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ABSTRACT. We present a model of infection by Wolbachia of an Aedes aegypti population. This
model is designed to take into account both the biology of this infection and any available data [30, 38].
The objective is to use this model for predicting the sustainable introduction of this bacteria. We
provide a complete mathematical analysis of the model proposed and give the basic reproduction ratio
R0 for Wolbachia. We observe a bistability phenomenon. Two equilibria are asymptotically stable :
an equilibrium where all the population is uninfected and an equilibrium where all the population is
infected. A third unstable equilibrium exists. We provide a lower bound for the basin of attraction of
the desired infected equilibrium. We are in a backward bifurcation situation. The bistable situation
occurs with natural biological values for the parameters.

RÉSUMÉ. Nous présentons un modèle d’infection par Wolbachia d’une population d’ Aedes aegypti.
Ce modèle est conçu pour à la fois prendre en compte la biologie de l’infection mais aussi les don-
nées d’une expérimentation sur le terrain [30, 38]. L’objectif est d’utiliser ce modèle pour prévoir
l’introduction permanente de cette bactérie dans la population de moustiques. Nous donnons une
analyse mathématique complète du modèle proposé avec le calcul du taux de reproduction de base
R0 pour Wolbachia. On observe un phénomène de bistabilité. Deux équilibres sont asymptotique-
ment stables : un équilibre où toute la population est non infectée et un équilibre où toute la popula-
tion est infectée. Un troisième équilibre instable existe. Nous donnons un encadrement pour le bassin
d’attraction de l’équilibre souhaité. Il s’agit d’une situation de bifurcation rétrograde. Cette situation
apparaît pour des valeurs biologiquement normales des paramètres.
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1. Introduction
Wolbachia is a bacterium which infects arthropod species, including a high proportion of
insects ( 60% of species). Its interactions with its hosts are often complex, and in some
cases it is considered as an endosymbiont.
The unique biology of Wolbachia has attracted a growing number of researchers interested
in questions ranging from the evolutionary implications of infection through to the use of
this agent for pest and disease control : a public web site has been funded by the Na-
tional Science Foundation of Australia (http://www.wolbachia.sols.uq.edu.au/
about.cfm), and a research in pubmeb (http://www.ncbi.nlm.nih.gov/pubmed)
typing wolbachia gives 1315 results.
The bacterium was identified in 1924 by M. Hertig and S. B. Wolbach in Culex pipiens
[26].
While Wolbachia is commonly found in many mosquitoes it is absent from the species
that are considered to be of major importance for the transmission of human pathogens.
The successful introduction of a life-shortening strain of Wolbachia into the dengue vector
Aedes aegypti that decreases adult mean life has recently been reported [9, 20, 25, 42, 43,
49, 67].
Moreover it is estimated that the population of mosquitoes harboring Wolbachia is less
efficient to transmit dengue [30, 43, 62].
Then it is considered that using Wolbachia can be a viable option for controlling the
incidence of the dengue. This is peculiarly interesting since this approach is twofold : de-
creasing the population of mosquitoes and decreasing the transmission. Other approaches
like Sterile Insect Techniques (SIT) [1, 15] act uniquely on population level. SIT consists
to release sterile males (either irradiated males or genetically modified) competing with
wild ones. A drawback of this technique is the need to release continuously sterile males.
On the contrary the successful establishment of Wolbachia infected population, in theory,
does not require continuous release.
In [18] a model is considered, to investigate the possibility for Wolbachia to invade a
general population of hosts.
The reference [9] develops discrete models to predict the severity of adult life-shortening
and in turn are used to estimate the impact on the transmission of dengue virus.
Reference [12] proposes a continuous-discrete model to predict invasion and establish-
ment in a population.
A discrete model for establishment in a host population is studied in [16].
The authors of [24, 25] use integral delay-equation model and two stage population struc-
ture (juvenile/adult) to represent dynamics of spread in a host population.
Leslie matrix discrete model is used in [49].
Reference [57] considers discrete generations models.

Finally, in [52], reaction–diffusion and integro-difference equation models are used to
model the spatio-temporal spread of Wolbachia in Drosophila simulans.
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Our model, unlike those mentioned above, takes into account the totality of the population
dynamics of mosquitoes, incorporating the three mosquito life-stages: egg, larva, and
pupa. The adult life-stage is subdivided into three compartments: composed of young
female mosquitoes (aged 1–5 days, not mated, that do not yet lay eggs ), mature female
and male mosquitoes. The reason is to take into account both the particular biology of
Wolbachia and the possibility to incorporate biological data [38]. In many models some
compartments are lumped : E, L and P in an aquatic stage in [1], L and P in [66]. When
having access to data we obtain numbers for Eggs, Larvae and Pupae. This is the reason
for our choice. When compartments are lumped it is very difficult to interpret these data
to obtain figures for the lumped compartments.

This paper is organized as follows : In section 2 we study dynamics of a population of
Aedes aegypti, incorporating the Egg, Pupae, Larvae, immature and mature female. As
said one rationale for the introduction of two stages in female is to model, in the sequel,
the cytoplasmic incompatibility induced by Wolbachia infection. We analyze completely
this model. Section 3 is devoted to a complete model adapted for the characteristics of
Wolbachia. A complete analysis is given and bistability and backward bifurcation are
proven.

2. Population dynamics of wild Aedes mosquito
Before presenting and analyzing the model of infection with Wolbachia we will need
some preliminaries and some results that will be used in the sequel.

2.1. The model
The life cycle of a mosquito consists of two main stages: aquatic (egg, larva, pupa) and
adult (with males and females). After emergence from pupa, a female mosquito needs to
mate and get a blood meal before it starts hatching eggs. Then every 4 − −5 days it will
take a blood meal and lay 100−−150 eggs at different places (10−−15 per place). For
the mathematical description, our model is inspired by the models considered in [14, 15].
However, for biological applications, our model introduce the complete stages.
However we will consider three aquatic stages, where the authors [15, 1] lump the three
stages into a single aquatic stage. The rationale is to prepare for a subsequent model with
infection by Wolbachia. Furthermore, we split the adult stage into three sub-compartments,
males, immature female and mature female which leads to the following compartments:

– Eggs E;
– Larvae L;
– Pupae P ;
– Males M ;
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– Young immature females Y ; we consider a female to be in the Y compartment from
its emergence from pupa until her gonotrophic cycle has began, that is the time of mating
and taking the first blood meal, which takes typically 3−−4 days.

– Mature females F , i.e., fertilized female.
Parameters µE , µP , µY , µF and µM are respectively the death rate of eggs, larvae, pupae,
immature female, mature females and males. The parameters ηE ,ηL, ηP , β are the
respective rate of transfer to the next compartment. The parameter ν is the sex ratio. In
this model, we use a density dependent death rate for the larvae stage since mosquitoes
larvae (anopheles and aedes) are density sensitive, which imply an additional density
mortality rate. We assume that eggs emergence is influenced by larvae density. The
development is regulated by a carrying capacity effect depending on the occupation of the
available breeding sites. The parameter C is the carrying capacity related to the amount
of available nutrients and space. Such an hypothesis is appropriate since mosquitoes only
have access to a finite number of potential breeding sites, and density-dependent larval
survival has been demonstrated at such sites. The parameter φ is the average amount of
eggs laid per fertilized female per unit of time.
Mating is a complex process that is not fully understood. However, as discussed in [1]
and references therein, the male mosquito can mate practically through all its life. A
female mosquito needs one successful mating to breed lifelong [31]. It is admitted that
mosquitoes locate themselves in space and time to ensure they are available to mate.
Therefore, it is reasonable to assume that in any case the immature female will mate and
afterwards move to compartment F , or die. Thus a parameter like 1

β+µY
can represents

the mean time given by length of the first gonotrophic cycle of a female, i.e., the interval
from immediately after the mating to the first blood meal.
We assume that all the parameters are constant. In reality, the mosquito population varies
seasonally. Nevertheless, such a model should be a good approximation for a definite
season.



Ė = φF − (µE + ηE)E

L̇ = ηE E

(
1− L

C

)+

− (µL + ηL)L

Ṗ = ηL L− (µP + ηP )P

Ẏ = ν ηP P − (β + µY )Y

Ḟ = β Y − µF F

Ṁ = (1− ν) ηP P − µM M,

(1)
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where we have denoted by
(
1− L

C

)+

the positive part of the function, i.e.,

(
1− L

C

)+

=


1− L

C
if L ≤ C

0 if L > C

This choice is for the rationale of modelling : female Aedes choose their breeding site,
hence value of egg hatching, in function of the availability of food and concentration of
larvae. WhenL > C having a egg hatching rate negative would be dubious. The choice of

this function, (1− L

C
) with carrying capacity, is not new and has been already extensively

used [15, 14]. We will study elsewhere a model with intraspecific competition for larvae
[37].

