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ABSTRACT. The paper is devoted to the investigation of the slow integral manifolds of variable stabil-
ity. The existence of non periodic canards, canard cascades and black swans is stated. The theoretical
developments are illustrated by several examples.

RÉSUMÉ. L’article est consacré à l’étude de variétés lentes intégrales de stabilité variable. L’existence
de canards non périodiques, de cascades de canard et des cygnes noirs est établie. Les developpe-
ments théoriques sont illustrés par plusieurs exemples.
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1. Introduction
In this paper we outline an approach for constructing invariant surfaces of variable

stability. As a one-dimensional example of such objects it is possible to consider a canard.
The term “canard” (or “duck-trajectory”) originally has been introduced in the context
of the van der Pol equation [1]–[4], but later have been investigated for other types of
singularly perturbed systems including the ones of higher dimensions, i.e. when the phase
variables are vectors (see, for example, [5]–[10] and the references therein). In the first
papers devoted to canards non-standard analysis was the main tool of investigations, the
Gevrey version of matched asymptotic expansions was used in [11]–[13]

From the viewpoint of the geometrical theory of singular perturbations a canard may
be considered as a result of gluing stable and unstable slow invariant manifolds at one
point of the breakdown surface due to the availability of an additional scalar parameter in
the differential system. This approach was first proposed in [14, 15] and was then applied
in [7], [16]–[20].

Other example of invariant surfaces of variable stability may be a canard cascade [21,
22] which is a result of gluing stable (attractive) and unstable (repulsive) slow invariant
manifolds at several points of the breakdown surface. For the possibility of this gluing
several additional parameters are required. If we take an additional function of a vector
variable parameterizing the breakdown surface, we can glue the stable and unstable slow
invariant manifolds at all points of the breakdown surface simultaneously. As a result we
obtain the continuous stable/unstable invariant surface or black swan [8, 18, 22, 23, 24].
Such surfaces are considered as a multidimensional analogue of the notion of a canard.

From the viewpoint of analytic representation, an invariant surface of variable stability
is closely connected to a solution that is bounded on the whole axis of the corresponding
differential system. Furthermore, the continuity condition for the invariant surface yields
the analytic representation of the gluing function.

2. Theoretical Background
We briefly recall the basic definitions and notions concerning the invariant surfaces of

variable stability of singularly perturbed systems. The main object of our consideration is
the autonomous singularly perturbed system of the form

dx

dt
= f(x, y, α, ε), [1]

ε
dy

dt
= g(x, y, α, ε), [2]

where x and y are vectors in Euclidean spaces Rn and Rm, respectively, ε is a small
positive parameter, vector-functions f and g are sufficiently smooth and their values are
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comparable to unity. The slow and fast subsystems are represented by (1) and (2), respec-
tively.

The degenerate equation g(x, y, α, 0) = 0 describes a slow surface S (or slow curve
in the case of the scalar variable x). The subset Γ of S given by

det

∣∣∣∣∂g∂y (x, y, α, 0)

∣∣∣∣ = 0 [3]

determines a breakdown surface (breakdown, turning or jump points in the scalar case)
[22]. The surface Γ divides S into foliations on which

det

∣∣∣∣∂g∂y (x, y, α, 0)

∣∣∣∣ 6= 0.

By the implicit function theorem, a leaf of the slow surface is determined by a well-defined
vector-function: y = ϕ(x, α). A slow surface can consist of several foliations determined
by different functions y = ϕi(x, α), domains of which can intersect, depending on the
structure of the slow surface. It should be noted that the conditions of the implicit function
theorem do not hold on the leaf boundary given by (3).

The leaf Ss of the slow surface is stable (or attractive) if the spectrum of the Jacobian
matrix

∂g

∂y
(x, ϕ(x, α), α, 0)

is located in the left open complex half-plane. If there is at least one eigenvalue of the
Jacobian matrix with a positive real part then the leaf of S, say Su, is unstable (or repul-
sive).

In an ε–neighborhood of Ss (Su) there exists a stable (unstable) slow invariant man-
ifold. The slow invariant manifold is defined as an invariant surface of slow motions.

Definition 1 A smooth surface Sε in Rm × Rn is called an invariant manifold of the
system (1), (2) if any trajectory of the system that has at least one point in common with
Sε lies entirely on Sε.

The only invariant manifolds of system (1), (2) discussed here are those of dimension
m (the dimension of the slow variable x) that can be represented as graphs of vector-
valued functions y = h(x, α, ε) = ϕ(x, α) + O(ε), ε → 0. Here, it is assumed that
h(x, α, ε) is a sufficiently smooth function of ε. Such integral manifolds are called mani-
folds of slow motions — the origin of this term lies in nonlinear mechanics.

