalues λ1 = 4.3044 and λ2 = 2516645.6. This means that the semi-
principal axes are

√
2532.4/4.3044 ≈ 24.255 and

√
2532.4/25616645.6 ≈ 0.03172.

If we assume that the prior distribution π0 is uniformly distributed on its support, the
acceptance rate is thus τ = π(24.255)(0.03172)/200 ≈ 0.01208. Since the acceptance
rate that we obtained from the sample in Example 2 was 65/5000 = 1.3% and the number
of iterations was N = 5000, the 95% confidence interval for τ is thus

0.013± 1.645

√
(0.013)(0.987)

5000
= (0.01036, 0.01564),

which contains the asymptotic acceptance rate τ = 0.01208.

Another illustration of the previous proposition is given by Table 3 below. The table
shows the average acceptance rate for five runs when estimating the coefficients of the
repressilator model (see (7)). For the same data, ε, and prior distribution, and for a sample
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size of N = 5000, we can see, as expected, that as ε decreases, τ also decreases. Fur-
thermore, we also observe that when ε is halved from 1200 to 600, the acceptance rate is
reduced to about one-fourth, from 8.38% to 2.33%, which is on line with Proposition 5
which suggests that the rate of decrease in the acceptance rate is of order 2.

Table 3. Average acceptance rate for the repressilator model as ε varies
ε Average acceptance rate

1200 8.38%
1000 5.81%
800 3.72%
600 2.33%

3.3.3. Dependence on the dimension of the coefficient space
Aside from the size of ε, the dimension of the coefficient space also plays an important

role in the acceptance rate. As Proposition 5 implies, it is clear that if θ is of large
dimension, one will get a low acceptance rate. We illustrate this in the following example.

Example 7. Consider again the repressilator model for gene regulatory networks (see
(7)). We assume that the initial point is at (0, 2, 0, 1, 0, 3) and that there is a "true" value
of the coefficients, namely (α0, γ, β, α) = (1, 2, 5, 1000). Seven points were chosen to
represent the trajectory, in particular at t = 0, 1, 2, 3, 4, 5, 6. The prior distribution is
uniformly distributed on [0, 2] × [1.5, 2.5] × [0, 10] × [900, 1100]. We produced 10000
iterations, and kept only those which yield trajectories having a maximum distance of 60.
The number of unknown coefficients is different in each experiment. As the acceptance
rate varies on each experiment, we take the average of the acceptance rate when produc-
ing five separate rejection samples. The results are given in Table 4, together with the
corresponding acceptance rate.

Table 4. Acceptance rate of the repressilator when the number of unknown coefficients
varies. The results shown are the average acceptance rate for five separate runs.

Coefficients fixed Average acceptance rate (in percent)
None 0.404
α 0.474

α, α0 1.372
α, α0, γ 10.2

We can see from Table 4 that as the dimension of the coefficient space increases, the
corresponding acceptance rate decreases, where it is less than 1 percent for the case of 3
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or more variables. This is even if the support of the prior distribution that we have chosen
covers a region which is a small neighborhood of θ0. This means that one will need a
larger sample to obtain a relatively accurate estimate of θ. We will see in the next section
one way to alleviate this situation.

4. Sequential rejection method
Although the method which we have described is quite simple, one can quickly realize

that there are a large number of parameters that need to be chosen when implementing
it. Without a careful choice of these parameters, one can easily obtain a rejection sample
of size 0. Among the main choices, the choices of the prior distribution and of the value
of ε are the most difficult. In all the previous examples, we have chosen the prior to be
a uniform distribution on a cartesian product of intervals, which is realistic, for example,
when the user of the model knows a range of values for each of the coefficients. But if
the support of this distribution is too narrow, there is a big risk that it will not contain any
"good" values. On the other hand, if it is too large, sampling will be like finding a needle
in a hay stack. The same kind of difficulty exists for the choice of ε.

