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ABSTRACT. The Rosenzweig-MacArthur model is a system of two ODEs used in population dynam-
ics to modelize the predator-prey relationship. For certain values of the parameters the differential
system exhibits a unique stable limit cycle. When the dynamics of the prey is faster than the dynamics
of the predator, during oscillations along the limit cycle, the density of preys take so small values that
it cannot modelize any actual population. This phenomenon is known as the “atto-fox” problem. In
this paper we assume that the populations are living in two patches and are able to migrate from one
patch to another. We give conditions for which the migration can prevent the density of prey being too
small.

RÉSUMÉ. Le modèle de Rosenzweig-MacArthur est un système de deux équations différentielles
utilisé en dynamique des populations pour modéliser la relation entre un prédateur et sa proie. Pour
certaines valeurs des paramètres le système possède un cycle limite unique stable. Lorsque la dy-
namique de la proie est plus rapide que celle du prédateur durant les oscillations le long du cycle, la
densité des proies atteint des valeurs tellement petites qu’elle ne peut modéliser une situation issue
du monde réel. Ce phénomène est connu sous le nom du problème “Atto-Fox”. Dans cet article on
suppose que les populations sont réparties sur deux sites et qu’elles peuvent migrer de l’un à l’autre.
Nous donnons des conditions qui assurent que la migration va empêcher la densité des proies de
devenir trop petite.
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1. Introduction
This paper is dedicated to E. Benoît. His pioneering work [3] with J-L. Callot, F.

Diener and M. Diener is our source of inspiration. We know that he is presently working
on highly sophisticated problems on “canards” when time is complex and we have no
doubt that he will obtain great achievements in this direction. Nevertheless we hope that
the present paper will comfort him in the idea that the simple and elegant arguments of
NSA which were very successful in the theory of slow-fast systems in R2 and R3 are still
useful for some more complex systems.

The Rosenzweig-MacArthur model (RMA model) is the following system of two dif-
ferential equations widely used in population dynamics to modelize the predator-prey (or
resource-consumer) relationship (see [2], Ch. 1-2 pp 14-17).

dx

dt
= xg(x)− h(x)y

dy

dt
= εh(x)y − δy

(1)

where :
1) x 7→ g(x) ; x ≥ 0 is continuous, decreasing and equal to 0 for some value K.
2) x 7→ h(x) ; x ≥ 0 is continuous, increasing, null for x = 0 and bounded.
3) δ is a positive constant.
4) ε > 0 is a small parameter.

Rosenzweig-MacArthur model refers more precisely to the case where x 7→ xg(x) and
x 7→ h(x) are respectively a logistic and a Monod’s function.

This is certainly not the best way to represent trophic interaction. As explained in [2],
in the ecological theory, it should be better to use in place of the function x 7→ h(x) a
function of the two variables x and y : (x, y) 7→ h(x, y), which is still increasing with
respect to x but decreasing with respect to y. We shall not do that because we want to
concentrate on the mathematics of the model rather than on the ecological interpretation,
and the mathematics are simpler with h(x) in place of h(x, y). Moreover, as we shall
explain later, taking the more general h(x, y) does not change much what we want to
explore here.

It is known (see [2, 9]) that for certain values of the parameters the system (1) exhibits
a unique limit cycle. When ε is small the minimum of the value of x(t) along the limit
cycle is exponentially small with respect to ε, so small that it cannot modelize any actual
population (see [7, 16]). After Mollisson [16] (see also [11] on the same question) we call
this the “atto-fox problem” 1. Assume now that we have two patches (say two islands) and

1. This comes from the fact that in a specific model a variable representing the number of foxes
per square kilometer decreases to 10−18 before it re-increases.
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that populations are able to migrate from one patch to another. Intuitively we understand
that migration can prevent x(t) of being too small if the two populations associated to
x on each patch are not small at the same time, the migration from the large population
preventing the small one to become extinct. Our objective is to make more precise on
a mathematical model this vague statement. Our model resorts to what is called coupled
oscillators and is widely considered in various areas like electronics, mechanical systems,
neurosciences, etc. We do not know whether our model was considered sometimes in
those area with the same aims but, in theoretical ecology, our questioning seems to be
new.

In the first section we recall already known facts about the Rosenzweig - MacArthur
model in the case where ε is small. For this purpose we shall use the language of Non
Standard Analysis I.S.T. introduced by E. Nelson in [20] and popularized by E. Benoît,
J-L. Callot, F. Diener and M. Diener in [3] in the study of slow-fast systems ; the reader
who is not familiar with these technics can consider the intuitive meaning of the words.
The interested reader will find an introduction to this way of thinking in [10] or [15]. As
we did in [15] and a previous paper on the RMA model [16] we shall use bold letters for
terms like a is infinitesimal which has a formal interpretation in I.S.T. :

a is infinitesimal⇐⇒ {∀ stt > 0 |a| ≤ t}

The second section is devoted to our model of coupled oscillators. We will present the
model, show simulations and sketch the proof of a non classical result. By non classical
we mean that the result is stated in the language of I.S.T. and that we did not try to
find a classical equivalent. Whether this result answers correctly the atto-fox question is
discussed in the conclusion.

The presence of an “atto-fox problem” in the RMA model was quoted by us in [16].
The question of migration between two patches was considered in the unpublished paper
[8].