The notions of (un)stability for slow invariant manifold become clear if we rescale
the system (1), (2) via the change of variables τ = t/ε. Hence we obtain the equivalent
system

dx

dτ
= εf(x, y, α, ε), [4]
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dy

dτ
= g(x, y, α, ε). [5]

For simplicity we consider the case when the variables x and y are scalar. The stable
Ss and unstable Su subsets of the slow curve S for which gy < 0 and gy > 0, respectively,
are separated by the jump point(s) at which gy = 0. When ε = 0, S consists of equilibrium
points of the system (4), (5) which are stable if gy < 0 and unstable if gy > 0. When ε > 0
and sufficiently small, the manifold of equilibria is replaced by a boundary layer close to
S with slow dynamics. There is an attractive trajectory in the boundary layer close to the
stable branch Ss, the stable invariant manifold Ssε , and there is a repulsive trajectory close
to an unstable branch Su, the unstable invariant manifold Suε [25].

The presence of the additional scalar parameter α provides the possibility of gluing
the stable and unstable invariant manifolds at the jump point to form a single trajectory,
the canard. The term “canard” (or duck–trajectory) had been originally given by French
mathematicians to the intermediate periodic trajectories of the van der Pol equation be-
tween the small and the large orbits due to their special shapes. However, in our work a
canard is a one-dimensional slow invariant manifold of variable stability.

Definition 2 Trajectories which at first move along the stable slow invariant manifold
and then continue for a while along the unstable slow invariant manifold are called ca-
nards or duck-trajectories.

Definition 3 Trajectories which at first move along the unstable slow invariant manifold
and then continue for a while along the stable slow invariant manifold are called false
canard trajectories.

Therefore it is possible to consider a straight line as a basic model of a canard.

Example 1 As the simplest system with a canard we propose

ẋ = 1, εẏ = xy. [6]

Here g(x, y) = xy. It is clear that the trajectory y = 0 is a canard. The left part (x < 0)
is attractive since ∂g/∂y < 0 and the right part (x > 0) is repulsive. These two parts are
divided by a turning point, which separates stable and unstable parts of the slow curve, at
x = 0.

Note that y = 0 is global (the longest) canard and the unique solution that is bounded
on the whole axis of system (6). Others solutions of system (6) which are local canards,
are infinitely increasing (decreasing) as t→∞ or t→ −∞.

Example 2 Some generalization of (6) is the system

ẋ = 1, εẏ = xy + φ(x, ε) + α,
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the unique solution that bounded on the whole axis of which has the representation

y =



1

ε

x∫
−∞

exp

(
x2 − s2

2ε

)
[φ(s, ε) + α] ds, x ≤ 0,

−1

ε

∞∫
x

exp

(
x2 − s2

2ε

)
[φ(s, ε) + α] ds, x > 0.

[7]

The “canard value” of the parameter α can be obtained from the continuity condition for
(7) at x = 0:

ε−1

∞∫
−∞

e−s
2/2ε[φ(s, ε) + α] ds = 0

or

αφ = − 1√
2πε

∞∫
−∞

e−s
2/2εφ(s, ε) ds.

This technique of canard construction is also applicable to further generalizations.

3. Canard as a unique bounded on the whole axis solution
Will apply the technique of canard construction described in the previous section for

the planar system
ẋ = 1, εẏ = 2xy + F (x, y, α, ε), [8]

where
F (x, y, α, ε) = f(x, y) + εg(x, y, ε) + εα (1 + h(x, y, ε)) .

We assume that
1) The functions f , g and h are sufficiently smooth in the domain

Ω = {x ∈ R, y ∈ R, α ∈ R, ε ∈ [0, ε0]} .

2) The functions f , g and h satisfy the following inequalities in the domain Ω

|f(x, y)| ≤ C|y|2, [9]

|g(x, y, ε)| ≤ Cµ, [10]

|h(x, y, ε)| ≤ Cµ, [11]

|f(x, y)− f(x, ȳ)| ≤ L

2
(|y|+ |ȳ|) |y − ȳ|, [12]
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|g(x, y, ε)− g(x, ȳ, ε)| ≤ L|y − ȳ|, [13]

|h(x, y, ε)− h(x, ȳ, ε)| ≤ L|y − ȳ|, [14]

where C and L are the positive constants, µ is a sufficiently small positive constant.
Let us reduce the system (8) to the form

ε
dy

dx
= 2xy + F (x, y, α, ε). [15]

Due to (9) the straight line y = 0 is the slow curve of (15), the part of which with x < 0
(x > 0) is stable (unstable). Our goal is to prove that for some value of the parameter α
there exists a one-dimensional invariant manifold of variable stability (a canard) located
in a ε-neighborhood of the slow curve y = 0.

