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1. Introduction
Consider the backward heat equation on some domain, with a given condition at the

horizon. Assume a second condition is prescribed, in the form of a fixed function on
the domain. The free boundary problem consists in determining the subdomain where the
prescribed function is maximal, and the subdomain where the solution of the heat equation
is maximal, together with the values of the solution. Under appropriate conditions the two
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subdomains, called stopping region and continuation region, are separated by a simple
curve, which is a priori unknown. This curve is called the free boundary, and thus must
be determined simultaneously with the solution.

Such free boundary problems occur in several settings. One of them is the so-called
Stefan-problem: in a frozen lake, part of the water is heated, and one should determine the
curve separating the ice and the melting region. Another example came up with financial
mathematics, and deals with the American put option, which gives the owner the right to
sell a stock anytime at a previously fixed price, see for instance [9]. Then the stopping
region is the set of values of the stock where it is optimal to sell, and the set of values
where it optimal to stay with the stock is the continuation region. This free boundary
problem deals with stochastics, but after some appropriate adaptations it may be shown
to be equivalent to the setting in terms of the heat equation. Then in the continuation
region the process behaves as a martingale (constant conditional expectations), while in
the stopping region the process has decreasing conditional expectations. Then as a whole
the process is a supermartingale, and the free-boundary problem may be reformulated as
to determine the smallest supermartingale satisfying all conditions, the so-called Snell-
envelope.

The free boundary problem is still largely open. Progress has been made in proving
properties of regularity (continuity, differentiability) of the solution and the free boundary,
using rather strong techniques, like analytic functions and series (Gevrey [8])), functional
analysis (Friedman [7]) and stochastic integration (Van Moerbeke [11][12]). Mostly some
a priori conditions are assumed, such as the continuation region and the stopping region
being separated by a curve, or a finite family of such curves.

The present article is written in the setting of discretisations of the heat equation. We
take as a starting point a one-step dynamic optimization problem, which gives rise to
the discrete heat equation by taking to two time-steps. We consider the case where the
free boundary has the form of a "discrete curve". Then in the continuation region the
solution has the form of a finite sum. We work on an infinitesimal grid in the sense of
nonstandard analysis. The article aims to obtain nonstandard regularity properties of this
solution and the free boundary, formulated in terms of S-continuity and S-differentiability
by elementary means, in the spirit of [13] and [2]; for an introduction to the axiomatic
form of nonstandard analysis IST and terminology used here, we refer to [6].

We assume that the condition at the horizon is S-differentiable once, but not twice,
otherwise the prescribed function is two times S-differentiable in space and once in
time, with S-continuous discrete partial derivatives, all satisfy some growth condition.
We make the rather strong a priori assumption that the free boundary has a property of
monotony. Then the results on regularity are resumed as follows. The free boundary is at
least locally S-continuous, the solution has S-continuous discrete partial derivatives of all
standard order at points of the continuation region not infinitely close to the free boundary
or the horizon, and infinitely close to the free boundary discrete partial derivatives of first
order are S-continuous, but not the discrete partial derivative of second order with respect
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to space. The regularity properties of the solution proved here are about as strong as those
proved by Friedman and Van Moerbeke, but as regards to the regularity properties of the
free boundary, they also show that it is differentiable.

We observe that in the context of the heat equation the interaction between the con-
tinuous and the discrete approach is not as obvious as in the case of ordinary difference
equations-ordinary differential equations, because differentiability is not always verified.
For instance, normally at the horizon the continuous solution is not two-times differ-
entiable in space. So one has to refer to more indirect methods of functional analysis,
or alternatively one has to relate finite-time stochastics and the much more involved
continuous-time stochastics. A nonstandard article which deals with the transition be-
tween the discrete and the continuous in the context of the Snell-envelope for the Amer-
ican put is given by Cutland, Kopp, Willinger and Wyman [5]. Using Loeb-measure,
they prove a convergence property (D2-convergence) for the solution of the discrete free
boundary problem, which is stronger than weak convergence. In [10] classical conver-
gence results on discrete approximations of the continuous free-boundary problem are
presented, and a bibliography.

This article has the following structure. We start by formulating the discrete free
boundary problem in Section 2, and by stating some basic properties of the discrete heat
equation and its solutions in Section 3. Subsection 3.1 relates the discrete heat equation
with its stochastic solution in the form of an expectation, where we will use a sort of
semi-continuous notation. In Subsection 3.2 expectations are written in convenient form,
so-called path sums, which are the finite analogue of path integrals. Within our semi-
continuous notation we develop some tools in order to deal with the path sums, based on
the Reflection principle. Applying path sums to the free boundary problem, Subsection
4 gives concrete expressions for the solution, and also useful forms for upper and lower
solutions. The latter yield bounds of differences of solutions, which enable proofs of the
regularity properties; the approach by upper and lower solutions is not very different form
the methods used in [11].

In Section 5 continuous approximations are made of discrete formulas, taking ad-
vantage of the semi-continuous notation. In particular it recalls the DeMoivre-Laplace
Theorem of [4], which extends the approximation of the binomial distribution by the nor-
mal distribution to all standard difference quotients and differential quotients. Also some
useful estimates of path-sums are given in terms of improper Riemann-integrals.

In Section 6 we formulate the regularity properties of the prescribed function and the
condition at the horizon needed in the remaining part of the article. We illustrate the free
boundary problem with some simple examples which may treated by direct calculations.
We compare the conditions and results on regularity with those of the articles by Van
Moerbeke and Friedman.

The properties of S-continuity and S-differentiability are progressively proved in Sec-
tion 7, 8 and 9.
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2. The discrete free boundary problem
Let δt > 0 be a fixed time-step and T = Nδt. Let T ∈ T, T > 0; for convenience we

suppose that T is standard and that T/δt is even. Let δx = 2
√
δt be the space-step, and let

X = Zδx. We consider the grid composed of points (t, x) for t/δt even, and (t, x+
√
δt)

for t/δt odd, where t ∈ T and x ∈ X. We let D be the grid restricted to 0 ≤ t ≤ T , then
T is called the horizon. Let g : D → R. In this setting the free boundary problem is given
by {

u(t, x) = max (µ(t, x), g(t, x))
u(T, x) = g(T, x),

(1)

where
µ(t, x) =

1

2
u(t+ δt, x+

√
δt) +

1

2
u(t+ δt, x−

√
δt). (2)

Often it is convenient to write the condition at the horizon T separately by g(T, x) ≡
h(x). The stopping region S is the set of all points (t, x) ∈ D such that u(t, x) has
the fixed value g(t, x); we suppose for convenience that the stopping region includes the
points where µ(t, x) = g(t, x). In the continuation region C the value u(t, x) is given by
the mean µ(t, x). The free boundary separates C and D; it may or may not be a simple
(discrete) curve. The search for the solution of (1) involves the simultaneous search for
the free boundary.

Observe that the solution u satisfies in the continuation region the martingale property:
at time t the value of the solution u(t, ·) is the mean (2) of the solution u(t+ δt, ·) at the
next time t+ δt. In the stopping region

g(t, x) ≥ 1

2
g(t+ δt, x+

√
δt) +

1

2
g(t+ δt, x−

√
δt). (3)

As a consequence, the solution of the free boundary problem (1) has the supermartingale
property

u(t, x) ≥ 1

2
u(t+ δt, x+

√
δt) +

1

2
u(t+ δt, x−

√
δt).

To see the relation with the discrete heat equation, we denote the difference quotient in
time by

u1,0(t, x) =
u(t+ 2δt, x)− u(t, x)

2δt
.