2. Classical results about the Rosenzweig-MacArthur model
Since we intend to present a lot of simulations, we must specify the functions g an h

of (1). For that purpose we consider :
dx

dt
= 2x(1− x)− x

0.1 + x
y

dy

dt
= ε

x

0.1 + x
− δy

(2)

The choice of 2 in the expression 2x(1 − x) is just for esthetic reason, the parabola
defining the x-isocline being less “flat” than the one with 1 in place of 2. We assume that
ε is infinitely small and that δ = εm with m limited. If δ was not infinitesimal but

Migrations in the Rosenzweig-MacArthur model and the "atto-fox" problem  -  97

ARIMA Journal



appreciable, y(t) would be all the time decreasing and the model of poor interest. Thus
our system is a slow-fast differential system that we prefer to reconsider, after a change
of unit of time, as : 

dx

dt
=

1

ε

(
2x(1− x)− x

0.1 + x
y

)
dy

dt
=

(
x

0.1 + x
−m

)
y

(3)

2.1. The RMA-model without migration
We recall some very well known properties of the system (3). The positive orthant

(R+)2 = {(x, y) : x ≥ 0; y ≥ 0} is invariant, all solutions are bounded and, by the way,
defined for all positive t′s. We are only interested by solutions in the positive orthant. The
open positive orthant (R∗+)2 = {(x, y) : x > 0; y > 0} is also invariant.

Notations
The x-isocline is the union of the two arcs of parabola :

P+ = {(x, y) : 0.45 ≤ x ≤ 1 ; y = 2(1− x)(0.1 + x)}

and
P− = {(x, y) : 0 ≤ x ≤ 0.45 ; y = 2(1− x)(0.1 + x)}

and the two parts of the y axis :

Π+ = {(x, y) : x = 0 ; 0.2 < y}

and
Π− = {(x, y) : x = 0 ; 0 < y < 0.2}

The y-isocline is the union of the x-axis and the vertical segment :

Πm =

{
(x, y) : x =

0.1m

1−m, y > 0

}
See Fig. 1.

Non Standard Notations

– ε is a fixed strictly positive infinitesimal. The function g, h in (1) and the parameter
m in (3) are standard.

– The x-isocline is also the slow curve of (3). This slow curve is divided in two parts :
- The attracting one : Π+ ∪ P+
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Figure 1. Scheme of the slow-fast system (3)

- The repelling one : Π− ∪ P−
– The (external) set of points which are at an infinitesimal distance of some set M

is called the halo of M and denoted by hal(M ). Since hal(M ) is an external set the
expression (x, y) ∈ hal(M ) is a misuse which means that the distance of (x, y) to M is
infinitesimal.
Phase portrait : Limit cycle case.

This is the case when Πm is on the left of S and not infinitely close to it. On Fig.1 one
observes the classical scheme for solutions of (3) when ε is infinitely small. The solution
starting from point p is “quasi-horizontal” and enters the halo (in green) of the stable part
of the slow curve P+ ; then the solution will remain in hal(P+), moving up (because we
are on the right of Πm until it reaches the summit S where it jumps to the halo of the other
stable part of the slow curve Π+ at the point e (e for “entrance” or “entrée” in french)) ;
then the solution will decrease (since Π+ is on the left of Πm) following the stable part of
the slow curve and penetrates into the halo of the unstable part Π− of the slow curve (in
blue) ; the solution will leave the slow curve at some point ; for the moment we have no
information regarding the exact position of this exit point ; the entrance-exit relationship
is the object of the next subsection.

The existence of a limit cycle is straightforward when ε ≈ 0. Consider the Poincaré
return map ϕ defined on a segment of the form :

∆ = {(x, y) : x = 0.45; y ∈ [0.5 , 0.7]}
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Any solution starting from a point (0.45, y) of ∆ will cross ∆ after one turn at a point
(0.45, ϕ(y))such that ϕ(y) ≈ 0.605 ; thus ϕ(y) maps ∆ into ∆ and by the intermediate
value theorem there exist at least one fixed point. Unicity is a bit more delicate and we
refer to [9] for a proof.

Simulation : Limit cycle case.
All the simulations are done using an Euler scheme with step dt := 10−4. It might be

surprising to use such a primitive integration routine. We have some reasons for this:
1) For such systems, duration of integration does not matter. It is quasi instanta-

neous.
2) Good agreement between simulations and theoretical results when available is

observed.
3) The model (3) is justified on the basis of an Euler scheme.

The simulation of Fig. 2 is performed with ε = 0.05 and m = 0.7. One sees the
unstable equilibriumE with trajectories issued from points in its neighbourhood (actually
they are simulated using reversed time) and we see all the red trajectories converging to
the limit cycle in blue.

A

y

S

E

s

r

q

p

x

Figure 2. Phase portrait of (3) : ε = 0.05, m : 0.7

On Fig. 3 we have just represented the limit cycle with numerical values for some
characteristic points. On Fig. 4 one sees the graphs of the function t 7→ x(t) (in red)
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Figure 3. Limit cycle of (3) : ε = 0.05, m : 0.7
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Figure 4. Limit cycle of (3); “jumps” of x(t) : ε = 0.05, m : 0.7

and the function t 7→ y(t) (in blue). The function t 7→ x(t) is not S-continuous 2 ; the
simulation presents “jumps” at times t1, t1 + T (where T is the period of the limit cycle)
from 0.45 to 0 and at times t2, t2 +T from 0 to 0.984 ; actually the value 0 is not attained
by the “true” solution but is infinitesimal. In both cases the “duration” of the jump is

2. The (nonstandard) function f is S-continuous if

∀ x dx ≈ 0 =⇒ f(x+ dx) ≈ f(x)
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infinitesimal. Here “jump” and “duration” are not formally defined. It will be done using
the notion of ‘shadow’ just at the end of the next section.

As we just said the true value of the minimum attained by x is not 0. If we ask to the
computer what is the value of the minimum we obtain something smaller than 10−20 !
One question rises : is this a property of the system or a pure numeric artifacts ? Since
in some places we will use numerical simulations in place of mathematical arguments we
must clarify this point. We also will do it in the next section.