We introduce the metric space Φ. Its elements are the scalar functions φ(x, ε), bounded
by the value

√
εqµ, i.e.

|φ(x, ε)| ≤
√
εqµ, [16]

and continuous in the domain

Ω1 = {x ∈ R, µ ∈ (0, µ0), ε ∈ (0, ε0)} .

Φ is a complete space with the metric

d(φ, φ̄) = sup
Ω1

∣∣φ(x, ε)− φ̄(x, ε)
∣∣ , ∀φ ∈ Φ, ∀φ̄ ∈ Φ.

On the space Φ we define an integral operator T by the formula

T (φ)(x) =



1

ε

x∫
−∞

exp

(
x2 − s2

ε

)
F (s, φ(s, ε), αφ, ε)ds, x ≤ 0,

−1

ε

∞∫
x

exp

(
x2 − s2

ε

)
F (s, φ(s, ε), αφ, ε) ds, x > 0.

[17]

It should be noted that we use a modification of the usual technique of the integral man-
ifold theory [26], and the operator in the upper (lower) line in (17) is usually used for
proving the existence of stable (unstable) invariant surfaces.

The continuity condition for T (φ)(x) at x = 0 defines the parameter value αφ corre-
sponding to the function φ(x, ε) and implies the equation

ε−1

∞∫
−∞

e−s
2/εF (s, φ(s, ε), αφ, ε)ds = 0
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or
αφ = −I1

I0
,

where

I1 =
1

ε
√
ε

∞∫
−∞

e−s
2/ε [f (s, φ(s, ε)) + εg (s, φ(s, ε), ε)] ds,

I0 =
1√
ε

∞∫
−∞

e−s
2/ε [1 + h (s, φ(s, ε), ε)] ds.

From (9), (10), (16) we obtain

|I1| ≤
1

ε
√
ε

∞∫
−∞

e−s
2/ε
∣∣Cεµ2q2 + εCµ

∣∣ ds =
√
πC(µ2q2 + µ),

and, taking into account (11), we get

|I0| ≥
1√
ε

∞∫
−∞

e−s
2/ε (1− Cµ) ds =

√
π(1− Cµ).

Last two inequalities yield the estimate

|αφ| ≤
Cµ(µ2q2 + 1)

1− Cµ
. [18]

It is clear that the operator T (φ)(x) satisfies the equation

ε
dT (φ)

dx
= 2xT (φ) + F (x, φ(x, ε), αφ, ε).

Hence, the existence problem of the canard reduces to the existence problem of the solu-
tion of the operator equation T (φ) = φ.

In accordance with (16) to check that the operator T (φ) transforms the complete met-
ric space Φ into itself it is sufficiently to verify that

|T (φ)(x)| ≤
√
εqµ [19]

for all φ ∈ Φ. Applying (9)–(11) and (18) and taking into account the estimate

∞∫
x

exp

(
x2 − s2

ε

)
ds <

√
π

2

√
ε, x > 0,
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we get

|T (φ)(x)| ≤
√
ε

√
π

2
Cµ

(
µq2 + 1 +

1 + µq2

1− Cµ

)
.

The similar inequality is obtained for x < 0.
The numbers µ and q will be chosen to obtain the following inequality

√
π

2
C

(
µq2 + 1 +

1 + µq2

1− Cµ

)
≤ q, [20]

which means that (19) is fulfilled.
For any φ, φ̄ ∈ Φ from (9)–(14) and (18) we obtain

d

(
T (φ), T (φ̄)

)
≤
√
π

2

[
Lµq + L

√
ε+

CµL
√
ε(1 + µq2)

1− Cµ

]
d(φ, φ̄).

The numbers ε0, µ and q will be chosen to obtain both (20) and the inequality
√
π

2

[
Lµq + L

√
ε+

CµL
√
ε(1 + µq2)

1− Cµ

]
< 1

for sufficiently small ε (0 < ε ≤ ε0). In this case the contracting operator T (p) transforms
the complete metric space Φ into itself. Hence, due the Banach Contraction Principle the
operator T has a unique fixed point φ(x, ε) ∈ Φ corresponding to the canard of (15).

The above argument permits us to formulate the following statement.

Theorem 1 Let the conditions (i),(ii) hold. Then there are numbers ε0 > 0, q and µ such
that, for all ε ∈ (0, ε0), there exist α = αφ and φ(x, ε) ∈ Φ such that y = φ(x, ε) is a
canard of (8).

Remark. Usually the conditions (9)–(14) are fulfilled for |x| ≤ r1, ‖y‖ ≤ r2 only. In
this case we deal with a local canard.

Example 3 Originally the existence of canards for the van der Pol system

dx

dt
= y − α, [21]

ε
dy

dt
= y − y3/3− x [22]

has been proven by the non-standard analysis methods [1, 2]. We show that this statement
also follows from the Theorem 1.