We denote by X a vector of the state space of this system.

XT = (E,L, P, Y, F,M),

The domain

D = {X ∈ R6
+ | L ≤ C}

is a closed positively invariant absorbing set. Absorbing means that any trajectory of (1)
enters the interior of D. Then throughout the remaining of this paper we will limit our
analysis to D.

2.2. Analysis of the model
In this section we will study the stability of the model and use one of his characteristic
monotonicity. Monotonicity is a property shared by many biological models. For the
convenience of the reader we recall some properties of monotone systems

2.2.1. Monotone dynamical systems
Consider an ODE

ẋ = f(x) (2)

defined on a positively invariant set U ( i.e., any trajectory starting in U, stays in U ).
We denote by φf (x) the flow f of this ODE, or in other words the trajectory at time t
starting from x. We assume, to avoid complications, that this is defined for any t ≥ 0
(this will be the case our system). We consider the standard partial order on Rn and the
corresponding notations : x ≤ y ⇐⇒ for all i xi ≤ yi, x < y if x ≤ y and x 6= y and
finally x� y ⇐⇒ for all i, xi < yi.
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System (2) is called monotone if x ≤ y implies φt(x) ≤ φt(y) [29, 28]. If f is C1 this

is equivalent to saying that the Jacobian of f , Jac(x) =
(
∂fi(x)

∂xj

)
1≤i,j≤n

is a Metzler

matrix. A Metzler matrix is a matrix whose off-diagonal terms are nonnegative.

System (2) is called strongly monotone if x < y implies φt(x)� φt(y) for any t > 0.
System (2) is strongly monotone if the Jacobian is irreducible. There is a simple algorithm
to check if a Metzler matrix A is irreducible. The associated digraph G(A) of a n × n
matrix A, consists of n vertices 1, . . . j where an edge leads from j to i if and only if
aij 6= 0. A matrix A is irreducible iff its associated digraph is strongly connected, which
means that for any ordered pair (j, i) of vertices of G(A) , there exists a sequence of
oriented edges (a path) which leads from i to j.
We can use a different partial order associated to a cone. Let K = Rk+ × −(Rn−k+ ) and

the associated order defined by x ≤K y ⇐⇒ y − x ∈ K, x� y ⇐⇒ y − x ∈
◦
K.

The notion of monotony for this order ≤K will called of type K : monotone systems of
type K.

2.2.2. Monotonicity of the mosquito model (1)
Computing the Jacobian of (1) gives

A(X) =



−(µE + ηE) 0 0 0 φ 0

ηE

(
1− L

C

)+

−(µL + ηL +
ηE
C
E) 0 0 0 0

0 ηL −(µP + ηP ) 0 0 0

0 0 ν ηP −(β + µY ) 0 0

0 0 0 β −µF 0

0 0 (1− ν) ηP 0 0 −µM



.

This Jacobian on D is a Metzler matrix, hence (1) is a monotone system. We can discard
the last equation since MW does not occur in the other equations. The reduced system is
then strongly monotone if L < C.

2.2.3. Stability Analysis
Using the concept in demography introduced by Böckh, we can define a basic offspring
number as the mean number of females born from one female during its entire reproduc-
tive life. This can be computed using the methods of [60] (where the transmission term is
given by φF ) or by looking at the equations.
Using (1) we obtain easily that
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R0,offsp =
φ

µF

ηE
µE + ηE

ηL
µL + ηL

ν ηP
µP + ηP

β

β + µY
.

When R0,offsp ≤ 1 the only equilibrium is the origin. When R0,offsp > 1, a second
positive equilibrium exists (E∗, L∗, P ∗, Y ∗, F ∗,M∗)T .
We can express all the components as positive linear expressions of P ∗

L∗ =
µp + ηp
ηL

P ∗, Y ∗ =
ν ηP
β + µY

P ∗, (3)

F ∗ =
β

β + µY

ν ηP
µF

P ∗, M∗ =
(1− ν) ηP

µM
P ∗ (4)

E∗ =
φ

µE + ηE

β

β + µY

ν ηP
µF

P ∗. (5)

Finally, replacing in the equation L̇ = 0, we get

P ∗ =
R0 − 1

R0

C ηL
µP + ηP

(6)

For a future use we will need positively compact invariant sets for (1) when R0,offsp > 1
and when R0,offsp ≤ 1. In accordance with these notations the closed order interval [a, b]
is

[ a, b ] = {x ∈ Rn | a ≤ x ≤ b}

We will also denote by X∗ = (E∗, L∗, P ∗, Y ∗, F ∗,M∗)T � 0.

Proposition 2.1
When R0,offsp > 1, for any s and any θ such that 0 < s < 1 and 1 < θ the closed order
intervals

[ sX∗, θ X∗ ]

are positively invariant compact subsets of the positive orthant for system (1)

When R0,offsp ≤ 1, there exists Xk � 0 such that the order intervals [0, θ Xk] are posi-
tively invariant compact subsets of the positive orthant for any θ ≥ 1.

Proof
We remark that the vector field associated to (1), A(X)X = f(X), is strictly sublinear.
In other words this means that for any X � 0 and any 0 < λ < 1 we have

λ f(X) < f(λX).
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From sublinearity we immediately obtain f(sX∗) > 0 and f(θ X∗) < 0. Using the
proof of Proposition 2.1 we then obtain that [ sX∗, θ X∗ ] is positively invariant by the
monotone system (1).
When R0,offsp ≤ 1 we choose Lk = C, Pk = 2

ηL
µP + ηP

Lk, Yk = 2
ν ηP
β + µU

Pk,

Fk = 2
β

µF
Yk, Mk = 2

(1− ν) ηP
µM

Pk and Ek = 2
φ

µE + ηE
Fk. If we define Xk =

(Ek, Lk, Pk, Yk, Fk,Mk)
T we have f(Xk) � 0. By the same argument as before the

order interval [0, Xk] is a positively invariant absorbing set.
This proves that all the trajectories are bounded.

�
We can now give the main result of this section

Theorem 2.1
IfR0,offsp < 1 the origin is globally asymptotically stable in the nonnegative orthant Rn+.
In other words the mosquito population goes to extinction.
If R0,offsp > 1 the positive equilibrium X∗ is globally asymptotically stable on the non-
negative orthant minus the M -axis.

Proof
Since M does not appear in the 5 first equations, to study the stability of system (1) it is
sufficient to consider the first 5 equations. In this case the system is strictly monotone and
strictly sub-linear. Moreover Proposition 2.1 shows that all the trajectories are bounded.
We can apply Theorem 6.1 of [27], with a simple adaptation to strict sub linear systems.
Hence all trajectories tend to the origin or else there is a unique equilibrium X∗ � 0 and
all trajectories in R5

+ \ {0} tend to X∗.
The origin is stable whenR0,offsp < 1. On the other hand X∗ is stable whenR0,offsp > 1
and the origin is unstable. It is sufficient to consider the Jacobian at the equilibrium. Since
we will have to do again these computations we refer to a subsequent section (3.4.1),
where the stability of these matrices are proved. Actually the Jacobian computed at the
positive equilibrium is given by matrix A11 in (3.4.1). The stability of A11 is proven in
this section.
When R0,offsp ≤ 1 we have only one equilibrium, which is the origin, in a set where
the system is strongly monotone. Then using Theorem 10.3 of Hirsch [28] we obtain the
global stability of the origin, in the open domain L < C. Since this domain is absorbing
this proves the global asymptotic stability.