2.2. The “entrance-exit” relationship
Consider an initial condition (x0, y0) which is in the halo of Π+ and such that x0 > 0.

We have seen that this solution will “re-appear” , i.e. will leave the halo of Π at some
point which depends only on y0. More precisely we have the proposition :

Proposition 2.1 Assume that the initial condition (x0, y0) in hal(Π−) is such that:

– y0 > 0.2 and not infinitely large

– ξ0 = ε log(x0) ≈ 0
Let the number t1 defined by :∫ t1

t0

(2− 10 y0 exp(−m(s− t0))) ds = 0

then the solution (x(t, t0, (x0, y0)), y(t, t0, (x0, y0))) of (3) has the property :

1) t0 � t � t1 =⇒ x(t, t0, (x0, y0)) ≈ 0

2) t1 � t =⇒ x(t, t0, (x0, y0)) � 0
Actually point 3 is true for t not too large since we have a limit cycle.

Proof. Since the slow curve Π is a trivial (or structural) “canard” 3 of (3) the proof is very
easy. We use the change of variable introduced by E. Benoît ([5]) in the case of non trivial
“canards”. Let us put :

ξ = ε ln(x)

in the system (3). The new system, in the variables (ξ, y), reads :

dξ

dt
= 2

(
1− exp

(
ξ

ε

))
− y

0.1 + exp
(
ξ
ε

)
dy

dt
=

 exp
(
ξ
ε

)
0.1 + exp

(
ξ
ε

) −m
 y

(4)

3. Recall that a “canard” in a slow-fast system is a solution which is for an appreciable duration in
the halo of the attracting part of the slow curve and followed by an appreciable duration in the halo
of the repelling part.
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As soon as ξ is negative and non infinitesimal the quantity x = exp
(
ξ
ε

)
is infinitesimal

and the system (4) is approximated by the system :
dξ̂

dt
= 2− 10 ŷ

dŷ

dt
= −m ŷ

(5)

that we can integrate explicitly from the initial condition (0, ŷ0 = y0). One gets :

ŷ(t, t0, (0, y0)) = y0 exp(−m(t− t0)) (6)

ξ̂(t, t0, (0, y0)) =

∫ t

t0

(2− 10 y0 exp (−m(s− t0))) ds

That last quantity is decreasing as far as (2− 10 y0 exp(−m(s− t0))) is negative, thus
attains its minimum for :

t∗ = t0 +
1

m
ln(5 y0)

and then increases up to the value 0 which is attained at time t1 defined by :∫ t1

t0

(2− 10 y0 exp(−m(s− t0))) ds = 0 (7)

It is now just a routine verification to see that if

(x(t, t0, (x0, y0)), y(t, t0, (x0, y0)))

is the solution of (3) with initial condition (x0, y0) (such that ξ0 ≈ 0) at time t0 we have
for t0 � t � t1 :

(ε ln(x(t, t0, (x0, y0))), y(t, t0, (x0, y0))) ≈
(
ξ̂(t, t0, (0, y0)), ŷ(t, t0, (0, y0))

)
which achieves the proof of the proposition.

Définition 2.2 The standard function ϕ defined for standard y0 by :

ϕ(y0) = ŷ(t1, (0, y0))

where t1 is defined by (7) is called the entrance-exit function.

The entrance-exit function tells us, up to an infinitesimal, where a solution which entered
in the halo of Π+ close to (0, y0) will leave the halo of Π−. It can be computed with a
very high accuracy using formulas (6) and (7). We compare in Tab. 1 the actual value of
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y0 0.4 0.5 0.6 0.7
ϕ(y0) 8.12 10−2 5.35 10−2 3.57 10−2 2.38 10−2

yout 8.33 10−2 5.45 10−2 3.57 10−2 2.37 10−2

Table 1. Values of the parameters : ε = 0.05 ; m = 0.7 ; x0 = 0.05 ; ξ0 = 0

y(t1, (x0, y0)) obtained by simulation and denoted by yout to the predicted value ϕ(y0)
of the approximation. The approximation is quite good and sufficient for our following
purposes.

Since this approximation is based on an approximation of the system (4) there is no
reason that when we go back from the ξ variable to the x one through x = exp( ξ̂ε ) we
obtain a good approximation of x. But we can be quite confident in a numerical simulation
of (4) since in our case the values of ξ range between −10 and 0. Let us denote by ξmin
the minimum of ξ(t, (x0, y0)) obtained by a simulation of (4) (with an Euler-scheme with
dt = 10−4) and compare exp( ξmin

ε ) to the minimum, denoted by xmin, obtained by
simulation of the system (2). This is done on Tab. 2. This good result in simulating

y0 0.4 0.5 0.6 0.7

exp( ξmin

ε ) 1.66 10−9 1.79 10−16 2.14 10−24 5.34 10−33

xmin 1.62 10−9 1.69 10−16 1.90 10−24 4.31 10−33

Table 2. Values of the parameters : ε = 0.05 ; m = 0.7 ; x0 = 0.05 ; ξ0 = ε log(x0)

directly (2) is explained by the fact that around 0 the floating-point implementation of the
real numbers on a computer is very precise. This point was considered in [14].