In this section, we propose an improved version of the rejection sampling algorithm
we call the sequential rejection method which mainly consists in choosing an improved
prior distribution based on the result of a preliminary sample and an adequate choice of
ε based on the sensitivity of the solution of the differential system with respect to the
different unknown coefficients. We will explain how one can choose the prior distribution
and the threshold ε, provide a summary of the new algorithm, and then finally apply it on
an example.

4.1. Choice of the prior
A good way to choose the prior properly is to do it in two steps. First, begin with

a uniform prior for, say, the first 10% of the desired number of iterations. Provided this
gives a sufficiently large number of accepted values so that it can adequately represent the
acceptance regionAε, we can compute the mean vector µ and the covariance matrix Σ for
this sample. Then, for the remaining 90% of the sample, one can change the initial prior
to a multivariate Gaussian distribution with mean and covariance matrix equal to that of
the preliminary sample.

As we shall see in the next example, using this two-step approach substantially in-
creases the acceptance rate and provides the same acceptance rate even when ε is de-
creased. This therefore gives a much higher accuracy of the resulting sample.

Example 8. Consider the repressilator model (see (7)) with "true" coefficients (α, α0, γ, β) =
(1000, 1, 2, 5), initial point (0, 2, 0, 1, 0, 3), T = {0, 0.5, 1, ..., 3} and N = 5000 itera-
tions. One can observe from the results in Table 5 that the average among the five runs
of the minimum ρ decreases as ε decreases. This is not completely surprising, as we are

38  -  ARIMA - Volume 20 - 2015

ARIMA Journal 



obtaining approximately the same number of points in a region which contains less points
of high distance ρ. Thus, we would expect the minimum distance to also decrease.

Table 5. Results using sequential rejection, N = 5000, where the first 500 are used as a
preliminary sample. The prior distribution is uniform over [0, 7]× [0, 4]× [0, 10]× [800, 1200],
and the average acceptance rate of 5 runs for the last 4500 iterations are shown below.

ε Min. distance Acceptance rate
1200 8.97 66.04
1000 7.67 65.23
800 5.26 62.67
600 4.6 62.45

One interesting observation is that the acceptance rate for the second part of the sample
seems to remain approximately the same in the sequential method, regardless of the value
of ε. It turns out that this is true in general, as we shall show in Corollary 10. For this, we
first need the following technical result.

Proposition 9. Let Y be a random vector of dimension m whose components are the
coordinates of a point chosen uniformly within and on the ellipse yTAy < 2ε, where A
is positive definite and ε is constant. Then the covariance matrix ΣY of Y is equal to

2ε
m+2A

−1.

Proof. As the ellipse yTAy < 2ε is a linear transformation of the unit ball xTx < 1
by y =

√
2εA−1/2x, it is easy to verify that the proof of the proposition reduces to that

of showing that for a random vector X = (X1, X2, ..., Xm) whose components are the
coordinates of a point chosen uniformly within the m-dimensional unit ball xTx < 1,
the covariance matrix of X is given by ΣX = 1

m+2Im, where Im is the m ×m identity
matrix. As the support is symmetric about the origin, the mean of each coordinate and
the covariance between any two coordinates must be 0. By the exchangability of the Xi’s
and integrating in hyperspherical coordinates, it can be shown that the variance of each
Xi must be 1

m+2 . Combining these facts, we can thus conclude that the covariance matrix
of X is ΣX = 1

m+2Im. �
An interesting corollary of the previous technical result is that, under some conditions,

the acceptance rate for the second part of the sample as we described above, is actually
constant even if ε is decreased, as we shall now show.