Note that due to the construction of the grid D differences in time of the function u imply
an even number of time-steps. The first-order difference quotient in space is denoted by

u0,1(t, x) =
u(t, x+ δx)− u(t, x)

δx
,

In general um,n denotes the mth-order difference quotient in time of the nth-order differ-
ence quotient in space of u.
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Then taking two successive steps of the backward recurrence relation

u(t, x) =
1

2
u(t+ δt, x+

√
δt) +

1

2
u(t+ δt, x−

√
δt), (4)

one shows that the function u satisfies the backward discrete heat equation

u1,0(t− 2δt, x) +
1

2
u0,2(t, x− δx) = 0, (5)

as long as we remain in C.
We did not take this equation as a starting point, for taking time-steps 2δt may imply

that u is not defined on the whole of D.
We assume from now on that the continuation region and the stopping region are

separated by one discrete curve φ. To fix ideas we suppose that C lies on top of S, this is
no essential restriction. We also assume that the curve φ lies within the stopping region
and that φ is a function of time. Then φ(t) satisfies for t ∈ [0..T ]

φ(t) = max {x |(t, x) ∈ S } .

Observe that by supposing φ functional it is avoided that the boundary has "horizontal
parts", in the sense that two points (t, x), (t, x + δx) ∈ D, with (t − δt, x +

√
δt) /∈ D.

This property is satisfied if (3) is supposed to hold everywhere. Section 6 will present
some concrete examples where these conditions are satisfied (it may happen that φ is
defined only on some discrete interval [t′..T ] with 0 < t′ ≤ T , but it is always possible to
consider the free boundary problem on a restricted time-interval).

3. Tools from probability

3.1. The Wiener walk and the binomial distribution
As is well-known, the solution of equation (4) is an expectation with respect to the

Wiener walk. The Wiener walk W is the discrete stochastic process (sequence of random
variables Wt) with independent increments δWt ≡Wt+δt −Wt, defined by W0 = 0 and

δWt =

{ √
δt probability 1

2

−
√
δt probability 1

2 ,

where 0 ≤ t < T . We write Λt,x the set of all (equiprobable) trajectories starting at (t, x).
We denote by Γ the set of all points on at least one trajectory of Λ0,0. By independence,
the probability pr of every trajectory λ ∈ Λt,x satisfies

pr(λ) =

(
1

2

)(T−t)/δt

.
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Then < Λt,x, pr > is a probability space. If we consider the equation (4) only with
a condition h(x) at the horizon, one shows with backward induction that its solution is
given by the expectation

u(t, x) =
∑

λ∈Λt,x
h(λ(T ))prλ. (6)

Grouping trajectories with the same endpoint yields a second manner to express u(t, x).
This gives way to the binomial distribution, given by

B(ν, j) =

(
ν

j

)(
1

2

)ν
,

where ν, j ∈ N are such that 0 ≤ j ≤ ν. We do not write the expectations in terms of the
binomial coefficients, instead we use the scaling of [3].

Definition 1. Let (t, x) ∈ Γ. We write

νt =
t

δt

jt,x =
t

2δt
+

x

δx
.

Definition 2. The binomial function b : Γ→ R is defined by

b(t, x) =
1

δx
B(νt, jt,x).

The substitutions of Definition 1 may be interpreted by a centralization of the binomial
distribution around the mean ν/2 and a reduction of the distance to the mean by

δx = 2
√
δt =

2√
ν
,

which is equal to the standard deviation when t = 1. The centralization, reduction and
blow-up of the binomial coefficients with the factor 1/δx permit to formulate a version
of the DeMoivre-Laplace Central Limit Theorem, which does not involve a change of
variables, see Section 5.

The following formulas for recurrences in space of the binomial function are obtained
by straightforward calculation (see [3, p.17,18]).

Lemma 1. Let (t, x) ∈ Γ with t > 0. Then

b(t, x+ δx) = b(t, x)
1− x

2tδx

1 + x
2tδx+ 2

t δt
(7)

and

b(t− δt, x+
√
δt)δx− b(t− δt, x−

√
δt)δx = −4b(t− δt, x−

√
δt)

x

t+ x
√
δt
δt. (8)
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3.2. Path sums and the Principle of Reflection
Expectations on the gridD may be written in the form of "path sums", which are sums

over trajectories of the Wiener walk. These path sums are analogues of path integrals, but
are of course easier to define in the present finite setting. The counting of paths is less
obvious, with the notable exception of André’s Principle of Reflection (1875). Below we
recall this principle, using the coordinates of the grid D and the binomial function.

Definition 3. Let T ∈ T. A function φ : [0 · ·T ]→ Z
√
δt is called of minimal variation if

for all t < T
φ(t+ δt) = φ(t) +

√
δt ∨ φ(t+ δt) = φ(t)−

√
δt.

It is called weakly nondecreasing if φ(t′) ≥ φ(t) for all t < t′ ≤ T such that (t′−t)/
√
δt

is even.

Trajectories of the Wiener walk are of minimal variation. A weakly nondecreasing
function of minimal variation allows for downward steps −

√
δt, but they never may be

followed by a second downward step. An example of a nondecreasing function of minimal
variation is the "horizontal" trajectory given by φ(t) = −

√
δt+ (−1)t/δt

√
δt.

Differentiable standard functions give rise to functions of minimal variation, if the
discretisations are as follows.

Assume T > 0 is standard and let f : [0, T ] → R be standard and differentiable.
Define φ : [0 · ·T ]→ Z

√
δt such that (t, φ(t)) ∈ D , φ(t) ≤ f(t) and f(t) − φ(t) is

minimal for all t ∈ [0 · ·T ]. Since |f(t+ δt)− f(t)| ≤ Kδt for some standard K ≥ 0,
one can only have |φ(t+ δt)− φ(t)| ≤

√
δt. Observe that φ is weakly-nondecreasing

if f is nondecreasing; conversely the shadow of a weakly-nondecreasing function φ :
[0 · ·T ]→ Z

√
δt such that (t, φ(t)) ∈ D for all t ∈ [0 · ·T ] is nondecreasing (if it is a

well-defined function).

Definition 4. Let φ : [0 · ·T ]→ Z
√
δt be of minimal variation. Let (t, x), (τ, ξ) ∈ D with

t ≤ τ , x > φ(t) and ξ ≥ φ(τ). The probability of transition from (t, x) to (τ, ξ) is defined
by

P (t, x; τ, ξ) =
] {λ ∈ Λt,x |∀s(0 ≤ s ≤ τ ⇒ λ(s) > φ(s)) ∧ λ(τ) = ξ }

]Λt,x
;

trivially we define P (t, φ(t); t, φ(t)) = 1. In some cases, when the function φ is not clear
from the context, we may write P = Pφ.

Observe that we always have

P (t, x; τ, ξ) =
1

2
P (t+ δt, x+

√
δt; τ, ξ) +

1

2
P (t+ δt, x−

√
δt; τ, ξ), (9)

for every trajectory going from (t, x) to (τ, ξ) passes either through (t + δt, x +
√
δt)

or through (t + δt, x −
√
δt), while the probability of the first trajectories is half of the

probability of the latter two.
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In general there is no closed form formula for probabilities of transition. However the
Principle of Reflection gives an interesting exception in case φ is "horizontal".

Proposition 2. Let λ : [0 · ·T ]→ Z
√
δt be defined by λ(t) = −

√
δt+ (−1)t/δt

√
δt. Let

(0, x), (t, y) ∈ D with t, x, y > 0. Then

P (0, x; t, y) = (b(t, y − x)− b(t, y + x))δx.

Proof. We determine b(t, y − x) − P (0, x; t, y). Note that b(t, y − x) represents the
unrestricted probability of going from (0, x) to (t, y), which is equal to the probability of
going from (0, 0) to (t, y− x). Then b(t, y− x)−P (0, x; t, y) represents the probability
of going from (0, x) to (t, y) with at least one hit of the boundary λ; observe that a first
hit can only occur at a point where λ takes the value 0. Let{

A = {α ∈ Λ0,x |α(0) = x, α(t) = y,∃s(0 < s < t ∧ α(s) = 0)}
B = {β ∈ Λ0,x |β(0) = x, β(t) = −y } .

Then ]A = ]B by the following mapping F , which "reflects" a trajectory after its first hit
of the boundary:

F (α)(s) =

{
α(s) ∀τ(0 ≤ τ ≤ s⇒ α(τ) > 0)
−α(s) ∃τ(0 ≤ τ ≤ s ∧ α(τ) = 0).