2.3. The RMA model with immigration of the resource
One way to prevent the resource x of being too small in the RMA model is to introduce

some immigration term : in the following model (8) we add the constant immigration rate
I . 

dx

dt
=

1

ε

(
2x(1− x)− x

0.1 + x
y

)
+ I

dy

dt
=

(
x

0.1 + x
−m

)
y

(8)

Notice that we have put the term I outside of the bracket. On Fig. 5 one sees the isoclines
of (8) in the case I = 1. The x-isocline{

(x, y) : y = [2x(1− x) + ε I]
(0.1 + x)

x

}
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y
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x10

Figure 5. Slow curve : I = 1.

x

y

Figure 6. Limit cycle : ε = 0.05; I = 1.

is a cubic shaped curve which, when considered as the slow curve, is divided in three: C+L
and C+R for the attracting part, C− for the repelling part. When I is limited, the term ε I
is infinitesimal and the x-isocline is in the halo of the parabola and the y-axis and C+L is
at a distance of the x-axis of the order of ε I except at the point (0, 0.2). The y-isocline
is unchanged. There is still a limit cycle (see Fig. 6) and Fig. 7 shows its evolution
with decreasing values of I . As in the case with no immigration the change of variable
ξ = ε log(x) helps to understand the phase portrait. On Fig. 8 we have first simulated
the model with I = 0. This gives the blue stippled line in the (ξ, y) variables going very
far in the negative values; after that we simulated with the small value I = 2 × 10−5;
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Figure 7. Limit cycle : ε = 0.05; I = 0.2 and I = 0.04.
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Figure 8. Immigration with a very small immigration rate : ε = 0.05; I = 0.00002.

in the (x, y) variable we see a significant difference in the value of the minimum of y(t)
which is explained in the (ξ, y) variables by the shape of the isocline. We see (an can
prove easily) that when I is different from 0 the minimum of x(t) is of the order of εI .
Regarding the “atto-fox problem” this is very different from the exponentially small value
with respect to ε obtained when I = 0.
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3. The Rosenzweig-MacArthur model on two patches
We consider now two identical patches with two identical populations. In absence of

migration the model is :

dx1
dt

=
1

ε
(x1g(x1)− h(x1)y1)

dy1
dt

= (h(x1)−m)y1

dx2
dt

=
1

ε
(x2g(x2)− h(x2)y2)

dy2
dt

= (h(x2)−m)y2

(9)

This is a trivial model with two non interacting populations. On each patch we have an
“atto-fox problem”. But we can imagine that each patch receives from the other one,
through migration, a certain number of individuals which prevent it from too low densi-
ties. How do we modelize this migration ? Consider the functions :

(x, y) 7→ νx(x, y)

(x, y) 7→ νy(x, y)

which represent the rate of emigration from one patch to the other one of the resource or
the consumer. If we assume that all the resource or consumer emigrating from one patch
goes to the other patch we have the model :

dx1
dt

=
1

ε
(x1g(x1)− h(x1)y1) + νx(x2, y2)− νx(x1, y1)

dy1
dt

= (h(x1)−m)y1 + νy(x2, y2)− νy(x1, y1)

dx2
dt

=
1

ε
(x2g(x2)− h(x2)y2) + νx(x1, y1)− νx(x2, y2)

dy2
dt

= (h(x2)−m)y2 + νy(x1, y1)− νy(x2, y2)

(10)

Notice that, as wee did in the previous section, we choose to put the migration terms
outside of the bracket following the term 1

ε . In the sequel we shall call :
– One-patch system the system (3)
– Two-patches system the system (10)

The most widely considered model for migration is the linear one where the functions νx
and νy are simply :

νx(x, y) = kxx
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νy(x, y) = kyy

where kx and ky are some constants. This kind of model with linear migration (one also
says linear dispersal or linear diffusion) has been considered both on the mathematical
and ecological point of view mainly in the case of competition models where significant
results where obtained (see [12] for a pioneering work in this direction). Not only the
case of two patches was considered but also many patches and a continuum of patches,
this last case being treated as a reaction-diffusion equation. One reason of this success
is that cooperative systems are monotone which prevents the existence of limit cycles.
In [13] the case of consumer-resource relationship on two patches with linear migration
of the consumer is considered ; a lot of of interesting behaviors is observed but not in
connection to our “ atto-fox problem”.

But, as we said, linear diffusion is just an approximation of what a migration model
should be. The only certain fact regarding the functions νx(x, y) and νy(x, y) is that they
must be non negative and that νx(0, y) = νy(x, 0) = 0 : no individuals no emigration out
of the patch is possible. Otherwise we can consider many different possibilities depending
on the considered populations. For instance :

1) Under some threshold the population does not migrate, above it migrates at a
constant rate which we modelize as νx(x, y) = 0 if x ≤ a and νx(x, y) = I otherwise 4.

2) When the population of resources is to low (under some threshold) the popula-
tion of consumers decides to migrate.

3) For low populations the migration of the consumers is linear with some satura-
tion for large values.

4) etc.
In section 3.3 we will consider the case 1 of the above enumeration which has some
legitimacy regarding modelling and will show that it is to some extend mathematically
tractable.

3.1. Linear migration and homogenization.
As we said previously, if when the density of the resource is very low on one of the

patches and is high enough on the other one to produce emigration the atto-fox problem
could be avoided. But this will work only if the two patches are not synchronized in
approximately the same state and, moreover, the difference of phases between the two
patches is stable. This is a problem since we have the intuition that migration between

4. In the world of micro-organisms there is a mechanism called “quorum sensing” by which certain
species of micro-organisms change their behavior when a certain threshold is attained.
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x1 x2f(x1) f(x2)

+k(x2 � x1) +k(x1 � x2)

⌃0

⌃1

Figure 9. Linear migration in dim. 1

two patches could produce some kind of homogenization. Actually this is true for linear
diffusion in dimension one. Consider the two linearly coupled one dimension systems :

Σk


dx1
dt

= f(x1) + kx2 − kx1
dx2
dt

= f(x2) + kx1 − kx2
(11)