�

For further reference we will denote by f(X,φ, µF , µK) the vector field on R6 associated
to (1). This is to stress some particular parameters which will be of importance later on.
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3. A complete model
We will now consider a model of infection of Wolbachia in an Aedes population. We
assume that the wild population, when Wolbachia is not present, is sustainable. This
means thatR0,offsp > 1.
Our model take into account cytoplasmic incompatibility, which is outlined in the follow-
ing table :

Reproduction
♂

Infected Uninfected

♀
Infected Infected Infected

Uninfected Sterile Uninfected

This phenomenon causes embryos from Wolbachia-uninfected females to die when they
are mated with infected males whereas infected females are not affected in this manner[6,
30].
We index by U or W respectively the uninfected and infected stages. With this nota-
tion, the compartment of FWU is the compartment of infected females fertilized by unin-
fected males, FWW the compartment of infected females fertilized by infected males,
FUU the females resulting of mating between uninfected individuals. We denote by
FW = FWU + FWW the compartment of infected female. Finally FUW is the unin-
fected female fecundated by an infected male. We assume that cytoplasmic incompati-
bility is complete and this implies that this last compartment is constituted with sterile
females. The assumption of complete CI is consistent with laboratory data [62]. Further-
more, based on this data, we also assume perfect maternal transmission of wMel infection.
wMel is a peculiar strain of Wolbachia [5].
These assumptions lead to the following system, defined on a subset of R13

+ whose flow
graph is
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EU

LU

PU

YUMU

FUU

φ FUU

FUW FW

θφ FW

EW

LW

PW

YW MW

ηE

ηL

(1−ν) ηP ν ηP (1−ν) ηP ν ηP

μL+EW (LW+LU/C)μL+EU (LW+LU/C) ηL

μE μE

μPμP

μMU

μFU μFU μFW

μMW

μY μY

ηE

MU
MWMU

β 
+

MW
MWMU

β 
+

Uninfected Wolbachia-infected

β

Figure 1. The Flow graph of Wolbachia system

We split the system into two subsystems
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

ĖU = φFUU − (µE + ηE) EU

L̇U = ηE EU

(
1− (LU + LW )

C

)+

− [ηL + µL]LU

ṖU = ηL LU − (µP + ηP )PU

ẎU = ν ηP PU − (β + µY )YU

ḞUU = β YU
MU

MU +MW
− µFU FUU

ṀU = (1− ν) ηP PU − µMU MU

ĖW = θ φFW − (µE + ηE) EW

L̇W = ηE EW

(
1− (LU + LW )

C

)+

− [ηL + µL]LW

ṖW = ηL LW − (µP + ηP )PW

ẎW = ν ηP PW − (β + µY )YW

ḞW = β YW − µFW FW

ṀW = (1− ν) ηP PW − µMW MW ,

(7)

and

ḞUW = β YU
MW

MU +MW
− µFU FUW . (8)

Since FUW (sterile female) does not appear in the other equations, due to cytoplasmic
incompatibility, the asymptotic behavior of the complete system can be reduced to the
behavior of system (7), with (8) discarded. From now on, we will consider this reduced
system. We will also restrict to the domain

D = {X | LU + LW ≤ C}. (9)

We have bounded cœfficients ( 0 ≤ MU

MU +MW
≤ 1). Then in equations (7) we replace

MU

MU +MW
by

Monotone Dynamical Systems and some Models of Wolbachia in Aedes aegypti Populations  -  155

ARIMA journal 



h(MU ,MW ) =


MU

MU +MW
if MU +MW > 0

0 if MU =MW = 0

System (7) is defined on R12
+ \ {MU =MW = 0}.

We will denote byX = (XU , XW ) ∈ R6
+×R6

+ the components of the state of the system
and we decompose accordingly the vector field in f = (fU , fV ). XU corresponds to the
uninfected variables and XW corresponds to the Wolbachia-infected variables. System
(7) can be written evidentlyẊU

ẊW

 =

AU (X) 0

0 AW (X)

 XU

XW


With this choice the vector is globally Lipschitz and the nonnegative orthant R12

+ is posi-
tively invariant.
We will need, later on, to identify the invariant faces of R12

+ . It is clear that the only faces
positively invariant are the four faces

{0}5 × R+ × R6 , R6
+ × R+ × {0}5 , {0}6 × R6 , R6

+ × {0}6

of dimension 7, 7, 6, 6. We observe that the critical face {MU = MW = 0} is not
positively invariant.

We assume that Wolbachia has an impact on a stage when it is ascertained in litterature.
However it would be straightforward to study a model for which Wolbachia has an impact
on each stage. We incorporate a reduction of the mean life of the adult male and female
mosquito as quoted in the literature [9, 20, 25, 42, 43, 49, 67]. Then we denote by µFW
and µMW respectively the death rate of female and male infected by Wolbachia. We also
introduce a competition, for mating, between infected male and uninfected male.
In this model EU , EW are the eggs compartments, respectively uninfected and infected.
According to the literature, there is no apparent difference between infected and unin-
fected eggs [39] . So we denote respectively by µE and ηE the common death rate and
the transition into the larvae compartments.
Similarly LU and LW are the larval compartments. In this case we introduce an in-
traspecific competition between larvae. Again, it seems that there is no known difference
between infected and uninfected larvae [39]. Then we denote by µL and ηL the common
death rate and transition rate to pupae compartments.
We denote by PU and PW the uninfected and infected pupae compartments.
We also introduce a factor θ ≤ 1 to consider an eventual decrease of the amount of laid
eggs by an infected female [30, 41, 42, 62, 67].
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We consider this model in the nonnegative orthant minus the set defined by {MU =
MW = 0}. The nonnegative orthant is clearly positively invariant by this system. We
can define the value of our system to be 0 at the origin, since the absence of population
is a singular point. Note that our vector field cannot be prolongated continuously on
the nonnegative orthant. However all the trajectories are defined on our domain. The
competition between males results in the loss of monotonicity.

3.1. Equilibria

3.1.1. Uninfected equilibrium : Wolbachia free equilibrium
When there is no infection in the mosquito population, i.e., EW = LW = PW = YW =
FW = FUW = MW = 0, model (7) reduces to model (1) of mosquito population. Then
in the sequel we will assume thatR0,offsp > 1. For this model the basic offspring number
is

R0,offsp,U =
φ

µFU

ηE
µE + ηE

ηL
µL + ηL

ν ηP
µP + ηP

β

β + µY
.

In this case there is an equilibrium on the boundary of the nonnegative orthant whose
components are given by (3, 6), with the evident adaptation of notations corresponding to
the vector field f(X,φ, µFU , µMU ).
This equilibrium corresponds to a population free of infection. We will call this equilib-
rium the WFE ( Wolbachia free equilibrium). The WFE is expressed by (X∗U , 0) where
X∗U is given by (3, 6) with µF , µM replaced by µFU , µMU in the formulas.

3.1.2. Completely Wolbachia-Infected equilibrium
In a similar way if EU = LU = PU = YU = FUU = MU = 0 the system reduces to
a system like (1) with different parameters. Actually this corresponds to the vector field
f(θ φ, µFW , µMW ). Then we define a basic offspring number for the completely infected
population

R0,offsp,W =
θ φ

µFW

ηE
µE + ηE

ηL
µL + ηL

ν ηP
µP + ηP

β

β + µY
.

In this case there is an equilibrium on the boundary of the nonnegative orthant given by

P ∗W =
C ηL

µP + ηP

(R0,offsp,W − 1)

R0,offsp,W
(10)
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L∗W =
µP + ηP
ηL

P ∗W , Y ∗W =
ν ηP
β + µY

P ∗W , (11)

M∗W =
(1− ν) ηP
µMW

P ∗W F ∗W =
β

β + µY

ν ηP
µFW

P ∗W , (12)

F ∗UW = 0, E∗W =
θ φ

µE + ηE

β

β + µY

ν ηP
µFW

P ∗W (13)

In the sequel, we will refer to this equilibrium as the “Completely Wolbachia-Infected
Equilibrium" (CWIE).
Since we are addressing the issue of the sustainable establishment of Wolbachia we will
assume in what follows thatR0,offsp,W > 1.

3.1.3. A coexistence equilibrium
We remark that

R0,offsp,W =
θ µFU
µFW

R0,offsp,U < R0,offsp,U .

This inequality implies that the infected population, as actually observed, would be smaller
that the uninfected population.