The change of variables

x = x1 −
2

3
, y = y1 − 1, α = −1 + εa,
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transforms (21), (22) to the form

ẋ1 = y1 − εa,

εẏ1 = −x1 + y2
1 −

1

3
y3

1 .

Applying a rectifying transformation

εz = −x1 + y2
1 −

1

3
y3

1 +
ε

y1 − 2

and eliminating the variable t we obtain

ε
dz

dy1
=

y1(y1 − 2)2z

1− z(y1 − 2)
− ε

(y1 − 2)2
− εa(y1 − 2)

1− z(y1 − 2)
.

By the next change of the parameter a = 1/8 + a1 we get

ε
dz

dy1
= y1(y1 − 2)2z

[
1 + z(y1 − 2) +

z2(y1 − 2)2

1− z(y1 − 2)

]
−ε
[

1

(y1 − 2)2
+

y1 − 2

8− 8z(y1 − 2)

]
− εa1

y1 − 2

1− z(y1 − 2)
,

or, finally,

ε
dz

dy1
= 4y1z + 4y2

1

(y1

4
− 1
)
z + y1(y1 − 2)3 z2

1− z(y1 − 2)

−ε
[

1

(y1 − 2)2
+

y1 − 2

8− 8z(y1 − 2)

]
− εa1

y1 − 2

1− z(y1 − 2)
. [23]

It easy to see that (23) has the form of equation (8) and the conditions of the Theorem
1 are fulfilled in some neighborhood of y1 = 0, outside of which the functions f , g, h
should be extended with preservation of the properties (9)–(14).

The existence theorem for the canards can be extended to the case of vector variables
x and y [7] and can be obtained as a corollary of the existence theorem for the black
swans, see Subsection 6.

4. Further generalizations
The described method for constructing of the invariant surfaces of variable stability

in the form of bounded on the whole axis solutions of corresponding differential systems
assumes various generalizations, some of which are discussed in this section. A distinctive
feature in these cases lies in replacing a single gluing parameter with a gluing function to
ensure continuity of the invariant surface.
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4.1. Canards of Three-Dimensional Systems
In this subsection we discuss the existence of canards for some special types of three-

dimensional systems.
We consider the autonomous system of three ordinary differential equations:

ẋ = f(x, y, z, ε), [24]

ẏ = g(x, y, z, µ, ε), [25]

εż = p(x, y, z, µ, ε), [26]

where the dot denotes the first derivative with respect to time, f , g, p are scalar functions,
and µ and ε are scalars. The set of points

S = {(x, y, z) : p(x, y, z, µ, 0) = 0}

is the slow surface of the system (24)–(26). The stable (pz < 0) and the unstable (pz > 0)
parts of the slow surface are separated by a breakdown curve (i.e. the subset of the slow
surface where pz = 0).

The question we address is whether the system (24)–(26) has a canard. To answer this
question, we investigate the two-dimensional system obtained from (24)–(26) by elimi-
nating the variable t. It is assumed that this two-dimensional system can be represented
as:

y′ = g/f = Y (x, y, z, µ, ε), [27]

εz′ = p/f = 2xz + Z(x, y, z, µ, ε), [28]

where µ is a scalar and the function Z(x, y, z, µ, ε) has the following form:

Z(x, y, z, µ, ε) = Z1(x, y, z) + ε(C + µC0) + εZ2(x, y, z, µ, ε), [29]

and prime represents a derivative with respect to x. Here C,C0 are constants, functions
Y (x, y, z, µ, ε), Z1(x, y, z) and Z2(x, y, z, µ, ε) are defined, bounded and continuous in

Ω = {x ∈ R, y ∈ R, |µ+ CC−1
0 | ≤ υ, ε ∈ [0, ε0]}, υ > 0, ε0 > 0,

and satisfy the following conditions in Ω:

|Y (x, y, z, µ, ε)− Y (x, ȳ, z̄, µ̄, ε)| ≤M (|y − ȳ|+ |z − z̄|) + ν|µ− µ̄|, [30]

|Z1(x, y, z)| ≤M |z|2, [31]

|Z1(x, y, z)− Z1(x, ȳ, z̄)| ≤M (|z|+ |z̄|)2 |y − ȳ|+ M

2
(|z|+ |z̄|) |z − z̄|, [32]

|Z2(x, y, z, µ, ε)| ≤Mν, [33]
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|Z2(x, y, z, µ, ε)− Z2(x, ȳ, z̄, µ̄, ε)| ≤M (|y − ȳ|+ |z − z̄|) + ν|µ− µ̄|, [34]

where M is a positive constant and ν is a sufficiently small positive constant. These con-
ditions are required for the existence of a unique canard which is bounded for all x and
y.

The slow surface of system (27), (28) is defined by the equation z = 0, due to (29),
(31) and the identity

{2xz + Z(x, y, z, µ, 0)}z=0 ≡ 0.