For k = 0 the systems are uncoupled. Let x(t, x1(0), k = 0) and x(t, x2(0), k = 0) with
x1(0) < x2(0) be two solutions of Σ0 and consider x(t, x1(0), k) and x(t, x2(0), k) with
k > 0 the solutions of Σk with the same initial conditions. Fig. 9 shows why one has for
t > 0 :

x(t, x1(0), 0) < x(t, x1(0), k)

x(t, x2(0), k) < x(t, x2(0), 0)

We see that thanks to the diffusion the speed of x(t, x1(0), k) is greater than the speed
of x(t, x1(0), 0) and conversely for x(t, x2(0), k) and x(t, x2(0), k). This fact admits a
generalization to higher dimensions, the convex interval

[x(t, x1(0), 0), x(t, x2(0), 0)]

which is clearly invariant by the flow, being replaced by an invariant familly of convex
sets. On Fig. 10 we have drawn the flow lines of some flow Φ generated by the differential
system in the plane : 

dx

dt
= f(x, y)

dy

dt
= g(x, y)

(12)
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System (13) represents two such systems coupled by linear diffusion :

dx1
dt

= f(x1, y1) + k(x2 − x1)

dy1
dt

= g(x1, y1) + k(y2 − y1)

dx2
dt

= f(x2, y2) + k(x1 − x2)

dy2
dt

= g(x2, y2) + k(y1 − y2)

(13)

A solution of system (13) can be visualised as two corks floating on the flow and con-

Kt

Kt+h

�h(Kt)

Figure 10. Two corks on a flow.

nected by a rubber which creates a relative velocity (green arrows on Fig. 10) directed
along the line joining the two corks and of intensity proportional to their distance. From
this remark we see that if K is a convex set invariant by the flow, i. e. such that the vector
field points inward, two corks connected by a rubber which are initially inside K will
remain in K since the velocity of a cork which is on the boundary of K, being the sum
of two velocities directed inward is directed inward. This works also when t 7→ Kt is a
family of convex sets invariant by the flow (i.e. for h > 0 one has Φh(Kt) ⊂ Kt+h) and
if the initial condition is such that (x1(0), y1(0)) ∈ K0 and (x2(0), y2(0)) ∈ K0 then for
every positive t we have (x1(t), y1(t)) ∈ Kt and (x2(t), y2(t)) ∈ Kt ; in other words
the corks are trapped in the family of convex. This generalizes to an arbitrary number of
patches or a continuum (see [21]). From this we see that if the differential system (12)
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has an equilibrium G.A.S. which admits a Liapunov function with convex level lines then
on the two patches the solutions will converge to this equilibrium and the homogenization
will be perfect. But, otherwise, homogenization is not the rule. This is the case when the
system admits a limit cycle.

3.2. Linear migration in the RMA model

y

s

r

q

p

x

r’

r’’

Figure 11. Two pairs p, q and r, s of corks;

Consider the RMA model, in the case of a limit cycle, with linear migration.

dx1
dt

=
1

ε
(x1g(x1)− h(x1)y1) + k(x2 − x1)

dy1
dt

= (h(x1)−m)y1 + k(y2 − y1)

dx2
dt

=
1

ε
(x2g(x2)− h(x2)y2) + k(x1 − x2)

dy2
dt

= (h(x2)−m)y2 + k(y1 − y2)

(14)

This is a model of two linearly coupled oscillators. It is known that the analysis of the
dynamic properties of two coupled oscillators might be difficult and a very large literature
is devoted to this subject. Since the RMA model is in the plane the cork metaphor works.
If we assume that k is limited the relative motion of the corks with respect to the flow is
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0

Figure 12. y(t) in black, y1(t) in green, y2(t) in blue. Parameters of 3.2.1.

just limited and does not affect the fast motion of the corks: see the pair (p, q) on Fig.
11. If we consider now the pair (r, s) the motion of r and s will remain in the halo of
the slow curve since r and s are in the stable part. But the distance of r to the y axis
will not be exponentially small as in the absence of rubber but of the order of magnitude
of ε k. As a consequence of this, the exit of r will occur much faster at a point r′ much
higher than the point r′′ of exit in absence of migration. This difference ||r′r′′|| will be
responsible of a reduction of the duration needed to move up to the summit of the slow
curve and, by the way, of a reduction of the period. In other words even a small (but not
exponentially small) migration will have an appreciable effect on the minimum of y and
on the period. This description is correct provided during the time needed by r to move
down the y axis the point s remains on the left part of the slow curve, let us say as far as
r and s are in “phase oposition”. This explains to some extend what we observe in the
following simulations.

3.2.1. Simulation : Linear migration 1
The conventions are the following :
– In black t 7→ x(t) and t 7→ y(t) are solutions of the one-patch system (3).
– In green t 7→ x1(t) and t 7→ y1(t) are solutions on the first patch of the two-patches

system (10).
– In blue t 7→ x2(t) and t 7→ y2(t) are solutions on the second patch of the two-

patches system (10).

Parameters.

– Growth parameters :
ε = 0.05; m = 0.7

– Migration parameter (small linear migration): k = 10−6

– Initial conditions :
x(0) = 0.9; y(0) = 0.2 x1(0) = 0.9; y1(0) = 0.2 x2(0) = 0.5; y2(0) = 0.6
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0

Figure 13. x(t) in black, x1(t) in green, x2(t) in blue. Parameters of 3.2.1.

– Duration of the simulation : 200 units of time.
The results of the simulation are shown on Fig. 12 and 13 that we comment now. We
begin with the simulations regarding y which are easier to understand.