We denote by R0,W =
θ µFU
µFW

< 1. We will justify, later on that this notation: R0,W is

actually the basic reproduction ratio [60] for Wolbachia in the mosquito population.
Then

R0,offsp,W = R0,W R0,offsp,U < R0,offsp,U . (14)

We assume that R0,offsp,W > 1. In this case a coexistence equilibrium exists in the
positive orthant. The components PU and PW are given by

PU,coex = C
ηL

ηP + µP

θ µFU µMU

µMW [µFW − θ µFU ] + θ µFU µMU

(R0,offsp,W − 1)

R0,offsp,W
(15)

PW,coex = C
ηL

ηP + µP

µMW (µFW − θ µFU )
µMW [µFW − θ µFU ] + θ µFU µMU

(R0,offsp,W − 1)

R0,offsp,W
(16)

These two components are positive with our hypotheses. The remaining components can
be expressed in terms of these two as follows:
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LU,coex =
µP + ηP
ηL

PU,coex, LW,coex =
µP + ηP
ηL

PW,coex, (17)

YU,coex =
ν ηP
β + µY

PU,coex , YW,coex =
ν ηP
β + µY

PW,coex , (18)

MU,coex =
(1− ν) ηP
µMU

PU,coex, MW,coex =
(1− ν) ηP
µMW

PW,coex. (19)

(20)

FUU,coex =
β ν ηPµMW

µFU (µMU PW,coex + µMW PU,coex) (β + µY )
P 2
U,coex, (21)

FW,coex =
β ν ηP

µFW (β + µY )
PW,coex, (22)

EU,coex =
β ν φ ηP µMW

µFU (µMU PW,coex + µMW PU,coex) (β + µY ) (µE + ηE)
P 2
U,coex, (23)

EW,coex =
β ν φ θ ηP

µFW (β + µY ) (µE + ηE)
PW,coex. (24)

3.2. Monotonicity of the system
In this section we will prove that our system is monotone for an order ≤K on the closed
absorbing positively invariant set D ( see 9) and strongly monotone on a dense subset of
D.
We claim that system (7) is monotone relatively to the cone K = R6

+ ×−(R6
+) [53].

The Jacobian is given by the matrix block

J(X) =

[
J11 J12
J21 J22

]
partitioned in 6× 6 blocks. The blocks are given by

J11 =



−(µE + ηE) 0 0 0 φ 0

ηE
(
1− LU+LW

C

)
−(ηL + µL +

ηE
C EU ) 0 0 0 0

0 ηL −(ηP + µP ) 0 0 0

0 0 ν ηP −(β + µY ) 0 0

0 0 0 β −µFU 0

0 0 (1− ν) ηP 0 0 −µMU


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J12 =



0 0 0 0 0 0

0 − ηEC EU 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 −β MU YU
(MU+MW )2

0 0 0 0 0 0



J21 =



0 0 0 0 0 0

0 − ηEC EW 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



J22 =



−(µE + ηE) 0 0 0 θ φ 0

ηE
(
1− LU+LW

C

)
−(ηL + µL +

ηE
C EW ) 0 0 0 0

0 ηL −(ηP + µP ) 0 0 0

0 0 ν ηP −(β + µY ) 0 0

0 0 0 β −µFW 0

0 0 (1− ν) ηP 0 0 −µMW



Let P the diagonal matrix defined by

P = diag(1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1− 1)

Then

P Jac(X)P =

[
J11 −J12
−J21 J22

]
which is a Metzler matrix. This proves our claim.
We will denote by ≤K the order corresponding to the cone K. Using the standard order
on R6, we have the relation

(XU , XW ) ≤K (YU , YW )⇐⇒ XU ≤ YU ; XW ≥ YW
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The system is clearly strongly monotone on the interior of the domain D.
For the convenience of the reader we draw the graph of the Jacobian, to justify our claims.
It is straightforward that the digraph is strongly connected. We plot the negative links
in red. There exists an algorithm to identify if a system is monotone relatively to an
alternative cone. In the non oriented graph, the negative links are identified. There exists
a cone iff any loop contains an even number of negative links.

1

EU≠0    
MW≠0 or YU ≠0    

LU+LW <C    

LU+LW <C    

EW ≠0    

2 3 4 5 6

7

8

9 10 11 12

Figure 2. The links that can vanish are with a red dot

It is clear that this graph is strongly connected in the interior of D, which proves the
strong monotonicity. Some red links are necessary to obtain strong connectivity. Then
our system will be monotone and strongly connected on the domain

B = {X ∈ R12 | 0 ≤ LU + LW < C ; 0 < EW ; 0 < MU ; 0 < YU}

We have
o

D ⊂ B. However we have already identified the 4 invariant faces of the nonneg-
ative orthant. Our system is strongly monotone on the nonnegative orthant minus these 4
faces.
We also observe (for the non oriented graph) that every closed loop has an even number
of red edges, which proves the monotonicity for a alternative cone [53].
We observe also that our system is strictly sub linear for the classical order on R12 in the
domain D.

3.3. Invariance and Forward boundedness of the trajectories
We denote the WFE by Xwfe = (X∗U , 0), the CWIE by Wcwie = (0, X∗W ) and the coexis-
tence equilibrium by
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Xcoex = (EU,coex, LU,coex, PU,coex, YU,coex, FUU,coex,MU,coex, . . .

EW,coex, EW,coex, LW,coex, PW,coex, FW,coex,MW,coex)
T .

We will prove that

Xcoex <K Xcwie <K Xwfe.

Since Xcwie � 0, this is equivalent to X∗W > XW,coex and XU,coex < X∗U .
Since f(Xcwie) = f(Xcoex) = f(Xcwie) = 0, this proves, by the argument already used
in the proof of Proposition 2.1, that for the order ≤K the order intervals

[Xcwie , Xcoex]K and [Xcoex , Xwfe]K

are positively compact invariant sets contained in D.
We have also proved that for any ρ > 1, then f2(ρX∗W ) < 0 and f1(ρW ∗U ) < 0. Using
again monotonicity, this proves that the order intervals

[ρ1Xcwie , Xcoex]K and [Xcwie , ρ2Xwfe]K

are positively invariant compact sets, as far as 1 ≤ ρ1 ≤
C

L∗W
and 1 ≤ ρ2 ≤

C

L∗U
(we

need monotonicity and then we are restricted to D). Using the relation for L∗W and L∗U
this gives

ρ2 ≤ 1 +
1

R0,offsp,W
, ρ1 ≤ 1 +

1

R0,offsp,U
.

For completeness we prove now our claims on comparisons of the 3 equilibria.
We have

PU,coex + PX,coex = P ∗W .

Now, with relation (14) andR0,W < 1, we have

P ∗W
P ∗U

=
R0,W (R0,offsp,U − 1)

R0,W R0,offsp,U −R0,W )
< 1

Using these two inequalities, it is now not difficult, using relations (10) to (21), to prove
the desired inequalities for the equilibria. As a consequence the 3 equilibria are in the
domain D.
We can find by an argument similar to Proposition 2.1 a vector Xk ∈ D such that
f(Xk) � 0. We begin to choose LU + Lk = C and we continue as in the Proposi-
tion. Since f is monotone in D, the order set [0, Xk] is a positively invariant absorbing
set. This proves that all the trajectories are bounded.
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3.4. Stability Analysis of the equilibria
In this section we will prove the following Theorem

Theorem 3.1
Trajectories of system ( 7) are forward bounded.

– IfR0,W R0,offsp,U = R0,offsp,W > 1,

three equilibria exist. A disease free equilibria (WFE), an equilibrium with the total
population infected (CWIE) and a coexistence equilibrium in the positive orthant. The
WFE and CWIE are asymptotically stable, the coexistence equilibrium is unstable;

– IfR0,offsp,U > 1,

there exists an equilibrium without infection (WFE) which is asymptotically stable.

When R0,W <
1

R0,offsp,U
only the WFE exists and is globally asymptotically stable on

the nonnegative orthant minus the manifold MW = 0.

3.4.1. Stability of the Wolbachia Free Equilibrium
To study the stability of the infection free equilibrium WFE we compute the basic repro-
duction ratio for the infection by Wolbachia. The variable corresponding to uninfected
compartments

XU = (EU , LU , PU , YU , FUU ,MU ),

and the other variables for infected compartments

XW = (EW , LW , PW , YW , FW ,MW ).

We use the technique of [60] to compute the basic reproduction ratio for Wolbachia.

Since we are dealing with 12 equations, the verification of the hypothesis (A5) [60] is
not completely straightforward. Namely we have to prove (hypothesis A5) that, when
the transmission is set to zero, then the Jacobian of the resulting system, computed at
the WFE, is a stable matrix (by stable we mean Hurwitz). Setting the transmission to
zero amounts to set θ = 0. It is well known that the Jacobian computed at the WFE is a
diagonal block upper triangular matrix :

Jac(WFE) =

[
A11 A12

0 A22

]
.

In the present case A11 and A22 are 6× 6 matrices.

Monotone Dynamical Systems and some Models of Wolbachia in Aedes aegypti Populations  -  163

ARIMA journal 



The matrix A22 when θ = 0 is equal to

A22 =



−(ηE + µE) 0 0 0 0 0
ηE

R0,offsp,U
−(µL + ηL) 0 0 0 0

0 ηL −(ηP + µP ) 0 0 0
0 0 νηP −(β + µY ) 0 0
0 0 0 β −µFW 0
0 0 (1− ν)ηP 0 0 −µMW


, (25)

and is clearly stable.