Hence PrA = PrB = b(t, x+ y)δx. We conclude that

P (0, x; t, y) = b(t, y − x)δx− PrA = (b(t, y − x)− b(t, y + x))δx.

Next proposition states the probability for a first hit of the boundary at time t.

Proposition 3. Let λ : [0 · ·T ]→ R be defined by λ(t) = −
√
δt + (−1)t/δt

√
δt. Let

(0, x), (t, 0) ∈ D with t, x > 0. Then

P (0, x; t, 0) = b(t− δt, x−
√
δt)

x

t+ x
√
δt

2δt.

Proof. Applying Lemma 1 we find

P (0, x; t, 0) =
1

2
P (0, x; t− δt,

√
δt)

=
1

2

(
b(t− δt, x−

√
δt)δx− b(t− δt, x+

√
δt)δx

)
= b(t− δt, x−

√
δt)

x

t+ x
√
δt

2δt.

A discrete free boundary problem  -  207

ARIMA journal 



4. Solutions and upper solutions
We present explicit formulas for solutions and upper solutions for the free boundary

problem in terms of path sums. We use these formulas to express differences in time and
space, and also lower and upper bounds of them.

We start by the equation (4) with final condition h : X→ R given, still without pre-
scribed function g. We rewrite the solution in the form of a Riemann sum. Remark that
all values λ(T ) at the horizon of a trajectory λ of the Wiener walk starting at (t, x) satisfy
x − (T − t)/

√
δt ≤ λ(T ) ≤ x+ (T − t)/

√
δt. Putting λ(T ) = x + y, the probability

to hit the horizon at x + y is then given by B(νT−t, jt,y) = b(T − t, y)δx. Hence the
expectation (6) becomes

u(t, x) =
∑

|y|≤(T−t)/
√
δt

b(T − t, y)h(x+ y)δx. (10)

4.1. Solutions and upper solutions as path sums
Let ψ : [0 · ·T ]→ Z

√
δt be a function of minimal variation. Let (t, x) ∈ D with

x ≥ ψ(t) and t′ ≤ T . Let λ be a trajectory of the Wiener walk starting at (t, x). Then
either it will hit the curve ψ or it will hit the discrete line t = t′ at some point (t′, y) with
ψ(t′) < y ≤ x + (t′ − t)/

√
δt. Assume the value taken along the curve ψ is given by

some real valued function α and the value along t = t′ by some function β.
We define Sψ(t, x;α) and St′(t, x;β) by

Sψ(t, x;α) =
∑

t≤τ≤t′
P (t, x; τ, ψ(τ))a(τ, ψ(τ))

St′(t, x;β) =
∑

ψ(t′)<y≤x+ t′−t√
δt

P (t, x; t′, y)β(t′, y).

Observe that it follows from (9) that for t < t′ and x > ψ(t)

Sψ(t, x;α) =
1

2
Sψ(t+ δt, x+

√
δt;α) +

1

2
Sψ(t+ δt, x−

√
δt;α) (11)

St′(t, x;β) =
1

2
St′(t+ δt, x+

√
δt;β) +

1

2
St′(t+ δt, x−

√
δt;β).

If there is no ambiguity with respect to (t, x) we simply write Sψ(t, x;α) = Sψ(α) and
St′(t, x;β) = St′(β). With this notation the solution of (4) becomes

u(t, x) = Sψ(u) + ST (g). (12)
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We may generalize this formula to express solutions of (1) with free boundary φ, in
case ψ(t) ≥ φ(t) for t ∈ [0 · ·t′] with t′ ≤ T , i.e. we may stop before the horizon. Since
the values at time t′ have the form u(t′, y), formula (12) becomes

u(t, x) = Sψ(u) + St′(u). (13)

In the particular case where ψ is equal to the free boundary φ we find

u(t, x) = Sφ(g) + St′(u), (14)

and if also t′ = T we may write, with h(y) = g(T, y)

u(t, x) = Sφ(g) + ST (g) = Sφ(g) + ST (h). (15)

If φ(τ) < ψ(τ) with t ≤ τ ≤ t′ one has g(τ, ψ(τ) < u(τ, ψ(τ). Hence if φ(τ) <
ψ(τ) for all τ with t ≤ τ ≤ t′ it holds that

u(t, x) ≥ Sψ(g) + St′(u). (16)

which represents an upper solution. We have also an upper solution if ψ lies in the stop-
ping region.

Theorem 4. Let u satisfy the free boundary problem (1). Assume that ψ : [0 · ·T ]→ Z
√
δt

and the free boundary φ : [0 · ·T ]→ Z
√
δt are functions of minimal variation. Let (t, x) ∈

D with x ≥ ψ(t) and t ≤ t′ ≤ T . Assume that φ(τ) ≥ ψ(τ) for all τ with t ≤ τ ≤ t′.
Then

u(t, x) ≥ Sψ(g) + St′(u). (17)

Proof. We apply backward induction in time. The formula holds with equality for t = t′.
Indeed, if x > φ(t′), one has u(t′, x) = St′(u) and Sψ(g) = 0, hence u(t′, x) = Sψ(g)+
St′(u). If x ≤ φ(t′) one has u(t′, x) = g(t′, x). Then for x > ψ(t′) one has again
Sψ(u) = 0 and u(t′, x) = Sψ(u) + St′(u), and for x = ψ(t′) one has St′(u) = 0 and
u(t′, x) = g(t′, ψ(t′)) = Sψ(g) = Sψ(g) + St′(u). Assume (17) holds at t + δt. Let
x > φ(t). Using (11) we find

u(t, x) = µ(t, x) =
1

2
u(t+ δt, x+

√
δt) +

1

2
u(t+ δt, x−

√
δt)

≥ 1

2
(Sψ(t+ δt, x+

√
δt; g) + St′(t+ δt, x+

√
δt;u)) +

1

2
(Sψ(t+ δt, x−

√
δt; g) + St′(t+ δt, x−

√
δt;u))

=
1

2
(Sψ(t+ δt, x+

√
δt; g) +

1

2
(Sψ(t+ δt, x−

√
δt; g) +

1

2
St′(t+ δt, x+

√
δt;u) +

1

2
St′(t+ δt, x+

√
δt;u))

= Sψ(u) + St′(u).
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If x = ψ(t) we have P (t, x; t, ψ(t)) = 1 and all other probabilities of transition are
zero; so (17) holds with equality. Let φ(t) ≥ x > ψ(t). Then we derive that u(t, x) ≥
Sψ(u) + St′(u) as above, using now that u(t, x) = g(t, x) ≥ 1

2g(t + δt, x +
√
δt) +

1
2g(t+ δt, x−

√
δt).

Often the curves ψ are the result of a shift in time or space applied to the curve φ. We
introduce the following notation. Let ε be a multiple of δt and η be a multiple of δx. Then
we define φε,η by

φε,η(t) = φ(t+ ε) + η.

With respect to the function g we define gε,η by

gε,η(t, x) = g(t+ ε, x+ η).

4.2. Differences in space and time
We give now some estimates of differences in space and time of the solution of the

free boundary problem (1) in the continuation region. They are stated in terms of corre-
sponding differences in space and time of the prescribed function, which are known in
principle. In fact we will compare expectations with respect to the free boundary, ex-
actly equal to the solution, and expectations with respect to horizontal or vertical shifts
of the free boundary, which are lower bounds of the solution. Below we suppose that φ
is of minimal variation and weakly nondecreasing with φ(T ) = 0. Let (t, x) ∈ D with
x ≥ φ(t).

Differences in space. We start with upper and lower bounds for differences in space.
Let η ∈ X, η > 0. Note that the curve φ0,η lies in the continuation region and that for all
τ with t ≤ τ ≤ T

Pφ0,η
(t, x+ η; τ, y + η) = Pφ(t, x; τ, y).