On Fig. 12 the solution t 7→ y(t) of the one-patch system oscillates with a period
of approximately 20 units of time and takes a minimal value close to 0. The solution
t 7→ y1(t) of the two-patches system (10) is identical to y(t) for approximately 10 units
of time ; suddenly it becomes different (the green curve departs from the black one) and
oscillates now approximately two times faster than on the one-patch system (3) ; the new
minimum for y1(t) is significantly bigger than 0 ; the solution, t 7→ y2(t) on the other
patch of the two-patches system (10) has a phase opposed to that of t 7→ y1(t) . On Fig.
13 we see x(t) (in black) , x1(t) and x2(t) in green and blue. We can make the same
comments than for y about periodicity of xi(t). Moreover one sees that x(t) and xi(t)
are apparently equal to 0 during a part of the cycle but the values of the minima are quite
different for x and xi(t):

– minx(t) is of the order of 10−26

– minx1(t) = minx2(t) is of the order of 10−8

They are not of the same order of magnitude which is important regarding the biological
interpretation. In the absence of migration we have certainly an “atto-fox” problem, with
migration it depends on the number of individuals represented by one unit of x.

Unfortunately we do not know if this simulation is a simulation of a stable limit cycle.
In other word we have no guarantee that what we observe is not just a (long) transient.

3.2.2. Simulation : Linear migration 2
Since it is not realistic to assume that the coefficients of the linear migration are the

same for the consumer and the resource we have considered a new simulation. This
new simulation is performed with exactly the same parameters than the simulation 3.2.1
except that the parameters of the linear migration terms are different for x and y. Namely
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0

Figure 14. y(t) in black, y1(t) in green, y2(t) in blue. Parameters of 3.2.2.

kx = 0.01 and ky = 0.0005. The migration for x is much stronger than for y and the
interpretation in terms of corks is no longer valid.

The result is shown on Fig. 14. We see that y1(t) and y2(t) which have opposite
phases at the beginning progressively synchronize ; when they are synchronized (we only
see y1(t) in green, the blue y2(t) being plotted the first is hidden) the motion is exactly
the same than the motion on the one-patch system (3) .

3.3. Nonlinear migration of the resource
We examine in this section a mathematically simpler situation than the linear migra-

tion one which, fortunately, has some biological significance. We suppose that there is
only migration of the resource and that this migration is non linear and defined by a step
function :

If x > a then νx = I else νx = 0

This means that once the resource is above some threshold a there is a migration which
rate is independent of x. This last point is probably non realistic but acceptable as a first
approximation. Moreover we shall assume that the immigration term I is not too big (i.e
limited). We have seen in section 2.3 that even if I is small (but not exponentially small),
regarding modelling purposes, it could make a big difference with no immigration at all :
the minimum of x(t) will be of the order of ε I , not exponentially small.
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3.3.1. Two patches with “spontaneous migration”
We call “spontaneous migration model” (with reference to spontaneous generation )

the model : 

dx̂1
dt

=
1

ε
(x̂1g(x̂1)− µ(x̂1)ŷ1) + I

dŷ1
dt

= (µ(x̂1)−m)ŷ1

dx̂2
dt

=
1

ε
(x̂2g(x̂2)− µ(x̂2)ŷ2) + I

dŷ2
dt

= (µ(x̂2)−m)ŷ2

(15)

These are two uncoupled copies of the system (8) which was studied in section 2.3 with.
We say “spontaneous migration” because the model does not say how are generated the
resource migrants which are contained in the terms I . We do not know if such a system
has some biological relevance ; it is just defined for mathematical purposes. This system
is trivial and we know that for suitable values of the parameters every solution (except for
a set of initial conditions which is of codimention two) converges to a periodic solution.
In the strictly positive orthant (R∗+)4 there are an infinite number of periodic solutions
differing only by the phase along the limit cycle of (8). Precisely let t 7→ (x(t), y(t)) ; t ∈
[0;T ] be some parametrisation of the limit cycle of (8). All the periodic solutions of (15)
can be described as :

(x̂1(t), ŷ1(t), x̂2(t), ŷ2(t)) = (x(t), y(t), x(t+ c), y(t+ c)) ; c ∈ [0, T [

Définition 3.1 A periodic solution of (15) is said in phase-opposition iff :

(x̂1(t), ŷ1(t)) ∈ hal(Π+ ∪Π−) =⇒ (x̂2(t), ŷ2(t)) ∈ hal(C+R )

(x̂2(t), ŷ2(t)) ∈ hal(Π+ ∪Π−) =⇒ (x̂1(t), ŷ1(t)) ∈ hal(C+R )

During a period the shadow 5 of the mapping t 7→ x̂i(t) (i = 1, 2) is the graph of a
function which is continuous except at the time t∗i where x jumps from C+R to hal(Π+)
and t∗∗i where x jumps from hal(Π−) to C+R . These times are called jump-times.

It is easy to see that by adequate tuning of the parameter m the model (15) has periodic
solutions in phase-opposition.

5. Recall that the shadow of a set (in our case the graph of t 7→ x(t)) is the standardization of
its halo.
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3.3.2. Two patches with threshold migration
In this section we compare periodic solutions of the model (15) of the previous section

with solutions of the model :

dx1
dt

=
1

ε
(x1g(x1)− µ(x1)y1) + ν(x2)− ν(x1)

dy1
dt

= (µ(x1)−m)y1

dx2
dt

=
1

ε
(x2g(x2)− µ(x2)y2) + ν(x1)− ν(x2)

dy2
dt

= (µ(x2)−m)y2

(16)

with :
– ε ≈ 0

– g(x) = 2(1− x)

– µ(x) =
x

0.1 + x
– m = 0.7

– ν(x) = I if x > a = 0.2 else ν = 0 with I limited.
Since there is no migration with y we have simplified the notation νx to simply ν. We
prove that if an initial condition for system (16) is such that the corresponding solution of
(15) is in phase-opposition then the solution of (16) will remain close to the solution of
(15) during a long transient. Precisely :

Proposition 3.2 Let (x̂1(t), ŷ1(t), x̂2(t), ŷ2(t)) be a periodic solution of (15) in phase-
opposition ; let (x1(t), y1(t), x2(t), y2(t)) be a solution of (16) such that :

(x1(0), y1(0), x2(0), y2(0)) ≈ (x̂1(0), ŷ1(0), x̂2(0), ŷ2(0))

then for every limited t :

(x1(t), y1(t), x2(t), y2(t)) ≈ (x̂1(t), ŷ1(t), x̂2(t), ŷ2(t))

except in the halo of jump-times. Moreover

x̂i(t) ≈ 0 =⇒ ε log(x̂i(t)) ≈ ε log(xi(t))

.