We now consider A11 :

A11 =



−(ηE + µE) 0 0 0 φ 0
ηE

R0,offsp,U
−
µL + ηL

R0,offsp,U
0 0 0 0

0 ηL −(ηP + µP ) 0 0 0

0 0 νηP −(β + µY ) 0 0

0 0 0 β −µFU 0

0 0 (1− ν) ηP 0 0 −µMU


.

The matrix A11 is a Metzler matrix. We can apply a lemma from [35], which we recall
for the convenience of the reader

Lemma 3.1
Let M be a Metzler matrix, which is block decomposed :

M =

[
A B
C D

]
.

Where A and D are square matrices.
Then M is Hurwitz if and only if A and D−CA−1B are Metzler stable.

We can now prove that A11 is Hurwitz. Since we have an evident eigenvalue −µMW in
position (6, 6); we can reduce the stability to the stability of the 5 × 5 principal upper
block.

V 5 =


−(ηE + µE) 0 0 0 φ

ηE
R0,offsp,U

− µL + ηL
R0,offsp,U

0 0 0

0 ηL −(ηP + µP ) 0 0
0 0 νηP −(β + µY ) 0
0 0 0 β −µFU

 .

If we define A = V 5(1 : 4, 1 : 4), the first upper 4× 4 block of V 5 and the other blocks
accordingly. Since the block A is lower triangular with a negative diagonal, we have the
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stability of this block. A computation of D − C A−1B, with this block decomposition,
yields after some simplifications

D − C A−1B = −µFU
(
1− 1

R0,offsp,U

)
< 0.

That proves that A11 is Hurwitz and finally that the hypothesis (A5) is satisfied.
We can now compute the basic reproduction ratio for Wolbachia infection. We denote by
F the Jacobian of all the transmission term in the infected compartments.

F =



0 0 0 0 θ φ 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

We denote by V the remaining part of the Jacobian A22 computed at the WFE.
Using the results of [60], we know that the reproduction number for Wolbachia is given
byR0,W = ρ(−F V 1). An immediate computation gives

−F V −1
=



θ µFU

µFW
R0,offsp,W

µE + ηE

ηE

θ φ β ν ηP

µFW (µP + ηP ) (β + µY )

θ φ β

µFW (β + µY )

θ φ

µFW
0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

Finally we obtain what we have already denoted asR0,W .

R0,W =
θ µFU

µFW
< 1.

This proves that the WFE is locally asymptotically stable.

3.4.2. Stability of the Completely Wolbachia-Infected Equilibrium
In this section, for the existence of the CWIE, we assume

1 < R0,offsp,W = R0,W R0,offsp,U < R0,offsp,U .

The Jacobian computed at the CWIE is a block diagonal lower triangular matrix
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Jac(CWIE) =

[
A11 0
A21 A22

]
.

We have

A11 =



−(ηE + µE) 0 0 0 φ 0

ηE

R0,offsp,W
−(µL + ηL) 0 0 0 0

0 ηL −(ηP + µP ) 0 0 0

0 0 νηP −(β + µY ) 0 0

0 0 0 0 −µFU 0

0 0 (1− ν) ηP 0 0 −µMU


.

the last term −µMU is clearly an eigenvalue of A11. Considering the other 5 × 5
remaining principal subblock we see that the elements of the diagonal are also eigenvalues
of A11, hence this block is Hurwitz.
We consider now A22

A22 =



−(ηE + µE) 0 0 0 θφ 0

ηE

R0,offsp,W
−(µL + ηL)R0,offsp,W 0 0 0 0

0 ηL −(ηP + µP ) 0 0 0

0 0 νηP −(β + µY ) 0 0

0 0 0 β −µFW 0

0 0 −(ν − 1)ηP 0 0 −µMW


.

The matrix A22 is Hurwitz if and only if the upper principal 5× 5 block A111 is stable.

A111 =



−(ηE + µE) 0 0 0 θφ

ηE

R0,offsp,W
−(µL + ηL)R0,offsp,W 0 0 0

0 ηL −(ηP + µP ) 0 0

0 0 νηP −(β + µY ) 0

0 0 0 β −µFW


.

We will use again lemma (3.1) for the stability of Metzler matrices. With the notation
of the lemma, we choose for A the upper principal 4 × 4 block. This block is a lower
triangular matrix with negative diagonal elements, hence stable.
A straightforward computation gives
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D − C A−1B = −µFW
(
1− 1

R0,offsp,W

)
This proves finally the asymptotic stability of the CWIE.

3.4.3. Stability of the coexistence equilibrium
We will prove, in this section, that any trajectory in [Xcoex, Xwfe]K \{Xcoex} tends toXwfe
and any trajectory in [Xcoex, Xcwie]K \ {Xcoex} tends to Xcwie.
Then we will prove that the coexistence equilibrium is always unstable. Based on the
monotonicity properties, this can be done without any computation. If we consider, for
example, the closed order interval [Xcoex, Xwfe]K , this interval is a compact positively
invariant and contain only two equilibria. This is almost a situation encountered in [28].

However we cannot apply Theorem 10.5 of Hirsch [28] which would give the desired
result. To use this Theorem we need that our system is strongly monotone on our closed
order interval. This is not true since the face of this interval, contained in R6

+ × {0},
is invariant. A key result for the proof of the Theorem of Hirsch is that the set of qua-
siconvergent points, in a totally ordered arc for a strongly monotone system, is at most
countable. A common difficulty in applying the Theorem of density, often overlooked in
applications, arises from the fact that irreducibility is an open condition. It commonly
occurs that irreducibility holds only in the interior of the domain while some parts of the
boundary are invariant sets. In this case, strong monotonicity (and even the strong order
preserving property) may fail to hold on the boundary. This is exactly our case.
For proving the result we need to tailor Hirsch’s Theorem to our situation. We will prove
a general result applicable to our situation.
Then we consider on Rn+, strongly ordered by a coneK, a C1 monotone system ẋ = f(x)
with semiflow φ.
We need to define what is a face of a closed order interval [p, q].

Definition 3.1
The closed order interval [p, q] is a convex polytope, i.e, the finite intersection of half-
spaces. A hyperplane H of Rn is supporting [p, q], at a point x ∈ [p, q], if one of the two
closed halfspaces of H contains [p, q].
A subset F of [p, q] is called a face of [p, q] if it is either ∅, [p, q] itself or the intersection
of [p, q] with a supporting hyperplane.

Theorem 3.2
We consider a C1 monotone system ẋ = f(x), whose flow φ preserves Rn+ for t ≥ 0.
Let p, q be equilibria with p� q, with no other equilibria in [p, q].
We assume that p is asymptotically stable for φ and that there exists a positively invariant
face F of [p, q] containing p which is in the basin of p. We also assume that some other
faces F1, F2, · · · , FK are positively invariant, and for any point x of each Fi, the omega-
limit set satisfies ω(x) ∩ F 6= ∅.
We assume that the system is strongly monotone on the complement
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[p, q] \ (F ∪ F1 ∪ · · · ∪ Fk).

Then any trajectory of [p, q] \ {q} converges to p. Hence the equilibrium q is unstable.

Proof
By monotonicity [p, q] is a compact positively invariant set. Consequently any trajectory
in [p, q] is bounded.
Consider the totally ordered arc in [p, q], J = {x = (1 − t) p + t q | 0 ≤ t ≤ 1}.
If a point x ∈ I converges to p then by monotonicity [x, p] is in the basin of p. Since
p is asymptotically stable there exists x 6= p in J converging to p. Let a = sup{x ∈
J | x converges to p}. Similarly let b = inf{x ∈ J | x converges to q}. The order
interval [[a, b]] is composed of points converging neither to p, neither to q.
The ordered interval [p, a]] is an open subset of [p, q], containing p in the basin of p.

We will show that a = b = q which will prove the Theorem.

Before this we show that any face Fi is in the basin of p. We know that for any x in Fi,
ω(x) ∩ F 6= ∅. Since any point of F converges to p, by invariance of the omega limit set,
we have p ∈ ω(x), which implies that the trajectory from x enters [p, a]] proving that x
converges to p.