Then it follows from (16) that

u(t, x+ η) ≥ Sφ(t, x; g0,η) + ST (t, x; g0,η). (18)

Since the curve φ0,−η lies in the stopping region, it follows from (17) that

u(t, x) ≥ Sφ0,−η (t, x; g0,−η) + ST (t, x; g0,−η). (19)

Then (18) and (15) imply that

u(t, x+ η)− u(t, x) ≥ Sφ(t, x; g0,η − g) + ST (t, x; g0,η − g) (20)

and (15) and (16) imply that

u(t, x+ η)− u(t, x) ≤ Sφ0,−η (t, x; g − g0,−η) + ST (t, x; g − g0,−η). (21)
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Differences in time. Let ε ∈ T, ε > 0. Let t, x and ε > 0 be such that (t, x), (t +
ε, x) ∈ D and x ≥ φ(t+ ε). Then by (15)

u(t+ ε, x) = Sφ(t+ ε, x; g) + ST (t+ ε, x; g). (22)

Also
u(t, x) = Sφ(t+ ε, x;u−ε,0) + ST (t+ ε, x;u−ε,0). (23)

This follows from (14), noting that the shift φ 7→ φ
ε,0

leads to summation along a curve
lying in the continuation region and that, when τ ≥ ε and y ≥ x, the set of trajectories
going from (t+ ε, x) to (τ, y) is in bijection with the set of trajectories going from (t, x)
to (τ − ε, y).

Applying (22) with g = u and (23), we obtain the exact expression

u(t+ ε, x)− u(t, x) = Sφ(t+ ε, x;u− u−ε,0) + ST (t+ ε, x;u− u−ε,0). (24)

To obtain a lower bound for the difference in time, we note that by (23) and (16)

u(t, x) ≥ Sφ(t+ ε, x; g−ε,0) + ST (t+ ε, x; g−ε,0). (25)

Hence by (22)

u(t+ ε, x)− u(t, x) ≤ Sφ(t+ ε, x; g − g−ε,0) + ST (t+ ε, x; g − g−ε,0). (26)

To get a lower bound for the difference in time, we will obtain an upper solution for
u(t+ ε, x) by using Theorem 4. Note that the curve φ−ε,0 lies in the stopping region and
that for all s with t+ ε ≤ s ≤ T

Pφ−ε,0(t+ ε, x; s, φ(s− ε) = Pφ(t, x; s, φ(s)).

Hence by Theorem 4

u(t+ ε, x) ≥ Sφ(t, x; gε,0) + ST−ε(t, x; gε,0).

By (14)
u(t, x) = Sφ(t, x; g) + ST−ε(t, x;u),

hence
u(t+ ε, x)− u(t, x) ≥ Sφ(t, x; gε,0 − g) + ST−ε(t, x; gε,0 − u). (27)

5. Continuous approximations of discrete formulas
From now on we suppose that δt ' 0. Observe that also δx = 2

√
δt ' 0, but

that δx/δt = 2/
√
δt is infinitely large. We use � to designate an unknown or neglected

infinitesimal, much like o(1) designates an arbitrary function going to 0. Limited numbers
(£) and appreciable numbers (@) are treated similarly.
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5.1. Regularity of the binomial function
We start by recalling a nonstandard extension of the DeMoivre-Laplace Theorem on

the regularity properties of the function b(t, x), which is useful in the study of the regu-
larity properties of the solution of the free boundary property.

Theorem 5. (Higher order DeMoivre-Laplace Theorem, nonstandard [4]) For all (t, x) ∈
Γ such that t is appreciable and x is limited,

b(t, x) ' 1√
2πt

exp

(
−x

2

2t

)
≡ G(t, x). (28)

Moreover, for every standard m, n ∈ N, one has for all (t, x) ∈ Γ such that t is appre-
ciable and x is limited

bm,n(t, x) ' ∂m∂nG(t, x)

∂tm∂xn
.

Also is needed a bound on the binomial distribution, valid close to the origin and at
the tails.

Theorem 6. For all (t, x) ∈ Γ such that t/δt is infinitely large

b(t, x) = £√
t

exp

(
−@

x2

t

)
. (29)

Proof. Assume first that t/δt is even. If x ≥ 0, by (7)

b(t, x) = b(t, 0)
∏

0≤y<x

b(y + δx)

b(y)
= b(t, 0)

∏
0≤y<x

1− y
2tδx

t+ y
2tδx+ 2

t δt

≤ b(t, 0)
∏

0≤y<x

1− y

2t
δx ≤ b(t, 0) exp−

∑
0≤y<x

y

2t
δx

≤ 2b(t, 0) exp−
x∫

0

y

2t
δy ≤ 2b(t, 0) exp−y

2

4
.

Also, one derives from the well-known asymptotical approximation B(n, n2 ) ∼
√

2π
n 2n

for n → ∞, that b(t, 0) = (1+�)√
2πt

for t/δt infinitely large. Combining, we derive the
bound (29). The case x < 0 is obtained by symmetry. The case that t/δt is odd follows
from the above, noting that b(t, x) = 1

2b(t− δt, x+
√
δt) + 1

2b(t− δt, x−
√
δt).

We need also bounds on the differences of the binomial function with respect to space.
To this end we introduce an auxiliary function c, defined for (t, x) ∈ D such that x ≥ 0
by

c(t, x) =
x

t+ x
√
δt
.
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Note that by (8)

b0,1(t− δt, x−
√
δt) = b(t− δt, x−

√
δt)c(t, x). (30)

Lemma 7. Let (t, x) ∈ D with x ≥ 0, and n ∈ N, n ≥ 1 be standard. Then for all
standard j ∈ N

c0,n(t, x+ jδx) =
−n!

t (−
√
δt
t )n−1∏

1≤i≤n
1 +

√
δt
t (x+ (j + n)δx)

.

Proof. Put γ(z) = 1
1+z . Then it is shown by induction that its nth discrete derivative γn

satisfies

γn(z) =
(−1)nn!∏

1≤i≤n
1 + (z + nδx)

.

Observe that
c(t, x+ jδx) =

1√
δt
− 1√

δt

1

1 +
√
δt
t (x+ jδx)

.

Then the lemma follows by substitution.

Next lemma gives the bound in question.

Lemma 8. Let (t, x) ∈ D with x � 0, and n ∈ N, n ≥ 1 be standard. Then

b0,n(t− δt, x−
√
δt) = £ exp−@

x2

t
.

Proof. For t < x
√
δt we have b(t − δt, x −

√
δt) = 0. So let us consider some fixed

t ≥ x
√
δt, then t/δt is unlimited. One proves by external induction from formula (30)

that
b0,n(t− δt, x−

√
δt) = P (t, x)b(t− δt, x−

√
δt).

where P is a standard finite sum with limited coefficients of products of at most n factors
ci(t, x + jδx), with 1 ≤ i, j ≤ n. It follows from Lemma 7 that these factors satisfy
ci(t, x + jδx) = £

t , so P (t, x) = £
tn . Theorem 6 implies that b(t − δt, x −

√
δt) =

£ exp−@x2

t . Hence

b0,n(t− δt, x−
√
δt) =

£

tn
£ exp−@

x2

t
= £ exp−@

x2

t
.
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5.2. Estimates of probabilities of transition
We turn now to infinitesimal approximations of path sums. We consider the probabil-

ity of transition to the curve λ : T→ R defined by λ(t) =
√
δt− (−1)t/

√
δt
√
δt.

Proposition 9. Let (0, x) ∈ D with x � 0 and t ∈ T be such that t > 0, t ' 0. Then the
probability of a first hit of λ before t is infinitesimal.

Proof. The first possibility of hitting λ is at time x
√
δt, which is infinitely large with

respect to δt. Applying Proposition 3 and Theorem 6 we find, for some standard K and
C ∑

0≤τ≤t

P (0, x; t, 0) =
∑

x
√
δt≤τ≤t

b(τ − δt, x−
√
δt)

x

τ + x
√
δt

2δt

≤
∫ t

x
√
δt

K√
s

exp

(
−Cx

2

s

)
x

s+ x
√
δt
ds

≤ K

∫ t

0

exp

(
−Cx

2

s

)
x

s
√
s
ds

≤ K
x√
t

exp

(
−Cx

2

t

)
' 0.