Sketch of the proof Recall that C+R is at an infinitesimal distance of the parabola.
Assume that the initial condition is such that the point (x1(0), y1(0)) and the point
(x2(0), y2(0)) both belong to hal(C+R ). On Fig.15 the point (x1(0), y1(0)) is represented
by a red dot and the point (x2(0), y2(0)) by a blue dot ; the point (x̂1(0), ŷ1(0)) is repre-
sented by a red star and the point (x̂2(0), ŷ2(0)) by a blue star. It will be clear later that
these conditions are not restrictive.
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Figure 15. Initial condition. The stars represent the solution of the uncoupled system with
spontaneous immigration. The dots represent the solution of the coupled system (16).
Initial conditions are infinitesimally close together.
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Figure 16. During the first jump. The two pairs : (red dot, red star) and (blue dot) (blue
star) move up along C+

R until the “red pair ” enters the halo of the summit of the parabola.
The “red pair” jumps. During the jump the red dot and the red star are no longer equivalent
but are again after the jump.
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1) Before the first “jump”(Fig.15 ). As long as (xi(t), yi(t)) (i = 1, 2) are in
hal(C+R ) the equations for (xi, yi) are :

dxi
dt

=
1

ε
(xig(xi)− µ(xi)yi)

dyi
dt

= (µ(xi)−m)yi i = 1, 2
(17)

since both are on the right of the migration threshold the two migration compensate. For
(x̂i, ŷi) the system is: 

dx̂i
dt

=
1

ε
(x̂ig(x̂i)− µ(x̂i)ŷi + εI)

dŷi
dt

= (µ(x̂i)−m)ŷi i = 1, 2
(18)

and the slow curve of (18) is close 6 to P+ ; since the equation for y and ŷ are the same
the dots and the stars remain close until the first jump occurs.

2) First “jump”(Fig.16). The value of the first jump-time t1 is the same for
(x1, y1) and (x̂1, ŷ1). During an infinitesimal duration the star and the dot might be
separated but after they are again close.

3) After the “first jump” and before the “second jump”(Fig.17) Before the sec-
ond “jump” of (x̂1, ŷ1) the point (x̂2, ŷ2) remains in hal(C+R ) and the equations are :

dx1
dt

=
1

ε
(x1g(x1)− h(x1)y1 + εI)

dy1
dt

= (h(x1)−m)y1

dx2
dt

=
1

ε
(x2g(x2)− h(x2)y2 − εI)

dy2
dt

= (h(x2)−m)y2

(19)


dx̂i
dt

=
1

ε
(x̂ig(x̂i)− h(x̂i)ŷi + εI)

dŷi
dt

= (h(x̂i)−m)ŷi i = 1, 2
(20)

The first two equations of (19) are exactly the same than those of (20). Thus (x1, y1) and
(x̂1, ŷ1) will remain close together also in the ξ = ε log(x) variables which means that the
minimum of x1 during this period is of the same order of magnitude than the minimum
of x̂1.

6. We use close in place of infinitesimally close
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Figure 17. From t+1 to t−2 along Π. After the first jump of the “red pair” from C+
R to hal(Π)

and before its jump from hal(Π) to C+
R the “blue pair” moves into the halo of C+

R to some
point which is not the summit of the parabola.
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Figure 18. After the second jump of x1. The situation is now the same than in Fig.15 with
the “red pair” exchange with the “blue pair”.
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x1(t) x2(t)1 x̂1(t)

" log(x̂1(t))

Figure 19. Models (15) and (16) : ε = 0.05 ; m = 0.7 ; a = 0.2 ; I = 0.0001. Initial
conditions : (x1(0) = x̂1(0) = 1 ; y1(0) = ŷ1(0) = 0.4) and (x2(0) = x̂2(0) = 1 ; y2(0) =
ŷ2(0) = 0.2)

4) The second “jump” and after (Fig.18) Let t2 be the “time" of the second jump
of x̂1(t). Since the first two equations of (19) are those of (18) as long as x1 < 0.2 both
(x̂1, ŷ1) and (x1, y1) will jump from hal(Π) at the same time and will reach hal(C+R ) being
close.

5) From the second “jump to the fourth one” We are now in the same position
as at step one with 2 (“blue pair”) in place of 1 (“red pair”) ; thus after two more “jump”
we recover the situation of step 1.

6) Last step By external recurrence we can repeat steps 1 to 5 a limited number
of time in order to attain any limited real t and the proposition is proved.

3.3.3. Simulations
We comment here Fig. 19 to 23 which illustrate the previous result.
– Fig. 19. We represent the x variables (above) and the ε log(x) variables (below)

with respect to time. We have represented a simulation of t 7→ x̂1(t) of the model with
spontaneous migration (15) as a very “thick black” curve. After that we have drawn
t 7→ x1(t) in “normal red” and t 7→ x2(t) in “normal blue” of the model with nonlinear
migration (16). We see that x1(t) is so close to x̂1(t) that the “normal red” line is “con-
tained” within the thickness of the “thick black” one. This can be seen on a computer if
one enlarges the picture.