We know that in an ε–neighborhood of stable and unstable foliations of the slow sur-
face there are stable and unstable slow integral manifolds

z = h(x, y, µ, ε).

The parameter µ ensures the existence of a gluing point of these integral manifolds, see
for instance Example 4 at the end of this section. By fixing the jump point (0, y∗), we can
single out the trajectory

y = φ(x, µ) (φ(0, µ) = y∗)

on the integral manifold h(x, y, µ, ε) which passes along the stable leaf to the jump point
and then continues for a while along the unstable leaf. For convenience we use the same
term ‘trajectory’ for both systems (24)–(26) and (27), (28). The following theorem holds.

If some natural conditions for M , ν and υ hold, then there is ε0 such that for every
ε ∈ (0, ε0) there exist µ = µ∗(ε) and a canard corresponding to this parameter value
which passes through the point (0, y∗). The reader is referred to [7] for an exact statement
and its proof.

4.1.1. Asymptotic Expansions for Canards
In this subsection the asymptotic expansions for the canards of the system (27), (28)

are obtained.
It is assumed that functions Y and Z in (27), (28) have sufficient continuous and

bounded partial derivatives with respect to all variables. For simplicity we exclude the
ε–dependence of the functions Y and Z2. Then the canard and the parameter value µ∗

(corresponding to this trajectory) allow asymptotic expansions in powers of the small
parameter ε:

µ∗ =
∑
i≥0

εiµi,

y = φ(x, µ∗) =
∑
i≥0

εiφi(x), [35]

z = ψ(x, µ∗, ε) = h

x,∑
i≥0

εiφi(x),
∑
i≥0

εiµi, ε

 =
∑
i≥0

εiψi(x).

We can calculate these asymptotic expansions from (27), (28).
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Note that this statements can be generalized to the cases y ∈ Rn, z ∈ R and y ∈
Rn, z ∈ Rm.

Example 4 As a very simple example of (24)–(26) consider the system

ẋ = 1, ẏ = 0, εż = 2xz + µ− y.

Since pz = 2x, the slow surface 2xz + µ − y = 0 is divided by the breakdown curve
x = 0 into the stable part (x < 0) and the unstable one (x > 0). If µ is a parameter then
the different canards are determined by

ẋ = 1, y = y0, z = 0,

that is, they pass through the unique gluing point x = 0, y = y0, z = 0 on the breakdown
curve for µ = y0.

4.2. Case of a multiple turning point
In this Subsection we deal with a multiple turning point.

Example 5 Consider a modification of the Example 1 given by

ẋ = 1, εẏ = xky,

or

ε
dy

dx
= xky. [36]

For k = 3, 5, . . . the straight line y = 0 is a canard.

Example 6 Some generalization of (36) is the equation

ε
dy

dx
= xky + f(x, y, α).

In this case the gluing function can be found in the form

α = α(x, ε) = α1(ε)xk−1 + . . .+ αk−1(ε)x+ αk(ε).

The other approach for investigation of canards in the case of a multiple turning point has
been proposed in [27].
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4.3. Model with distributed parameters
Consider nonlinear singularly perturbed parabolic system

ε
∂θ

∂τ
= η(1− η) exp (θ/ (1 + βθ)) +

1

δ
Dξθ, [37]

ε
∂η

∂τ
= ε η(1− η) exp (θ/ (1 + βθ)) +

1

ρ
Dξη, [38]

where

Dξ(·) =
∂2(·)
∂ξ2

+
n

ξ

∂(·)
∂ξ

, n = 0, 1, 2,

boundary conditions

∂θ

∂ξ

∣∣∣∣∣
ξ=0

= 0, θ
∣∣∣
ξ=1

= 0,
∂η

∂ξ

∣∣∣∣∣
ξ=0

= 0,
∂η

∂ξ

∣∣∣∣∣
ξ=1

= 0 [39]

and initial conditions
θ
∣∣∣
τ=0

= 0, η
∣∣∣
τ=0

= η0/ (1 + η0) . [40]

This is a mathematical model of the problem of thermal explosion given heat transfer
and diffusion [20]. Here θ is the dimensionless temperature; η is the dimensionless depth
of conversion; τ is the dimensionless time; ε and β are small positive parameters; δ is a
Frank-Kamenetsky criterion, that is the scalar parameter, characterizing initial state of the
system. Depending on its value, reaction either is explosive or proceeds slowly. The value
of parameter δ separating slow and explosive regimes is called critical.

Using the method of integral manifolds, the critical value of δ is calculated as an
asymptotic series with respect to degrees of the small parameter ε

δ = δ0(1 + δ1ε) +O(ε2), [41]

where critical regimes are modelled by the canards. For n = 0 (plane-parallel reactor),
n = 1 (cylindrical reactor), n = 2 (spherical reactor) corresponding values of δ0 and δ1
are calculated: δ0 = 3.513828, 8 and 13.32; δ1 = 15.58, 1.9232 and 1.74.