Corollary 10. Suppose that the acceptance region Aε is exactly a hyperellipsoid, and
that the uniform distribution on Aε has covariance matrix Σ. If Y is drawn from another
prior distribution with covariance matrix Σ, then P(Y ∈ Aε) is independent of ε.
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Proof. First note that µ and Σ are the mean vector and covariance matrix of a uni-
form distribution within the hyperellipsoid 1

2 (∆θ)TH(ρ(θ))∆θ < 2ε defined in (4). This
means that by Proposition 9, Σ = 2ε

m+2H
−1, or thatH = 2ε

m+2Σ−1. Thus, the probability
of an arbitrary Y to be within the acceptance region is given by

P[(∆θ)TH∆θ < 2ε] = P

[
(∆θ)T

2ε

m+ 2
Σ−1∆θ < 2ε

]
= P[(∆θ)TΣ−1∆θ < m+ 2],

which is independent of ε. �

If we assume that the sample covariance is not too far from Σ and that Aε is close
to a hyperellipsoid, then Corollary 10 implies that the strategy of sampling with any dis-
tribution with covariance matrix Σ will give the same acceptance rate regardless of the
value of ε. Thus, if the new distribution is chosen well, this can allow us to obtain a high
acceptance rate even if the value of ε is small. One possible choice is the multivariate
Gaussian distribution.

While the method provides a significant improvement from the acceptance rate of the
basic rejection sampling algorithm, it also suffers from some problems. In practice, we do
not know what the shape of the acceptance region Aε is. If Aε is too far from an ellipsoid,
the Gaussian prior in the second part of the sample may not be very effective in increasing
the acceptance rate. Secondly, this method is dependent on having a good estimate of Σ.
However, if the size of the initial sample is not large enough, the covariance matrix S of
this sample may not approximate Σ very well. Furthermore, increasing the size of the
sample is not a guarantee of an improved covariance matrix estimate as S is known as an
inconsistent estimator for Σ. Despite these problems, performing this sequential rejection
method is still a much better alternative than using the basic rejection method.

4.2. Choosing the value of ε
Another important consideration when using the method is choosing an appropriate

value of the maximum threshold ε. We now provide a logical way to choose ε based
on the support of our prior distribution and the differential system which we shall use to
model the data.

To obtain a reasonable value of ε, one needs to have an idea of the order of magnitude
of ρ(θ). Suppose that, as before, we take as measure of distance the sum of squared
differences

ρ(θ) =
k∑
j=0

(y(tj ; θ)− ȳj)2,

where ȳ is assumed to be the model data for θ = θ0. Our objective is to construct an
estimate of a “typical value" of ρ(θ).
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The main idea of our approximation for ε involves computing an estimate of

y(tj ; θ)− ȳj = y(tj ; θ)− y(tj ; θ0)

for a fixed time tj . Since θ is m-dimensional, a simple way to do this is to use the total
differential

y(tj ; θ)− y(tj ; θ0) ≈
m∑
i=1

{
∂y

∂θi
(θ0)

}
∆θi, (12)

where the superscript i denotes the ith component of the coefficient vector and ∆θi =
(θi− θi0). The partial derivative in (12) can be estimated using a finite difference estimate

εij =
y(tj ; θ

1
0, θ

2
0, ..., θ

i
0 + h, ..., θm0 )− y(tj ; θ

1
0, ..., θ

m
0 )

h
, (13)

where h is a small increment (for example, around 10−6).
We are then left with the choice of θ0 and ∆θi = θi−θi0 to be used in the computation.

In general, we have no idea of what θ0 is exactly. The most logical guess we could make
is that it is at the center of the support of the prior distribution. Thus, assuming that our
prior distribution is a box (θmin1 , θmax1 )× (θmin2 , θmax2 )× ...× (θminm , θmaxm ) on Rm, this
gives us the estimate

θ∗0 =

(
θmin1 + θmax1

2
, ...,

θminm + θmaxm

2

)
.

On the other hand, we can think of the size of ∆θi as an estimate of the maximum differ-
ence we are willing to accept between the ith component of θ and the true θ0. This can be
chosen as a fraction p of the length of the interval for that coefficient. That is,

∆θi,∗ = p(θimax − θimin).