The parameters and initial conditions are :
- m = 0.7 ; a = 0.2 ; I = 0.0001
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- (x1(0) = x̂1(0) = 1 ; y1(0) = ŷ1(0) = 0.4)

- (x2(0) = x̂2(0) = 1 ; y2(0) = ŷ2(0) = 0.2)

When x1 (in red) seems to be 0 the corresponding interval for ε log(x1) (in red) shows
the exact value ; the minimum for x1(t) is around 10−6 that we assume to be big enough
to avoid an “atto-fox problem”. We have the same correspondence for the x2 variable (in
blue).

The blue curve seems to be a shift of the red one.
The black dashed horizontal line represents the threshold a = 0.2 ; the two blue

dashed vertical lines show that when x2(t) is small then x1(t) is above the threshold and
vice versa when x1(t) is small.

– Fig. 20. Now we only represent t 7→ x1(t) (red) and t 7→ x2(t) (blue) but for a
longer duration. The parameters are the same than in Fig. 20 except the initial condition
for y1 which is now : y1(0) = 0.5.

0
0 t

x1(t) x2(t)

" log(x2(t))" log(x1(t))

10�3

10�6

10�9

1

Figure 20. Model (16) : ε = 0.05 ; m = 0.7 ; a = 0.2 ; I = 0.0001. Initial conditions :
(x1(0) = 1 ; y1(0) = 0.5) and (x2(0) = 1 ; y2(0) = 0.2)

The picture shows that the shift between the two components x1(t) and x2(t) seems
to be constant or, in other words the difference of phases seems to be constant.

For this initial conditions the intervals where x1 and x2 are close to 0 are widely
separated.

– Fig. 21. Same conditions than for Fig. 20 except the initial condition for y1 which
is now : y1(0) = 0.4.

Nothing is changed except the shift between the two curves which is smaller.
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Figure 21. Model (10) : ε = 0.05 ; m = 0.7 ; ax = 0.2 ; I = 0.0001. Initial conditions :
(x1(0) = 1 ; y1(0) = 0.4) and (x2(0) = 1 ; y2(0) = 0.2)
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Figure 22. Model (10) : ε = 0.05 ; m = 0.7 ; ax = 0.2 ; I = 0.0001.Initial conditions :
(x1(0) = 1 ; y1(0) = 0.31) and (x2(0) = 1 ; y2(0) = 0.2)

– Fig. 22. Same conditions than for Fig. 21 except the initial condition for y1 which
is now : y1(0) = 0.31.

There is a big change : the variable x2, during a short period, is very small (less than
10−9) and by the way we have an“atto-fox problem”. This is explained by the fact that
now the shift is not sufficient ; when the x2 variable jumps to 0 the x1 variable is just
jumping from 0 and does not cross the threshold in time.

Moreover one sees that this minimum is decreasing in time which means that the jump
of x1 from 0 takes time later and later with respect to the jump of x2 to 0. In other words
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Figure 23. Model (10) : ε = 0.05 ; m = 0.7 ; ax = 0.2 ; I = 0.0001.Initial conditions :
(x1(0) = 1 ; y1(0) = 0.3) and (x2(0) = 1 ; y2(0) = 0.2)

the difference of phases is decreasing.
– Fig. 23. Same conditions than for Fig. 22 except the initial condition for y1 which

is now : y1(0) = 0.3.
The phenomenon observed on the previous simulation is amplified ; at the end of

the simulation the two sites are approximately synchronized and both have minima for x
which are very low.

4. Conclusion
The question of persistence is certainly a major issue in population dynamics. When

the model is a system of differential equations the usual way to define uniform persistence
(in the classical setting) is to say that there exists a strictly positive real α such that for
any initial condition and any component xi of the system :

lim t→∞ xi(t) ≥ α

This is a first qualitative step but not sufficient. The usual Rosenzweig-MacAtrthur model
with its globally asymptotically stable limit cycle is certainly persistent in that sense but,
due to the “atto-fox” problem, might be not “persistent” as a model of an actual popula-
tion. In our opinion, the language of NSA, with the possibility to ask the question whether
the α in the above definition is infinitesimal or not, is particularly suitable to address this
question. The analysis of the system in the variables (ξ, y) gives explicit and accurate
approximation of α for a small ε.
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In the literature the Rosenzweig-MacAtrthur model has been sometimes considered
with “small” ε. It is for instance the case in the papers [17, 18, 19] 7 but, to our knowledge,
the associated “atto-fox” question was never considered before us (see [16]). As we said in
the introduction the Arditi-Ginzburg ratio-dependent model (see [1, 2]) is a better model
than the Rosenzweig-MacArthur model. It differs from (3) by the fact the y-isocline
is a line through the origin instead of being a vertical line ; this does not change the
existence of a “jump” from the summit of the parabola to the vertical axis, “jump” which
is responsible for the very small values of x and, by the way, our present discussion applies
to it.

In section 2.3 we have introduced a constant rate of immigration of the resource I
which prevents the extinction of the resource. There is another direction of research that
we have not considered here : replace the deterministic differential system (3) by some
suitable birth-and-death process like it was done in [7]. But in [7] the evaluation of the
probability of extinction was not considered and this remains to be done.

If the existence of a constant immigration rate solves the “atto-fox” problem it sup-
poses an external “continent” where the resource is always present. What about the sit-
uation for an isolated system ? In section 3.3 we have shown how a small nonlinear
migration can prevent some solutions of a two patches system from an “atto fox” prob-
lem, at least for limited durations. It would have been better to prove it “forever” but we
did not. We took advantage of the NSA language wich allows to say : this property is true
for all limited t ; this is not “for ever” but for a “long time".

In any case the present study is a very first step. It remains to consider various forms
of migrations including migration of the consumer and more than two patches.
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