5. Canard cascades
If it is necessary to glue stable and unstable slow invariant manifolds at several break-

down points, we need several additional parameters and as a result we obtain a canard
cascade.

Definition 4 The continuous one-dimensional slow invariant manifold of (1), (2) which
contains at least two canards or false canards is called a canard cascade.
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In the case of a planar system, if we take an additional function whose arguments are
a vector parameter and a slow variable, we can glue the stable (attractive) and unstable
(repulsive) slow invariant manifolds at all breakdown points at the same time. As a result
we obtain a canard cascade.

Example 7 The differential system

ẋ = 1, εẏ = x(x− 1)y

gives a simplest canard cascade y = 0 which consists of two repulsive parts (x < 0
and x > 1 since ∂g/∂y = x(x − 1) > 0) and one attractive part (0 < x < 1 since
∂g/∂y = x(x− 1) < 0) with two breakdown points x = 0 and x = 1.

Example 8 An example of a system with an infinite number of breakdown points is

ẋ = 1, εẏ = y sinx.

Example 9 The slow curve of the van der Pol system (21), (22) has two jump points. To
construct a canard cascade we need to have two independent parameters. We can consider
α as a gluing function α = α(x, λ) depending on the slow variable x and the vector
λ = (λ1, λ2). The vector λ is a function of ε: λ = λ(ε). The consideration of a variant
where the function α is a polynomial in x, i.e., α = λ1x + λ2 seems quite natural. Of
course, we can use a trigonometric polynomial or the linear combination of any linearly
independent functions in x with the coefficients λ1, λ2. We will search the canard cascade
in the form of a polynomial

x = y − y3/3 + εqm(y, ε), [42]

where qm(y, ε) is an mth-degree polynomial in y. From (21), (22) and (42) we have

∂

∂y

(
y − y3/3 + εqm(y, ε)

)
(−qm(y, ε)) = y − α.

Balancing the degrees of polynomials on both sides of this equality implies that m = 1
since the highest power of y in x is y3, and therefore, qm(y, ε) = ay + b. After some
calculations we obtain [21, 22] the representation for gluing function

α = α(x, ε) = 3µ(ε)x,

where
µ(ε) = (

√
1 + 2ε− 1)/2ε,

and a canard cascade
x = y − y3/3 + εµ(ε)y.
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The canard cascade (the one-dimensional slow invariant manifold) passes near the
slow curve of the system. We glue the stable and the unstable slow invariant manifolds at
two jump points A1 and A2. In this case we have used only one additional parameter to
obtain a canard cascade.

Note that the change of variable

x = −εz + y − y3/3 + εµ(ε)y

transforms (21), (22) to the system

ẏ = z − µy, εż = (y − 1)(y + 1)z − 4εµz

with the canard cascade z = 0 which plays the role of a bounded on the whole axes
solution.

In the general case, when the slow curve of a system has k jump points, it is necessary
to use k additional parameters to construct a canard cascade.

As was mentioned above, we consider control functions depending on the slow vari-
able only. But the special case of the control function depending on the fast variable is of
interest also. Éric Benoît is the author of the following statement.

Remark. The system
ẋ = µ(y), εẏ = p(y)− x

has a canard cascade with an invariant manifold x = p(y) + εq(y) if we choose the
polynomial control µ(y) = −q(y)(p′(y) + εq′(y)). The direction of slow dynamics can
be controlled by the sign of q(y) to choose the sequence of true and false canards.

6. Black swans
We return now to the more general case and consider the multidimensional invariant

surfaces of variable stability or black swans [23, 24]. These surfaces are considered as
natural generalizations of the notion of a canard.

We consider a non-autonomous system obtained from an original autonomous system
of type (1), (2) with a scalar fast variable by eliminating the variable t. It is assumed that
this system can be represented as:

dy

dx
= Y (x, y, z, ε), y ∈ Rn, x ∈ R; [43]

ε
dz

dx
= 2xz + a+ Z(x, y, z, a, ε), |z| ≤ r, [44]

where r and a0 are positive constants. It is supposed that the functions Y,Z are continuous
and satisfy the following inequalities for x ∈ R, y ∈ Rn, |z| ≤ r, |a| ≤ a0, ε ∈ [0, ε0]:

‖Y (x, y, z, ε)‖ ≤ k, |Z(x, y, z, a, ε)| ≤M
(
ε2 + ε|z|+ |z|2

)
, [45]
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‖Y (x, y, z, ε)− Y (x, ȳ, z̄, ε)‖ ≤M(‖y − ȳ‖+ |z − z̄|), [46]

|Z(x, y, z, a, ε)− Z(x, ȳ, z̄, ā, ε)| ≤M {(ε+ |z̃|)|z − z̄|

+(ε2 + ε|z̃|+ |z̃|2)‖y − ȳ‖+ ε|a− ā|
}
, |z̃| = max{|z|, |z̄|}, [47]

where ‖ · ‖ denotes the usual norm in Rn and | · | denotes the absolute value of a scalar, k
and M are positive constants.