Based on our experiments, we recommend choosing p to be between 0.1 and 0.2.
Using the above choices, we are able to obtain an estimate for y(tj ; θ) − ȳj . Substi-

tuting this estimate in ρ(θ), we end up with the following estimate for ε:

εest =

 k∑
j=0

m∑
i=0

εij∆θ
i,∗

2

(14)

Example 11 illustrates how εest can be computed in the case of the repressilator (7).

Example 11. Consider the repressilator model (7), where we assume that the initial point
is at (0, 2, 0, 1, 0, 3) and the model coefficients to be (α, α0, γ, β, α) = (1000, 1, 2, 5).
Suppose the known data is at the times T = {0, 1, 2, ..., 7}, and that the prior distribution
is uniformly distributed on [0, 2] × [1.5, 2.5] × [0, 10] × [900, 1100]. Also, we choose
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p = 0.1 Then θ∗0 = (1, 2, 5, 1000) and the value of ∆θi,∗ for i = 1, 2, 3, 4 are 0.2,0.1,1,
and 20, respectively. A series of finite difference computations would then allow us to
compute εest ≈ 865. This gives approximately a 1% acceptance rate.

4.3. Implementing the method
We now provide a short summary of the steps needed to apply the sequential rejection

method to produce a distribution of coefficients of a differential system that best fits some
known data.

1) Choose a preliminary prior distribution π0 for the unknown coefficients and an
initial sample size.

2) Choose a proper ε using the procedure outlined in Section 4.2, and choose the
percentage of the range to be around 10 to 20 percent. The resulting acceptance rate will
vary depending on the differential system, but empirical results suggest it will be at least
3%.

3) Provided we obtain a reasonably large rejection sample in the previous step,
change the prior distribution to a Gaussian distribution, with a mean equal to the sample
mean and covariance matrix equal to a fraction of the sample covariance (around 10%
would be a typical choice).

4) After we obtain the rejection sample θ1, θ2, ..., θn, the scattermatrix of these
samples can be obtained to visualize the estimated law of θ. However, if a point estimate
is required, arrange the θi’s in increasing order based on the metric ρ. Then compute
θ̂leastmean(10).

4.4. Application of the method
We shall now use the rejection sampling method and the steps outlined in Section 4.3

to estimate the coefficients in a more complicated example. Here we estimate the coeffi-
cients of the simplified circadian cycle model

dp1

dt
= v1

Kγ

Kγ + cγ2
− k3p1p2 + k4c1 − kd1p1

dp2

dt
= v2

Kγ

Kγ + cγ2
− k3p1p2 + k4c1 − kd2p2

dc1
dt

= k3p1p2 − k4c1 − k1c1 + k2c2 − kd3c1
dc2
dt

= k1c1 − k2c2 − kd4c2

(15)

introduced by Comet et al. in [2]. This system consists of 4 differential equations and 12
variables (K, γ, k1, k2, k3, k4, kd1, kd2, kd3, kd4, v1, v2).

We begin by generating the model data for the differential system (15). The co-
efficients chosen were K = 0.4, γ = 15, k1 = 0.08, k2 = 0.06, k3 = 0.08, k4 =
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0.06, kd1 = 0.05, kd2 = 0.05, kd3 = 0.05, kd4 = 0.45, v1 = 2, v2 = 2.2. Here, we
obtain oscillations which have decreasing amplitudes, as the value of kd4 is greater than
0.412182, the bifurcation point as computed in [2]. However, the results remain largely
unchanged even if we choose kd4 < 0.412182. Graphing the solution of the differential
equation for the chosen coefficients, one can show that the first complete oscillation oc-
curs after around every 12 units. Since there is no reason to believe that the data which
we will obtain will correspond to exactly one "period", we assume that we are given the
discrete trajectory at time points 0, 1, 2, ..., 7, which correspond to around half a period.
We incorporate a small measurement error by adding a Gaussian term with mean 0 and
standard deviation 0.15 for the first three variables, and mean 0 and standard deviation
0.05 for the last variable. The standard deviations were chosen to be different for each
variable to take into account the approximate sizes of the values of each variable. Finally,
the prior distribution is chosen to be uniform, where the lower and upper bounds are given
in the table below:

Variable Minimum in prior Maximum in prior Chosen coefficients
K 0 1 0.4
γ 0 20 15
k1 0 0.2 0.08
k2 0 0.2 0.06
k3 0 0.2 0.08
k4 0 0.2 0.06
kd1 0 0.2 0.05
kd2 0 0.2 0.05
kd3 0 0.2 0.05
kd4 0 0.5 0.45
v1 0 5 2
v2 0 5 2.2

We shall use the guidelines we proposed in Section 4.3 in running the rejection and
sequential rejection method. First, we shall choose ε ≈ 27, which corresponds to the
value obtained when we use the total differential estimate in Section 4.2 with θ as the
center of the support, h = 10−6, and p = 0.12. We shall do two sets of ten runs, the
first set being a basic rejection method with 10000 iterations. For the second set of ten
runs, we shall use the sequential rejection method introduced in the previous section, with
an initial sample of size 2000. We then run another 10000 iterations, but now with a
multivariate Gaussian distribution with mean and covariance equal to the corresponding
mean and covariance of the initial sample. We shall take as point estimate θ̂leastmean(10),
where we chose the minimum among the first 10 averages.

The results using both the basic rejection method and the sequential rejection method
are given in Table 6. Due to the the substantial improvement in the acceptance rate in the
sequential rejection method, we are able to obtain an estimate for the unknown coefficients
with a smaller distance with respect to ρ.
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Table 6. Results when applying the rejection method, with and without the sequential im-
provement, to estimate the coefficients in Comet’s simplified circadian cycle model. For
each of the ten runs, θ̂leastmean(10) and the corresponding distance ρ is computed.

Sequential rejection for ε = 27 Basic rejection for ε = 27
Average acceptance 50.46% 3.487%

Average distance 2.13 3.25
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Figure 4. Graphs of the resulting trajectories using the worst and best coefficients (as
given in Table 6) using the sequential rejection method. The graphs in red are using the
“best” coefficients, the ones in green are the “worst” coefficients, and the ones in blue are
those of the perturbed data.

An even more interesting comparison is provided by Figure 4, where we graph the
trajectories resulting from the “best guess” coefficient estimates using the sequential re-
jection method with the actual data. We graph the trajectories resulting from two differ-
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ent values of θ obtained from the 10 runs: the value of θ̂leastmean(10) that produced the
smallest ρ (in red), and the one which produced the biggest ρ (in green). These represent
the best and worst scenarios when estimating the coefficients using the sequential rejec-
tion method. We can see that, even with the limited amount of information provided by
eight points of data, the method can give coefficients that fit the known data well, even in
a twelve dimensional problem.

5. Conclusion
In this paper, we have studied a Monte Carlo method to compute a distribution of the

coefficients of a system of differential equations that fits a known trajectory. Such an
approach allows us to incorporate variability in the model as a result of either measure-
ment error, or the variability in individual characteristics in the subjects being studied.
Assuming that a true value of the coefficients exists, we have seen that for low dimen-
sion problems and a small enough ε, we obtain a posterior distribution which allows us
to compute good point estimates of θ. However, this method quickly becomes inefficient
when the dimension of the coefficient space increases (the “curse of dimensionality”) or
the chosen prior is too different from the acceptance region because of the low acceptance
rate. We have also introduced a new version of this Monte Carlo method, sequential re-
jection sampling, and explained why it produces a much higher acceptance rate and more
accurate estimates.

Note that other sampling methods, like Markov chain Monte Carlo or Sequential
Monte Carlo, can also be used to sample from the support more efficiently, and to ob-
tain higher acceptance rates (see [1]).
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