To prove a = b, we proceed by contradiction assuming a � b. By definition of a and b,
any point of [[a, b]] does not converge to an equilibrium. Moreover a cannot be in the basin
of p. Otherwise, since p is asymptotically stable, the basin is open, which contradicts the
definition of a. Let

W = φR+([a, b]] ∪ J).

Continuity of φ implies that W is a separable compact metric space positively invariant
under φ. Moreover W ∩ (F ∪F1 ∪ · · · ∪Fk) = ∅, otherwise this will implies that a point
of [[a, b]] converges to p, a contradiction. It follows that W is an ordered space, with a
strongly monotone semiflow φ.
The set W is a positively invariant compact ordered set with a strongly monotone semi-
flow φ without equilibrium. By lemma 1.1 of [29], W has a maximal element z. By
monotonicity φt(z) is an upper bound of W for any t ≥ 0. Hence z ≤ φt(z). If for a
t > 0 we have z < φt(z) by strong monotonicity, we can apply the convergence crtiterion
(Theorem 1.4 [29]), z converges to an equilibrium. Otherwise z is an equilibrium. In any
case we have an equilibrium in W , which is a contradiction. This proves a = b.
It remains to prove a = b = q. If b � q, [b, q] is a neighborhood of q, then q is
asymptotically stable, hence the basin of q is open, which contradicts the definition of b.
Hence a = b = q which ends the proof of the Theorem.

�

To prove our results we have only to consider the invariant faces where our system is not
strongly monotone. The face [Xcoex, Xcwie]K

⋂
{0}×R6

+ is contained in the basin ofXcwie

168  -  ARIMA - Volume 20 - 2015

ARIMA Journal



and is positively invariant. The positively invariant set, in which the system is not strongly
monotone, is exactly the two faces [Xcoex, Xcwie]K

⋂
{0}×R6

+ and [Xwfe, Xcoex]K
⋂

R6
+×

{0} which are respectively in the basin of Xcwie and Xwfe. All the hypotheses of our
Theorem are satisfied.
This proves that any trajectory in [Xcoex, Xcwie]K \ {Xcoex} tends Xcwie. This proves
that the coexistence equilibrium Xcoex is unstable. We have a similar result for the other
ordered interval.

This result can be obtain directly : we compute the determinant of the Jacobian at the
coexistence equilibrium. We obtain after rearrangement and simplifications

det(Jac(Coex)) = (θ µFU − µFW )µFU µMU µMW (µE + ηE)
2 (µL + ηL)

2

(µP + ηP )
2 (β + µY )

2 (R0,offsp,W − 1) < 0 (26)

The negativity comes from (θ µFU − µFW ) < 0 and, since we are in dimension 12, this
proves the instability of the coexistence equilibrium.

3.4.4. More invariant set
We know that our system is strongly monotone on the interior of D for the order relative
to the cone ≤K .
The coexistence equilibrium Xcoex = (XU,coex, XW,coex) is in the interior of D. Then the
matrix P.Jac(Coex).P computed at this equilibrium is an irreducible unstable Metzler
matrix, where P is the diagonal matrix defined in section 3.2. By Perron-Frobenius the
stability modulus s(Jac(Coex)) > 0 is an eigenvalue of the Jacobian and there exists a
positive vector v � 0 such that

P.Jac(Coex) .P.v = s(Jac(Coex)) v

Hence P v = (vU ,−vW ) is an eigenvalue of the Jacobian. By Theorem 3.3 (p 62) and
Remark 3.2 (p 63) of [53] we obtain that, for any ε > 0, following the order intervals

[(X∗U − ρ1 v1, 0) , Xcoex − ε(vU ,−vW )]K

and

[Xcoex + ε(vU ,−vW ) , (0, X∗W + ρ2 v2)]K

are positively compact invariant sets. Since each of these set contains an unique equi-
librium, this proves that this unique equilibrium is globally asymptotically stable on the
considered set.
We have proven, using section 3.3, that [ρ1Xcwie , Xcoex]K is in the basin of attraction of
the CWIE (0, X∗W ). An analogous result for the WFE.
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Increasing order for W

Increasing order for U

X*W

XW,coex

ρ1 X*W

ρ2 X*UX*UXU,coex

Xcoex

R6

R6

Figure 3. Compact invariant sets for system (1), ρ1 and ρ2 defined in 3.3

We have obtained a lower bound for the basin of attraction of Xcwie. It is determined by
Xcoex and finally by the basic offspring numberR0,offsp,W .

3.5. What happens when R0,offsp,W ≤ 1 ?
We can have upper bounds for the matrices AU (X) and AW (X). Using notations of
section (3) we get

AU (X) ≤ A(X, θ, µFU , µMU ) AW (X) ≤ A(X, θ φ, µFW , µMW )

With the hypothesesR0,offsp,U > 1 andR0,offsp,W ≤ 1 we have already proved that

ẊU = A(X, θ, µFU , µMU ) XU

is globally asymptotically stable at a positive equilibrium X∗U ∈ R6
+ and

ẊW = A(X, θ φ, µFW , µMW ) XW

has the origin for globally asymptotically stable equilibrium. Then by comparison The-
orems of ODE for positive systems (all our matrices are Metzler) this proves that our
system (7) converges to Xwfe.
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4. Conclusion
The phenomenon described above is now well known in epidemiological models, this is
the so-called backward bifurcation. See [2, 8, 59, 21] and references therein. Usually in
epidemiological model when R0 < 1 the disease free equilibrium is stable and there are
no other “infected" equilibria. At R0 = 1 an infected equilibrium bifurcates. In back-
ward bifurcation there are infected equilibrium points in the domain R0 < 1. To quote
[21] a general mechanism leading to backward bifurcations in epidemic models seems
unlikely. Backward bifurcations is known to occur in models with group structure and
large differences between groups or models with interacting mechanisms (e.g. Vaccina-
tion models or reinfection ). Our model does not enter in these categories. We can reduce
our model, by lumping variables, to a very simple four dimensional system which also
exhibits backward bifurcation. This result adds a new situation to the known ones.
From the biological point of view, we have considered a complete model. We choose
not to lump some compartments and instead to distinguish those considered by biologists.
This is for two reasons. Firstly it is easier for a biologist to understand our model and
then the data we have are related to biological compartments. Consideration of lumped
compartments makes difficult and problematic data integration. Moreover this integration
needs complex modeling assumptions. The objective of this paper was to check if, some
different modeling assumptions would modify previous results [37]. We observe that this
model predicts that the successful establishment of Wolbachia in a population of Aedes
aegyptii is possible. This has been observed in the field [30] for certain strain of Wol-
bachia. Our model also predicts that the strain must not be too effective in the reduction

of the death rate. If R0,W =
θ µFU
µFW

is too small, then R0,offsp,W = R0,W R0,offsp,U will

be less than 1 preventing the successful establishment of Wolbachia. Unpublished data
seems to confirm that prediction.
The authors thank the anonymous referees who helped, by their suggestions, to signifi-
cantly improve the paper. The authors thank Claudia Codeço of Fiocruz for her help and
P.A . Bliman, of INRIA and FGV, that caught their attention to Hirsch’s Theorem.

5. References

[1] R. ANGUELOV, Y. DUMONT, AND J. LUBUMA, “ Mathematical modeling of sterile insect
technology for control of anopheles mosquito.”, Comput. Math. Appl., vol. 64, (2012), pp. 374–
389.

[2] J. ARINO, C. C. MCCLUSKEY, AND P. VAN DEN DRIESSCHE, “Global results for an epidemic
model with vaccination that exhibits backward bifurcation.”, SIAM J. Appl. Math., vol. 64
(2003), pp. 260–276.

[3] R. BARRERA, M. AMADOR, AND G. G. CLARK, “Ecological factors influencing aedes ae-

Monotone Dynamical Systems and some Models of Wolbachia in Aedes aegypti Populations  -  171

ARIMA journal 



gypti (diptera: Culicidae) productivity in artificial containers in salinas, puerto rico.”, J Med
Entomol, vol. 43 (2006), pp. 484–492.

[3] N. H. BARTON AND M. TURELLI, “Spatial waves of advance with bistable dynamics: cyto-
plasmic and genetic analogues of allee effects.”, Am Nat, vol. 178 (2011), pp. E48–75.

[4] G. BIAN, Y. XU, P. LU, Y. XIE, AND Z. XI, “The endosymbiotic bacterium wolbachia induces
resistance to dengue virus in aedes aegypti.”, PLoS Pathog, vol. 6 (2010), p. e1000833.