We take a as a function: a = a(y, ε).
Let F be the complete metric space of functions a(y, ε) continuous with respect to y

and satisfying

|a(y, ε)| ≤ ε2K, |a(y, ε)− a(ȳ, ε)| ≤ ε2L‖y − ȳ‖,

for ε ∈ (0, ε0], where K and L are positive constants, with the metric defined by

ρ(a, ā) = sup
y∈Rn

|a(y, ε)− ā(y, ε)|.

Let H be the complete metric space of functions h(x, y, ε) mapping R × Rn to R
continuous with respect to x, y and satisfying

|h(x, y, ε)| ≤ ε 3
2 q,

|h(x, y, ε)− h(x, ȳ, ε)| ≤ ε 3
2 δ‖y − ȳ‖,

for ε ∈ (0, ε0], where q and δ are positive constants, with the metric

ρ(h, h̄) = sup
x∈R,y∈Rn

|h(x, y, ε)− h̄(x, y, ε)|.

On the space H we define an operator T by the formula

Th(x, y, ε) =



1

ε

x∫
−∞

exp

(
x2 − s2

ε

)
[Z(·) + a(ϕ(s, x), ε)] ds, x ≤ 0,

−1

ε

∞∫
x

exp

(
x2 − s2

ε

)
[Z(·) + a(ϕ(s, x), ε)] ds, x > 0,

where Z(·) = Z(s, ϕ(s, x), h(s, ϕ(s, x), ε), a(ϕ(s, x), ε), ε), and ϕ(s, x) is defined as
follows. For any element h ∈ H the initial value problem

dϕ

ds
= Y (s, ϕ, h(s, ϕ, ε), ε),

ϕ(x) = y,
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is considered. This problem is obtained from (43) if we replace z by an element h ∈ H .
The solution of this problem is denoted by Φ(s, x, y, ε|h) = ϕ(s, x). When the opera-
tor T possesses a fixed point h(x, y, ε) in H then the surface z = h(x, y, ε) is a slow
stable/unstable invariant manifold (a black swan). It should be noted that the operator T
defines a manifold of the solutions which are bounded with respect to z.

For the detailed proof, which is multidimensional modification of the proof of the
Theorem 1, the readers are referred to [23, 24]. The following theorem gives sufficient
conditions for the system (43), (44) to have a black swan.

Theorem 2 Let the conditions (45)–(47) be satisfied. Then there are numbers ε0 > 0 and
K,L, q, δ such that, for all ε ∈ (0, ε0), there exist functions a(y, ε) ∈ F and h(x, y, ε) ∈
H such that z = h(x, y, ε) is a slow integral manifold (the black swan).

Remark. An original singularly perturbed differential system can be reduced to the
form (43), (44) by an multidimensional analogue of the rectifying transformation de-
scribed in the Example 3 (see, for instance, [7]).

Remark. Usually the conditions (45)–(47) are fulfilled for |x| ≤ r1, ‖y‖ ≤ r2 only.
Integral manifolds in this case are local.

Note that Theorem 2 can be generalized to the case when z is a vector variable.
Let us consider now the system

dy

dx
= Y (x, y, z1, z2, ε), y ∈ Rn, x ∈ R, [48]

ε
dz1

dx
= 2xz1 + a(y, ε) + Z1(x, y, z1, z2, ε), z1 ∈ R, [49]

ε
dz2

dx
= A(x)z2 + a(y, ε)B + Z2(x, y, z1, z2, ε), z2 ∈ Rm, [50]

whereA(x) is a bounded matrix, satisfying a Lipschitz condition, with eigenvalues λi(x):

Reλi(x) ≤ −2β < 0 (i = 1, 2, . . . ,m),

B is a constant vector, the continuous functions Y , Z1, Z2, a satisfy the inequalities

‖Y (x, y, z1, z2, ε)‖ ≤ k, [51]

|Z1(x, y, z1, z2, ε)| ≤M
(
ε2 + ε‖z‖+ ‖z‖2

)
, [52]

‖Z2(x, y, z1, z2, ε)‖ ≤M
(
ε2 + ε‖z‖+ ‖z‖2

)
, [53]

‖Y (x, y, z1, z2, ε)− Y (x, ȳ, z̄1, z̄2, ε)‖ ≤M(‖y − ȳ‖+ ‖z − z̄‖), [54]

|Z1(x, y, z1, z2, ε)− Z1(x, ȳ, z̄1, z̄2, ε)| ≤M {(ε+ ‖z̃‖)‖z − z̄‖

+(ε2 + ε‖z̃‖+ ‖z̃‖2)‖y − ȳ‖
}
, [55]
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‖Z2(x, y, z1, z2, ε)− Z2(x, ȳ, z̄1, z̄2, ε)‖ ≤M {(ε+ ‖z̃‖)‖z − z̄‖

+(ε2 + ε‖z̃‖+ ‖z̃‖2)‖y − ȳ‖
}
, [56]

where

z =

(
z1

z2

)
, z̄ =

(
z̄1

z̄2

)
, ‖z̃‖ = max{‖z‖, ‖z̄‖}, k > 0,M > 0.