Proposition 10. Let (0, x) ∈ D with x ' 0. Then the probability of not hitting λ before
an appreciable time t is infinitesimal, in fact it satisfies

∑
y>0

P (0, x; t, y) = (1 +�)x

√
2

πt
.

Proof. Because the function b is at least of class S1, it follows from the Higher order
DeMoivre-Laplace Theorem that for limited y

b(t, y − x)− b(t, y + x)

2x
' −

∂

(
1√
2πt

exp

(
−y

2

2t

))
∂y

=
y√

2πt
√
t

exp

(
−y

2

2t

)
.
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It follows from Lemma 1 that for positive unlimited y

b(t, y − x)− b(t, y + x)

2x
= − 1

2x

∑
−x≤z<x

b0,2(t, y − z)δx

≤ − 1

2x

∑
−x≤z<x

b0,2(t, y − x)δx

= −b0,2(t, y − x)

= (1 +�)b(t, y − x)
y

t+ y
√
δt
.

It follows from Theorem 6 that the latter expression is less than K exp(−Cy2) for some
standard K,C > 0. Hence we may apply the Lemma of Dominated Approximation [1,
p. 142] to derive that∑

y>0

P (0, x; t, y) =
∑
y>0

(b(t, y − x)− b(t, y + x))δx

= 2x
∑
y>0

b(t, y − x)− b(t, y + x)

2x
δx

= (1 +�)2x
∑
y>0

y√
2πt
√
t

exp

(
−y

2

2t

)
δx

= (1 +�)
2x√
2πt

∫ ∞
0

y√
t

exp

(
−y

2

2t

)
d

(
y√
t

)

= (1 +�)x

√
2

πt
,

which is infinitesimal.

Proposition 11. Let (0, x) ∈ D with x ' 0. Then there exists t ∈ T, t ' 0 such that the
probability of the first hit of λ before time t is nearly equal to 1.

Proof. By Proposition 10 the probability of not hitting λ before some appreciable time
is infinitesimal. By the Fehrele Principle this remains true for some t ' 0. Then the
probability of the first hit of λ before t is nearly equal to 1.

The above property remains true if we consider the first hit of a weakly nondecreasing
curve of minimal variation φ instead of λ, because a trajectory hitting λ will hit φ before.
This is stated in the next proposition.

A discrete free boundary problem  -  215

ARIMA journal 



Proposition 12. Let (0, x) ∈ D with x ' 0. Let φ : T→ R be a weakly nondecreasing
function of minimal variation such that φ(0) = 0. Then there exists t ∈ T, t ' 0 such
that the probability of the first hit of φ before time t is nearly equal to 1.

5.3. Estimates of path sums
We present some lemmas on the infinitesimal approximation of path sums with re-

spect to some function f , along a curve φ and/or along the horizon. They assume some
regularity of f in the limited domain, and some growth condition at positive infinity. In
the next sections they will be applied to obtain estimates of solutions, or differences of
solutions. We start with some estimates along the horizon.

Lemma 13. Let ω ' +∞. Let f be a real function such that |f(y)| ≤ K exp(Cy) for
y ≥ A, where A,C and K are standard constants. Let φ : [0 · ·T ]→ R be a S-continuous
and weakly nondecreasing function of minimal variation with φ(T ) limited. Then for
0 ≤ t < T and limited x > φ(t)∑

y>ω

P (t, x;T, y)f(y) ' 0. (31)

Also ST (t, x; f) is limited. Moreover, if the probability of hitting the horizon is infinitesi-
mal, it holds that ST (t, x; f) ' 0.

Proof. We have P (t, x;T, y) ≤ b(T − t, y − x)δx. If (T − t)/δt is limited, there are no
trajectories hitting the horizon above ω, so (31) holds trivially. If (T − t)/δt is unlimited,
by applying Theorem 6 we see that b(T − t, ω− x) is infinitesimal, since it is of the form
£√
t

exp

(
−@

(ω − x)2

t

)
, while

b(T − t, y − x) |f(y)| ≤ £√
t

exp

(
−@

(y − x)2

t

)
K exp(Cy)

is of exponential decay. Then (31) is a consequence.
Let a > 0 be appreciable. Applying the Cauchy principle to (31), we see that∑
y>ω P (t, x;T, y) |f(y)| ≤ a for some limited ω0. Then, noting that f is limited on

[φ(T ) · ·ω0], we obtain that ST (t, x; f) is limited. Finally, if the probability of hitting the
horizon is infinitesimal one has

∑
φ(T )<y≤z P (t, x;T, y)f(y) ' 0 for all limited z, so by

Robinson’s Lemma
∑
φ(T )<y≤ω P (t, x;T, y)f(y) ' 0 for some ω ' +∞. Then (31)

implies that ST (t, x; f) ' 0.

The first part of next lemma states that, starting infinitely close to a curve, a path
sum with respect to a function along the curve is nearly equal to the initial value on the
curve, if the function is S-continuous. The second part states that, if this initial value is
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infinitesimal, and the function remains infinitesimal, except possibly on the unlimited part
of horizon, where it should satisfy some growth condition, the path sum is also not more
than infinitesimal.

Lemma 14. Let ω ' +∞. Let φ : [0 · ·T ]→ R be a weakly nondecreasing function of
minimal variation of class S0. Let t � T and f : [t, T ]× R→ R.

1) If f is of class S0 and such that there exist standard constants A,C and K such
that |f(T, y)| ≤ K exp(Cy) for y ≥ A, for x ' φ(t), x > φ(t)

Sφ(t, x; f) + ST (t, x; f) ' f(t, φ(t)).

2) Assume f(τ, φ(τ) ' 0 for all τ ∈ [t, T ] and f(T, y) ' 0 for all limited y ≥
φ(T ), and there exist standard constants A,C and K such that |f(T, y)| ≤ K exp(Cy)
for all y ≥ A. Then for limited x > φ(t)

Sφ(t, x; f) + ST (t, x; f) ' 0.

Proof. 1) By Proposition 11 there exists t′ ' t, t′ ≥ t such that that the probability
to hit φ at some τ with t ≤ τ ≤ t′ is nearly equal to 1. Since f(τ, φ(τ)) ' f(t, φ(t)) for
such τ , and f(τ, φ(τ)) remains limited for t′ ≤ τ ≤ T ,

Sφ(t, x; f) '
∑

t≤τ≤t′
Pφ(t, x; τ, φ(τ))f(τ, φ(τ))

'
∑

t≤τ≤t′
Pφ(t, x; τ, φ(τ))f(t, φ(t)) ' f(t, φ(t)).

Then the result follows from Lemma 13.
2) We have Sφ(t, x; f) ' 0 because always f(τ, φ(t)) ' 0. Then the result follows

from Lemma 13.

The first part of the last lemma states that, at limited points infinitely close to the
horizon, the value of the path sum with respect to a S-continuous function f satisfying a
growth condition is infinitely close to the value of f at the horizon. The second and third
part state that these path-sums globally respect the growth conditions on f .

Lemma 15. Let φ : [0 · ·T ]→ R be a weakly nondecreasing function of minimal variation
of class S0. Let f : [0, T ] × R be a S-continuous real function such that there exist
standard constants A,C and K such that |f(T, y)| ≤ K exp(Cy) for y ≥ A. Then

1) Sφ(t, x; f) + ST (t, x; f) ' f(T, x) for t ' T and x > φ(t) limited.

2) Sφ(t, x; f) + ST (t, x; f) is limited for all t, and limited x > φ(t).