[5] M. S. C. BLAGROVE, C. ARIAS-GOETA, A.-B. FAILLOUX, AND S. P. SINKINS, “Wolbachia
strain wmel induces cytoplasmic incompatibility and blocks dengue transmission in aedes al-
bopictus”, Proc Natl Acad Sci U S A, vol. 109 (2012), pp. 255–260.

[6] B. BOSSAN, A. KOEHNCKE, AND P. HAMMERSTEIN, “A new model and method for under-
standing wolbachia-induced cytoplasmic incompatibility”, PLoS One, vol. 6 (2011), p. e19757.

[7] M. A. H. BRAKS, S. A. JULIANO, AND L. P. LOUNIBOS, “Superior reproductive success on
human blood without sugar is not limited to highly anthropophilic mosquito species”, Med Vet
Entomol, vol. 20 (2006), pp. 53–59.

[8] F. BRAUER, “Backward bifurcations in simple vaccination models”, J. Math Anal Appl,
vol. 298 (2004), pp. 418–431.

[9] J. S. BROWNSTEIN, E. HETT, AND S. L. O’NEILL, “The potential of virulent wolbachia to
modulate disease transmission by insects”, J Invertebr Pathol, vol. 84 (2003), pp. 24–29.

[10] M. H. T. CHAN AND P. S. KIM, “Modelling a wolbachia invasion using a slow-fast dispersal
reaction-diffusion approach”, Bull Math Biol, vol. 75 (2013), pp. 1501–1523.

[11] N. CHITNIS, J. M. HYMAN, AND J. CUSHING, “Determining Important Parameters in the
Spread of Malaria Through the Sensitivity Analysis of a Mathematical Model”, Bull. Math.
Biol, vol. 70 (2008), pp. 1272–1296.

[12] P. R. CRAIN, J. W. MAINS, E. SUH, Y. HUANG, P. H. CROWLEY, AND S. L. DOBSON,
“Wolbachia infections that reduce immature insect survival: Predicted impacts on population
replacement”, BMC Evol Biol, vol. 11 (2011), p. 290.

[13] M. R. DAVID, R. LOURENCO-DE OLIVEIRA, AND R. M. D. FREITAS, “ Container produc-
tivity, daily survival rates and dispersal of aedes aegypti mosquitoes in a high income dengue
epidemic neighbourhood of rio de janeiro: presumed influence of differential urban structure
on mosquito biology.”, Mem Inst Oswaldo Cruz, vol. 104 (2009), pp. 927–932.

[14] Y. DUMONT, F. CHIROLEU, AND C. DOMERG, “On a temporal model for the Chikungunya
disease: modeling, theory and numerics.”, Math Biosci, vol. 213 (2008), pp. 80–91.

[15] Y. DUMONT AND J. M. TCHUENCHE, “Mathematical studies on the sterile insect technique
for the chikungunya disease and aedes albopictus”, J Math Biol, vol. 65 (2012), pp. 809–854.

[16] J. ENGELSTADTER, A. TELSCHOW, AND P. HAMMERSTEIN, “Infection dynamics of differ-
ent wolbachia-types within one host population”, J Theor Biol, vol. 231 (2004), pp. 345–355.

[17] J. E. FADER AND S. A. JULIANO, “Oviposition habitat selection by container-dwelling
mosquitoes: responses to cues of larval and detritus abundances in the field”, Ecol Entomol,
vol. 39 (2014), pp. 245–252.

[18] J. Z. FARKAS AND P. HINOW, “Structured and unstructured continuous models for wolbachia
infections”, Bull Math Biol, vol. 72 (2010), pp. 2067–2088.

172  -  ARIMA - Volume 20 - 2015

ARIMA Journal



[19] D. A. FOCKS, D. G. HAILE, E. DANIELS, AND G. A. MOUNT, “Dynamic life table model
for aedes aegypti (diptera: Culicidae): simulation results and validation.”, J Med Entomol,
vol. 30 (1993), pp. 1018–1028.

[20] F. D. FRENTIU, J. ROBINSON, P. R. YOUNG, E. A. MCGRAW, AND S. L. O’NEILL,
“Wolbachia-mediated resistance to dengue virus infection and death at the cellular level.”, PLoS
One, vol. 5 (2010), p. e13398.

[21] K. HADELER AND P. VAN DEN DRIESSCHE, “Backward bifurcation in epidemic control.”,
Math Biosci, vol. 146 (1997), pp. 15–35.

[22] P. A. HANCOCK AND H. C. J. GODFRAY, “Modelling the spread of wolbachia in spatially
heterogeneous environments.”, J R Soc Interface, vol. 9 (2012), pp. 3045–3054.

[23] P. A. HANCOCK AND H. C. J. GODFRAY, “Modelling the spread of wolbachia in spatially
heterogeneous environments.supplement online information.”, J R Soc Interface, vol. 9 (2012),
pp. 3045–3054.

[24] P. A. HANCOCK, S. P. SINKINS, AND H. C. J. GODFRAY, “Population dynamic models of
the spread of Wolbachia.”, Am Nat, vol. 177 (2011), pp. 323–333.

[25] P. A. HANCOCK, S. P. SINKINS, AND H. C. J. GODFRAY , “Strategies for introducing
wolbachia to reduce transmission of mosquito-borne diseases.”, PLoS Negl Trop Dis, vol. 5
(2011), p. e1024.

[26] M. HERTIG AND S. B. WOLBACH, “Studies on rickettsia-like micro-organisms in insects.”,
J Med Res, vol. 44 (1924), pp. 329–374.

[27] M. HIRSCH, “The dynamical system approach to differential equations.”, Bull AMS, vol. 11
(1984), pp. 1–64.

[28] M. W. HIRSCH, “Stability and convergence in strongly monotone dynamical systems.”, J
Reine Angew. Math, vol. 383 (1988), pp. 1–53.

[29] M. W. HIRSCH AND H. L. SMITH, “Monotone dynamical systems.”, in Handbook of differ-
ential equations: ordinary differential equations. vol. Vol. II, (2005), pp. 239–357.

[30] HOFFMANN, A A AND MONTGOMERY, B L AND POPOVICI, J AND ITURBE-ORMAETXE,
I AND JOHNSON, P H AND MUZZI, F AND GREENFIELD, M AND DURKAN, M AND LEONG,
Y S AND DONG, Y AND COOK, H AND AXFORD, J AND CALLAHAN, A G AND KENNY, N
AND OMODEI, C AND MCGRAW, E A AND RYAN, P A AND RITCHIE, S A AND TURELLI, M
AND O’NEILL, S L, “Successful establishment of wolbachia in aedes populations to suppress
dengue transmission.”, Nature, vol. 476 (2011), pp. 454–457.

[31] P. I. HOWELL AND B. G. J. KNOLS, “Male mating biology.”, Malar J, vol. 8 Suppl 2 (2009),
p. S8.

[32] G. L. HUGHES, R. KOGA, P. XUE, T. FUKATSU, AND J. L. RASGON, “ Wolbachia infec-
tions are virulent and inhibit the human malaria parasite plasmodium falciparum in anopheles
gambiae.”, PLoS Pathog, vol. 7 (2011), p. e1002043.

[33] H. HUGHES AND N. F. BRITTON, “Modelling the use of wolbachia to control dengue fever
transmission.”, Bull Math Biol, vol. 75 (2013), pp. 796–818.

[34] I. ITURBE-ORMAETXE, T. WALKER, AND S. L. O’ NEILL, “Wolbachia and the biological
control of mosquito-borne disease.”, EMBO Rep, vol. 12 (2011), pp. 508–518.

Monotone Dynamical Systems and some Models of Wolbachia in Aedes aegypti Populations  -  173

ARIMA journal 



[35] J. KAMGANG AND G. SALLET, “Computation of threshold conditions for epidemiological
models and global stability of the disease free equilibrium(DFE).”, Math Biosci, vol. 213
(2008), pp. 1–12.

[36] M. J. KEELING, F. M. JIGGINS, AND J. M. READ, “The invasion and coexistence of com-
peting wolbachia strains.”, Heredity (Edinb), vol. 91 (2003), pp. 382–388.

[37] J. KOILLER, M. DA SILVA, M. SOUZA, C. CODEÇO, A. IGGIDR, AND G. SALLET, “Aedes,
Wolbachia and Dengue.”, Research Report RR-8462, INRIA, vol. Jan. 2014.

[38] P. M. LUZ, C. T. CODECO, J. MEDLOCK, C. J. STRUCHINER, D. VALLE, AND A. P.
GALVANI, “Impact of insecticide interventions on the abundance and resistance profile of aedes
aegypti.”, Epidemiol Infect, vol. 137 (2009), pp. 1203–1215.