We consider a(y, ε) to be a continuous function satisfying the inequalities

|a(y, ε)| ≤ ε2K, |a(y, ε)− a(ȳ, ε)| ≤ ε2L‖y − ȳ‖, [57]

for ε ∈ (0, ε0] with some positive constants K and L.

Theorem 3 Let the conditions (51)–(56) be satisfied. Then there are numbers ε0 > 0 and
K,L, q, δ such that, for all ε ∈ (0, ε0), there exist functions a(y, ε) satisfying (57) and a
continuous function h(x, y, ε) satisfying

|h1(x, y, ε)| ≤ ε3/2q, |h1(x, y, ε)− h1(x, ȳ, ε)| ≤ ε3/2δ‖y − ȳ‖, [58]

‖h2(x, y, ε)‖ ≤ ε2q, ‖h2(x, y, ε)− h2(x, ȳ, ε)‖ ≤ ε2δ‖y − ȳ‖, [59]

h(x, y, ε) =

(
h1(x, y, ε)
h2(x, y, ε)

)
, h1 ∈ R, h2 ∈ Rm,

such that z = h(x, y, ε) is a black swan of the system (48)–(50).

The proof of Theorem 3 follows the lines of the proof of Theorem 2, but now H is
the complete metric space of functions h(x, y, ε) mapping R×Rn to Rm+1, continuous
with respect to x, y and satisfying (58), (59) for ε ∈ (0, ε0]. The operator T is defined by

the formula T =

(
T1

T2

)
:

T1h(x, y) =


−ε−1

∞∫
x

e(x2−s2)/ε[Z1(·) + a(ϕ(s, x), ε)]ds , x ≥ 0,

ε−1
x∫
−∞

e(x2−s2)/ε[Z1(·) + a(ϕ(s, x), ε)]ds , x < 0,

T2h(x, y) = ε−1

x∫
−∞

W (x, s, ε)[Z2(·) +Ba(ϕ(s, x), ε)]ds,

where
Z1,2(·) = Z1,2(s, ϕ(s, x), h1(s, ϕ(s, x), ε), h2(s, ϕ(s, x), ε), ε)
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and W (x, s, ε), W (s, s, ε) = I, is the fundamental matrix of the equation

ε
dz2

dx
= A(x)z2.

Remark. The proof of the Theorem 3 can be extended to the case when the system
(48)–(50) has the form

dy

dx
= Y (x, y, z1, z2, ε), y ∈ Rn, x ∈ R, [60]

ε
dz1

dx
= 2xb(x, y)z1 + a(y, ε) + Z1(x, y, z1, z2, ε), z1 ∈ R, [61]

ε
dz2

dx
= A(x, y)z2 + a(y, ε)B(x, y, ε) + Z2(x, y, z1, z2, ε), z2 ∈ Rm. [62]

Here the matrix A(x, y) and the functions Y , Z1, Z2, and a satisfy the conditions of
the Theorem 3. Moreover, the matrix A(x, y), the scalar function b(x, y) (0 < c1 ≤
b(x, y) ≤ c2) and the vector function B(x, y, ε) are continuous and bounded, and satisfy
a Lipschitz condition.

Corollary 1 The existence of canards for the systems (48)–(50) and (60)–(62) follows
from the Theorem 3. Indeed, the black swan z = h(x, y, ε) can be considered as a surface
consisting entirely of the canards, each of which passes through a certain point of the
breakdown surface. If we take the gluing function has to be a constant, a(y, ε) = a(y0, ε),
the stable and unstable invariant manifolds can be glued at one point y = y0 of the
breakdown surface only. The canard passes only through this point.

7. Summary
In this paper we have looked from unified positions at the invariant surfaces of variable

stability both from a geometric viewpoint, when dealing with gluing the stable and the
unstable slow invariant manifolds, and in terms of their analytic representations as the
unique bounded on the whole axis solutions. The invariant surfaces of variable stability
are interesting not only from a mathematical viewpoint, they are successfully used for
modeling of critical phenomena of diverse nature. It should be noted that the considered
cases do not exhaust the possible generalizations.
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