3) Sφ(t, x; f) + ST (t, x; f) ≤ 2K exp(2Cx) for all t, and for all x > φ(t).
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Proof. 1) First assume that x � φ(T ) is limited. If (T − t)/δt is standard,
all trajectories λ of Λt,x satisfy λ(T ) ' x. Then f(T, λ(T )) ' f(T, x) and taking
the mean over these values we clearly have Sφ(t, x; f) + ST (t, x; f) = ST (t, x; f) '
f(T, x). If t ' T with (T − t)/δt unlimited, by the estimate of Theorem 6, for
some all appreciable α > 0 the probability that |λ(T )− x| ≤ α is infinitesimal.
By the Fehrele principle this is still true for some α ' 0. Since we still have
η(T, λ(T )) ' f(T, x) for these λ,

∑
x−α≤y≤x+α P (t, x;T, y)f(y) ' f(T, x). By

Lemma 13
∑
x+α≤y P (t, x;T, y)f(y) ' 0. Because f is limited for limited arguments

one has both
∑
φ(T )<y<x−α P (t, x;T, y)f(y) ' 0 and Sφ(t, x; f) ' 0. Combining, we

derive that Sφ(t, x; f) + ST (t, x; f) ' f(T, x). The case where x ' φ(T ), x ≥ φ(t)
is similar to the case x � φ(T ): there exists α′ > 0, β′ ' 0 such that for trajectories
starting at (t, x) the probability that λ(T ) − x ≥ α′ is less then β′. So with prob-
ability nearly equal to 1 the remaining trajectories hit the horizon or the free bound-
ary at points where u takes values infinitely close to f(T, φ(T )) ' f(T, x). Hence
Sφ(t, x; f) + ST (t, x; f) ' f(T, x).

2) Since f(τ, φ(t)) is limited for all τ with t ≤ τ ≤ T , for x > φ(t) clearly
Sφ(t, x; f) is limited. By Lemma 13 also Sφ(t, x; f) is limited. Hence Sφ(t, x; f) +
ST (t, x; f) is limited.

3) If x is unlimited, the values |f(T, λ(T ))| such that 0 ≤ λ(T ) ≤ 2x for λ ∈ Λt,x
are bounded by K exp(2Cx). Using Theorem 6 we find that for some standard A and B,∑

z≥2x

P (T − t, x;T, x+ z) |f(T, x+ z)| δx

≤
∑
z≥2x

b(T − t, z) |f(T, x+ z)| δx

≤ A

∫
z≥2x

exp(−Bz2)K exp(2C(x+ z))dz ' 0.

Hence Sφ(t, x; f) + ST (t, x; f) ≤ 2K exp(2Cx).

6. Hypotheses, some examples, earlier approaches
From now on we assume the following hypotheses.

Hypotheses 16. 1) The horizon T > 0 is standard and δt ' 0.

2) The fixed condition g : [0, T ] × R → R is standard and of class C1,2, except
maybe at the non-negative part of the horizon. At the horizon the function g(T, .) ≡ h is
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nonnegative, with g(T, 0) = 0. At (T, 0), it may be not two times differentiable in space,
and when x is positive, it is two times continuously differentiable with respect to x; the
function and its partial derivatives do not need to be continuous in t if (t, x) approaches

(T, x), but their limits are supposed to exist. Also |g| ,
∣∣∣∂g∂t ∣∣∣ , ∣∣∣ ∂g∂x ∣∣∣ and

∣∣∣ ∂2g
∂x2

∣∣∣ have at most
standard exponential growth in x at +∞, for all t such that 0 ≤ t ≤ T .

3) The function g satisfies ∂g(t,x)
∂t < − 1

2
∂2g(t,x)
∂x2 , except possibly at the non-

negative part of the horizon.

4) The continuation region C is on top of the stopping region S, their boundary φ
is supposed to be included in S, terminating at the horizon at (T, 0), and to be a weakly
nondecreasing function of time.

Condition 16.2 implies that the restriction of g to D is of class S1,2, with possible ex-
ceptions infinitely close to the positive part of the horizon; these express that the condition
at the horizon is in principle to be seen apart from the overall behavior of the prescribed
function g. Also the discretisations g, g1,0, g0,1 and g0,2 have standard exponential growth
at infinity.

As regards to Condition 16.3, since the solution satisfies the martingale property in the
continuation region, it is natural to suppose that the prescribed function does not satisfy
the martingale property in the stopping region. If so, (3) implies that

g(t, x) >
1

2
g(t+ δt, x+

√
δt) +

1

2
g(t+ δt, x−

√
δt). (32)

Next proposition states that (32) follows from the inequality of Condition 16.3. In fact we
have two stronger inequalities.

Proposition 17. Let (t, x) ∈ S, with x limited. Then

g1,0(t, x) � −1

2
g0,2(t, x), (33)

provided t ≤ T − 2δt and x < −δx, as long as t ' T . Moreover for 0 < t < T and
x < 0 limited one has (32), in fact

g(t, x)−
(

1

2
g(t+ δt, x+

√
δt) +

1

2
g(t+ δt, x−

√
δt)

)
= @δt.

Proof. Noting that φ is of minimal variation, also (t, x − 2δx), (t, x − δx), (t − δt, x −
3
√
δt), (t− δt, x−

√
δt) and (t− 2δt, x− δx) lay in S. Then

1

4
g(t, x− 2δx) +

1

2
g(t, x− δx) +

1

4
g(t, x) < g(t− 2δt, x− δx),

implying that g0,1(t− 2δt, x− δx) < − 1
2g0,2(t− 2δt, x− 2δx). If we had near-equality,

it would follow that 1
2g
′′
2 (◦t,◦ x) = −g′1(◦t,◦ x), a contradiction. Hence g0,1(t− 2δt, x−
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δx) � − 1
2g0,2(t − 2δt, x − 2δx). By S-continuity of the discrete derivatives, also

g0,1(t, x) � − 1
2g0,2(t, x), with g0,1(t, x) well-defined for t + 2δt ≤ T ; also the defi-

nition of g0,2(t, x) uses only points of non-negative x-values if x ≤ −δx.
As for the second part, using a Taylor expansion, we find

g(t+ δt, x+
√
δt) + g(t+ δt, x−

√
δt)

2

= g(t, x) +

(
∂g(t, x)

∂t
+

1

2

∂2g(t, x)

∂x2
+�

)
δt = g(t, x)−@δt.

This proves the Proposition.

As regards to Condition 16.4, it states firstly that the continuation region and the stop-
ping region are separated by a discrete curve. Usually it is assumed that the continuation
region and the stopping region are separated by some curves, so in a sense we are studying
the free boundary problem locally. Then it is no essential restriction to suppose that the
stopping region lies below the continuation region.

As pointed out in Subsection 3.2, being weakly nondecreasing is a fairly natural con-
dition to impose on discretisations of nondecreasing functions. The condition that the free
boundary is weakly nondecreasing is an essential restriction, but will be satisfied if the
condition at the horizon is sufficiently rapidly increasing for positive arguments, such as
happens for instance in the examples below. In fact it is only needed infinitely close to the
boundary. Then by permanence the free boundary will be weakly nondecreasing during
a time interval [T − T0..T ] of appreciable length. We may consider the free boundary
problem only locally, and then it is possible to suppose that the free boundary φ is weakly
nondecreasing during the whole time interval of definition. In fact it is only needed to ask
that the free boundary is weakly nondecreasing as a curve.

Lemma 18. The free boundary φ is functional, in fact of minimal variation as long as
(t, φ(t) is limited.

Proof. It follows from (32) that whenever x < 0 is limited and t > 0, if u(t + δt, x +√
δt) = g(t+δt, x+

√
δt), then also u(t, x) = g(t, x). Hence in case (t+δt, x+

√
δt) ∈ φ,

since φ is weakly nondecreasing, we can only have (t+δt, x) ∈ φ or (t+δt, x+2
√
δt) ∈

φ, and one cannot have both. Hence φ is functional. This implies that it is of minimal
variation: if not, for some t the points (t, φ(t)) and (t, φ(t) − δx) lie on the boundary of
S, so the free boundary cannot be functional.

Here we present some simple examples.