[39] A. MACIA, “Differences in performance of aedes aegypti larvae raised at different densities in
tires and ovitraps under field conditions in argentina.”, J Vector Ecol, vol. 31 (2006), pp. 371–
377.

[40] R. MACIEL-DE FREITAS, C. T. CODECO, AND R. LOURENCO-DE OLIVEIRA, “ Daily sur-
vival rates and dispersal of aedes aegypti females in rio de janeiro, brazil.”, Am J Trop Med
Hyg, vol. 76 (2007), pp. 659–665.

[41] C. J. MCMENIMAN, R. V. LANE, B. N. CASS, A. W. C. FONG, M. SIDHU, Y.-F. WANG,
AND S. L. O’NEILL, “Stable introduction of a life-shortening wolbachia infection into the
mosquito aedes aegypti.”, Science, vol. 323 (2009), pp. 141–144.

[42] C. J. MCMENIMAN AND S. L. O’NEILL, “A virulent wolbachia infection decreases the
viability of the dengue vector aedes aegypti during periods of embryonic quiescence.”, PLoS
Negl Trop Dis, vol. 4 (2010), p. e748.

[43] L. A. MOREIRA, I. ITURBE-ORMAETXE, J. A. JEFFERY, G. LU, A. T. PYKE, L. M.
HEDGES, B. C. ROCHA, S. HALL-MENDELIN, A. DAY, M. RIEGLER, L. E. HUGO, K. N.
JOHNSON, B. H. KAY, E. A. MCGRAW, A. F. VAN DEN HURK, P. A. RYAN, AND S. L.
O’NEILL, “A wolbachia symbiont in aedes aegypti limits infection with dengue, chikungunya,
and plasmodium.”, Cell, vol. 139 (2009), pp. 1268–1278.

[44] M. Z. NDII, R. I. HICKSON, D. ALLINGHAM, AND G. N. MERCER, “Modelling the trans-
mission dynamics of dengue in the presence of wolbachia.”, Math Biosci, vol. 262 (2015),
pp. 157–166.

[45] M. OTERO, H. G. SOLARI, AND N. SCHWEIGMANN, “A stochastic population dynamics
model for aedes aegypti: formulation and application to a city with temperate climate.”, Bull
Math Biol, vol. 68 (2006), pp. 1945–1974.

[46] J. POPOVICI, L. A. MOREIRA, A. POINSIGNON, I. ITURBE-ORMAETXE, D. MC-
NAUGHTON, AND S. L. O’NEILL, “Assessing key safety concerns of a wolbachia-based strat-
egy to control dengue transmission by aedes mosquitoes.”, Mem Inst Oswaldo Cruz, vol. 105
(2010), pp. 957–964.

[47] J. L. RASGON, “Using predictive models to optimize wolbachia-based strategies for vector-
borne disease control.”, Adv Exp Med Biol, 627 (2008), pp. 114–125.

[48] J. L. RASGON AND T. W. SCOTT, “Impact of population age structure on wolbachia
transgene driver efficacy: ecologically complex factors and release of genetically modified
mosquitoes.”, Insect Biochem Mol Biol, vol. 34 (2004), pp. 707–713.

174  -  ARIMA - Volume 20 - 2015

ARIMA Journal



[49] J. L. RASGON, L. M. STYER, AND T. W. SCOTT, “Wolbachia-induced mortality as a mech-
anism to modulate pathogen transmission by vector arthropods.”, J Med Entomol, vol. 40
(2003), pp. 125–132.

[50] J. R. REY AND S. M. O’CONNELL, “Oviposition by aedes aegypti and aedes albopictus:
influence of congeners and of oviposition site characteristics.”, J Vector Ecol, vol. 39 (2014),
pp. 190–196.

[51] S. A. RITCHIE, B. L. MONTGOMERY, AND A. A. HOFFMANN, “Novel estimates of aedes
aegypti (diptera: Culicidae) population size and adult survival based on wolbachia releases.”, J
Med Entomol, vol. 50 (2013), pp. 624–631.

[52] P. SCHOFIELD, “Spatially explicit models of turelli-hoffmann wolbachia invasive wave
fronts.”, J Theor Biol, vol. (215 (2002), pp. 121–131.

[53] H. L. SMITH, “Monotone dynamical systems: an introduction to the theory of competitive
and cooperative systems..”, Mathematical Surveys and Monographs., vol. 41, ( 1995).

[54] M. O. SOUZA, “Multiscale analysis for a vector-borne epidemic model.”, J Math Biol, vol. 68
(2014), pp. 1269–1293.

[55] A. S. SPIELMAN, M. G. LEAHY, AND V. SKAFF, “Failure of effective insemination of young
female aedes aegypti mosquitoes.”, J Insect Physiol, vol. 15 (1969), pp. 1471–1479.

[56] L. M. STYER, S. L. MINNICK, A. K. SUN, AND T. W. SCOTT, “Mortality and reproductive
dynamics of aedes aegypti (diptera: Culicidae) fed human blood.”, Vector Borne Zoonotic Dis,
vol. 7 (2007), pp. 86–98.

[57] M. TURELLI, “Cytoplasmic incompatibility in populations with overlapping generations.”,
Evolution, vol. 64 (2010), pp. 232–241.

[58] A. P. TURLEY, L. A. MOREIRA, S. L. O’NEILL, AND E. A. MCGRAW, “ Wolbachia infec-
tion reduces blood-feeding success in the dengue fever mosquito, aedes aegypti.”, PLoS Negl
Trop Dis, vol. 3 (2009), p. e516.

[59] P. VAN DEN DRIESSCHE AND J. WATMOUGH, “A simple SIS epidemic model with a back-
ward bifurcation .”, J Math Biol, vol. 40 (2000), pp. 525–540.

[60] P. VAN DEN DRIESSCHE AND J. WATMOUGH, “reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission.”, Math Biosci, vol. 180
(2002), pp. 29–48.

[61] T. WALKER, P. H. JOHNSON, L. A. MOREIRA, I. ITURBE-ORMAETXE, F. D. FRENTIU,
C. J. MCMENIMAN, Y. S. LEONG, Y. DONG, J. AXFORD, P. KRIESNER, A. L. LLOYD, S. A.
RITCHIE, S. L. O’NEILL, AND A. A. HOFFMANN, “supplement to : The wmel wolbachia
strain blocks dengue and invades caged aedes aegypti populations.”, Nature, vol. 476 (2011).

[62] , “The wmel wolbachia strain blocks dengue and invades caged aedes aegypti popula-
tions.”, Nature, vol. 476 (2011), pp. 450–453.

[63] R. K. WALSH, L. FACCHINELLI, J. M. RAMSEY, J. G. BOND, AND F. GOULD, “ Assessing
the impact of density dependence in field populations of aedes aegypti.”, J Vector Ecol, vol. 36
(2011), pp. 300–307.

[64] C. R. WILLIAMS, P. H. JOHNSON, T. S. BALL, AND S. A. RITCHIE, “ Productivity and
population density estimates of the dengue vector mosquito aedes aegypti (stegomyia aegypti)

Monotone Dynamical Systems and some Models of Wolbachia in Aedes aegypti Populations  -  175

ARIMA journal 



in australia.”, Med Vet Entomol, vol. 27 (2013), pp. 313–322.

[65] J. WONG, S. T. STODDARD, H. ASTETE, A. C. MORRISON, AND T. W. SCOTT, “ Oviposi-
tion site selection by the dengue vector aedes aegypti and its implications for dengue control.”,
PLoS Negl Trop Dis, vol. 5 (2011), p. e1015.

[66] H. M. YANG, M. D. L. D. G. MACORIS, K. C. GALVANI, AND M. T. M. ANDRIGHETTI,
“Follow up estimation of aedes aegypti entomological parameters and mathematical mod-
ellings.”, Biosystems, vol. 103 (2011), pp. 360–371.

[67] H. L. YEAP, P. MEE, T. WALKER, A. R. WEEKS, S. L. O’NEILL, P. JOHNSON, S. A.
RITCHIE, K. M. RICHARDSON, C. DOIG, N. M. ENDERSBY, AND A. A. HOFFMANN, “Dy-
namics of the "popcorn" wolbachia infection in outbred aedes aegypti informs prospects for
mosquito vector control.”, Genetics, vol. 187 (2011), pp. 583–595.

176  -  ARIMA - Volume 20 - 2015

ARIMA Journal