Example 1. Define h(x) = x for x ≥ 0 and g(t, x) = 0, except for t = T and x ≥ 0.
Then φ(t) = −(T − t)/

√
δt for t ≥ 0, for always u(t, φ(t) + δx) = µ(t, φ(t) + δx) =

δx/2(T−t)/δt, while u(t, φ(t)) = g(t, φ(t)) = 0. The function φ is not S-continuous, in
fact its shadow is the non-positive part of the line x = T .
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Example 2. Define h(x) = −x for x ≤ 0 and g(t, x) = 0, except for t = T and
x ≤ 0. Here the stopping region lies on top of the continuation region, with free boundary
φ(t) = (T − t)/

√
δt for t ≥ 0. In fact the problem is symmetric with respect to the first

example.

Example 3. Define h(x) = x2 for x ≥ 0 and g(t, x) = T − t, except for t = T
and x ≤ 0. Then φ(t) =

√
δt − (−1)T/δt

√
δt, so the free boundary is S-continuous,

with shadow identically zero. In fact one proves by backward induction that u(t, x) =
µ(t, x) = x2 + T − t for x > 0, while for x = 0

µ(t, 0) =
1

2
(δt+ (T − t− δt) +

1

2
(T − t− δt) = T − t− 1

2
δt.

As a consequence u(t, x) = g(t, x) = T − t for x ≤ 0.

Example 4. Define g(t, x) = x3 for x ≥ 0, and g(t, x) = 3(T − t)x for x < 0. Again
we have a S-continuous free boundary defined by φ(t) =

√
δt − (−1)T/δt

√
δt. One

proves by backward induction that u(t, x) = µ(t, x) = x3 + 3(T − t)x for x > 0, while
u(t, x) = g(t, x) = 0 for x = 0, because

µ(t, 0) =
1

2
(δt3/2 + 3(T − t− δt)δt1/2 +

1

2
(−δt3/2 + 3(T − t− δt)(−δt1/2)

= g(t, 0) = 0.

Then also u(t, x) = g(t, x) = T − t for x ≤ 0, hence φ divides the continuation region
and stopping region indeed.

The first two examples suggest that if the condition at the horizon is continuous, but
not differentiable at 0, the free boundary tends to be at least locally almost parallel to
the horizon. In Example 3 the free boundary is perpendicular to the horizon if the the
prescribed function at the horizon is once, but not two times differentiable at 0, otherwise
it is smooth and satisfies locally the backward heat equation; observe that 1

2
∂x2

∂x = 1 =

−∂(T−t)
∂t .

We may have a free boundary φ between these extremes if the prescribed function lo-
cally satisfies "almost" the backward heat equation, meaning that some terms of higher or-
der are added to x2 respectively T−t. Observe that due to the fluctuations of order

√
δt at

time-scale δt, the function φmay only be S-continuous, and never can be S-differentiable,
though 0φ may be differentiable. This is achieved when φ is S-differentiable at the meso-
timescale

√
δt. To illustrate what is bound to happen if 0 < 0φ′(T ) <∞, to fix ideas we

consider the case where 0φ′(T ) = 1. In the most simple situation we have the following
phenomena at micro-scale δt and meso-scale

√
δt.

Starting at T with a sufficiently regular final condition h, working backwards φ(t)
takes alternately the values 0 and −

√
δt, up to some time T − τ1 with τ1/

√
δt ' 1.
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At T − τ1 and T − τ1 − δt it takes (backwards) two downward steps −
√
δt. We now

have (φ(T ) − φ(T − τ1))/τ1 ' 1. We find a second time τ2 such that (φ(T − τ1) −
φ(T − τ2))/(τ2 − τ1) ' 1, if φ(t) takes alternately the values −

√
δt and −2

√
δt, up to

some time T − τ2 with τ2/
√
δt ' 1, when it takes again two downward backward steps

−
√
δt. This procedure should be repeated as long as the times τ remain infinitesimal.
During this process we should be able to calculate or approximate with small error the

solution u close to φ. Though calculations rapidly may grow in complexity, we note that,
within the "levels" of alternate behavior, i.e. from T to T − τ1, and T − τ1 to T − τ2,
etc. one could take profit of the reflection principle, and even of asymptotic estimates as in
Section 5, since the number of micro-timesteps δt on these levels is infinitely large; at time
T − τ1 one could start all over again with final condition h1 ≡ u(T − τ1, x), in the hope
that h1 has a Taylor expansion similar to h, after making a change of variables (τ1, 0) 7→
(0,−

√
δt). The author was able to carry out this process in one special case (h(x) =

x2 + 2
3x

3), already with rather complex computations. For this repeated procedure to
have success, investigation and error-analysis is needed which lies outside the scope of
this article.

Important contributions to the study of the regularity of the free boundary and the
solution have been made by Van Moerbeke [11][12] and Friedman [7]. We will briefly
compare their results to our approach, guided by the special case where g(t, x) = T−t, as
in [11], and the free boundary in the form of one curve φ. As in example 3 we will suppose
that the condition at the horizon h satisfies h(x) = 0 for x ≤ 0, otherwise is three-times
differentiable, with h′(0) = 0 and h′′(0) = 2 (Van Moerbeke and Friedman consider
the case of a finite number of such curves, starting at well-isolated points satisfying these
two equalities). This means that the Taylor-expansion of h starts with the quadratic term
x2, with possibly higher-order terms. Observe that at (T, 0), the couple (g, h) satisfies
the backward heat equation, for ∂g

∂t + 1
2
d2h
dx2 = 0. Using continuous-time stochastics

[11] shows that, starting at (T, 0), the free boundary is differentiable, down to a time
t0, where the derivative possibly goes to infinity; this time is related to points at the
horizon where h′′ and h′′ − 2 changes sign, otherwise said the condition at the horizon
switches from convexity to concavity respectively from locally minorized by the quadratic
function, or majorized by it. The proof uses a result on local differentiability of [12,
published later] established under more general conditions. The function g should have
partial derivatives up to order 4, and, together with the partial derivatives up to order 3,
should satisfy so-called Tychonov growth conditions when x goes to infinity, meaning
that they should be at most of order exp(o(x2)). Then the free boundary is differentiable
at least in a neighborhood of (T, 0). The rather involved proof uses an integral equation
for φ. Once this is established, regularity properties of the solution u are shown which are
very similar to the properties shown in the remaining sections: u is C∞ at points away
from the boundary and the horizon, at the boundary it is C1, but not C2 etc. Like in [12]
differentiability of φ is not really needed, essential is that φ is continuous, comparable
to our result of S-continuity (see Subsection 7.1). This result is not as strong as (S-
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)differentiability, but we note that we imposed less smoothness on the function g; the
choice of the conditions of linear exponential growth, instead of sub-quadratic exponential
growth, is more a matter of convenience and it is not difficult adapt to our proofs to this
more general growth condition.

The article [7] is written in a different, but largely equivalent context, using parabolic
partial differential equations and distributions. It presents some alternative proofs and
refinements of Van Moerbeke’s results, while in most cases it the only smoothness con-
dition on g and h needed is that they are C2. The free boundary is locally monotone,
and in the above special case, it starts being decreasing when going backwards in time, as
is being assumed in the present article. The regularity properties of the solution are first
established in this context, then also for the increasing case. Friedman also establishes
a differential equation for φ, which is implicit and uses simultaneously a second-order
partial derivative of the solution. As in Van Moebeke’s article the arguments are rather
involved, improving gradually the regularity properties obtained.

Summarizing, our results are not so good as those by Van Moerbeke and Friedman,
yet contain a substantial part of it, and were obtained in a finite setting by straightforward,
still rather comprehensive, calculations.

7. S-continuity of the free boundary and the solution
In this section we prove first that the free boundary is S-continuous at least during a

time-interval of appreciable length. Then without restriction of generality the free bound-
ary may be supposed to be S-continuous throughout. We prove also that the solution u
is of class S0 in the continuation domain. Now by Lemma 15 the path sum u is limited
in the limited domain, so we focus on S-continuity. The proof uses some "domain de-
composition": we distinguish cases where we are infinitely close to the horizon, infinitely
close to the free boundary, or at appreciable distance to them. In the next section it is
shown that u has much more regularity than only S-continuity, but the proof will need
that S-continuity has already been established.

7.1. S-continuity of the free boundary
We will establish the S-continuity property progressively. Lemma 22 says that the

free boundary is S-continuous infinitely close to the horizon. Theorem 19 extends the
S-continuity of the free boundary to at least an appreciable interval. The proof of Lemma
22 includes some careful estimates, partly carried out in the proofs of Lemma 20 and
Lemma 21. We resume the results as follows.

Theorem 19. The free boundary φ is of minimal variation and S-continuous from the
horizon at least during a time-interval of appreciable length.

In order to prove that the free boundary is S-continuous at the horizon, we give now
some preparatory results on behavior close to the negative part the horizon. As is ex-
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pected, the influence of the condition h at the positive part of the horizon is absent or very
reduced.

Lemma 20. Assume x < 0 is limited. Then u(t, x) = g(t, x) for t ≥ T + x
√
δt.

Proof. If x ≤ −(T − t)/
√
δt, the function h cannot influence u(t, x), for no trajectory

of the Wiener walk starting at (t, x) can hit the horizon at a point of the form (T, y) with
y > 0. For (τ, ξ) such |ξ − x| ≤ (τ − t)/

√
δt we have 1

2g(τ + δt, ξ −
√
δt) + 1

2g(τ +

δt, ξ +
√
δt) < g(τ, ξ). Hence u(t, x) = g(t, x).

Lemma 21. Assume x � 0 is limited and t ' T, T − t > −x
√
δt. Let φ : [t · ·T ] be

weakly nondecreasing such that φ(t) = x−
√
δt and φ(T ) = 0. Then both

ST (t− δt, x;h) = �δt

and
ST−δt(t− δt, x+

√
δt; g) = �δt.

Proof. By Theorem 6

P (t− δt, x;T, y) ≤ b(T − t− δt, y − x)δx

=
£√

T − t− δt
exp

(
−@

(y − x)2

T − t− δt

)
δx.

Since h(y) ≤ KeCy for all y > 0, where K and C are standard positive constants, and
(y − x)2 is at least appreciable for y > 0, we derive an estimation of the form∑

y>0

P (t, x;T, y)h(y) =
£

δt1/4
exp

(
− @√

δt

)
.

This is clearly infinitely small with respect to δt. Noting that g(T − δt, y) satisfies the
same growth condition as h, the second estimation is proved similarly.

Lemma 22. Let t ' T . Then φ(t) ' 0.

Proof. Let x � 0 be limited. Note that u(T, x) = g(T, x). Let t be minimal such
that still u(t, x) = g(t, x). Then T − t ≥ −x/

√
δt by Lemma 20. Suppose t ' T .

Then u(t − 2δt, x) = µ(t − 2δt, x), and it follows from (32) that u(t − δt, x −
√
δt) =

g(t− δt, x−
√
δt) and u(t− δt, x+

√
δt) = µ(t− δt, x+

√
δt). Now

g(t− δt, x+
√
δt) ≥ µ(t− δt, x+

√
δt) +�δt,

Indeed, by Lemma 21

µ(t− δt, x+
√
δt) = Sφ(t− δt, x+

√
δt; g) + ST (t− δt, x+

√
δt;h)

= Sφ(t− δt, x+
√
δt; g) +�δt.
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Also, because g satisfies (3) up to T − δt, again by Lemma 21

g(t− δt, x+
√
δt) ≥ Sφ(t− δt, x+

√
δt; g) + ST−δt(t− δt, x+

√
δt; g)

= Sφ(t− δt, x+
√
δt; g) +�δt.

Then it follows from Proposition 17 that

g(t− 2δt, x) =
1

2
g(t− δt, x+

√
δt) +

1

2
g(t− δt, x−

√
δt) + @δt

≥ 1

2
µ(t− δt, x+

√
δt) +

1

2
g(t− δt, x−

√
δt) + @δt

= µ(t− 2δt, x) + @δt,

in contradiction with the supoosed maximality of µ. Hence t � T . We conclude that
(t, x) ∈ S for t ' T and x � 0. Then φ(t) ' 0 for t ' T because φ is D-nondecreasing,
which means that φ is S-continuous infinitely close to the horizon.

Lemma 23 states that the solution stays equal to the prescribed function infinitely close
to the limited part of the horizon; as such it expresses S-continuity in time, which will be
needed in Subsection 7.3. It gives also a growth condition at infinity. The lemma follows
directly from Lemma 15.

Lemma 23. One has u(t, x) ' g(T, x) for limited x ≥ φ(t) and u(t, x) ≤ 2K exp(2Cx)
for all x ≥ φ(t).

Proof of Theorem 19. Assume 0 ≤ t < T and φ(t) is limited. It follows from Lemma 23
that u(t, y) is limited for y > φ(t), with at most standard exponential growth at infinity.
Then, working with t instead of T , we may prove along the lines of the proof of Lemma
22 that it is impossible to have s < t, s ' t and φ(s) � φ(t). Then φ(s) ' φ(t) because
φ is D-nondecreasing. Hence φ is S-continuous at t. By the Lemma of the Local Shadow
of [6, p. 99] the free boundary φ is S-continuous at least down to some t0 with t0 � T .

For convenience we will from now on assume a fifth condition. By Theorem 19 it
does not restrict generality, for one could consider the free boundary only for times t with
t0 ≤ t ≤ T , with t0 as given by the above proof.

H5. The free boundary is S-continuous at all times.

7.2. S-continuity of the solution in space
Theorem 24. The solution is of class S0 in space.

Proof. Let (t, x), (t, x + ε) ∈ D and ε > 0, ε ' 0. We need only to consider the case
where x ≥ φ(t) is limited. Here u is clearly limited. If t ' T , by Lemma 23,

u(t, x+ ε) ' g(T, x+ ε) ' g(T, x) ' u(t, x).
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Let t � T . One has g(τ, φ(τ)+ε) ' g(τ, φ(τ)) for all τ with t ≤ τ ≤ T and g(T, y+ε) '
g(T, y) for all limited y ≥ 0, with standard exponential growth at infinity. Then by (20)
and Proposition 14.2

u(t, x+ ε)− u(t, x) & 0.

Also, by (21) and Proposition 14.2

u(t, x+ ε)− u(t, x) . 0.

Combining, we obtain that u(t, x+ ε) ' u(t, x). Hence u is S-continuous in x.

Next proposition is a corollary.

Proposition 25. Let (t, x) ∈ D with x ' φ(t). Then u(t, x) ' g(t, x).

Proof. One has u(t, x) = u(t, φ(t) = g(t, φ(t) ' g(t, x).

7.3. S-continuity of the solution in time
Theorem 26. The solution is of class S0 in time.

The theorem follows from Lemma 23 and Proposition 27 below. Lemma 23 implies
that the solution is S-continuous in time infinitely close to the horizon. S-continuity
in time infinitely close to the free boundary follows from the first part of the proof of
Proposition 27 below. The second part of the proof deals with S-continuity at points
away both from the horizon and the free boundary.

Proposition 27. Let (t, x) ∈ D with t � T , and ε ∈ T, ε > 0, ε ' 0, ε/δt even. Let
x ≥ φ(t+ ε) be limited. Then

u(t+ ε, x) ' u(t, x).

Proof. (i) x ' φ(t). Then also x ' φ(t+ ε), hence by Proposition 25

u(t+ ε, x) ' g(t+ ε, φ(t+ ε)) ' g(t, φ(t)) ' u(t, x). (34)

(ii) x � φ(t). Then also x � φ(t+ ε). By (34) and Lemma 23, for all τ ≥ t+ ε

u(τ, φ(τ))− u−ε,0(τ, φ(τ)) = u(τ, φ(τ))− u(τ − ε, φ(τ)) ' 0.

Hence Sφ(t + ε, x;u − u−ε,0) ' 0. Also, we have u(T, x) − u−ε,0(T, x) = u(T, x) −
u(T − ε, x). Applying Lemma 23 again, we find that u(T, x) − u−ε,0(T, x) ' 0 for
limited x, while it has standard exponential growth for unlimited x. Then by formula (24)
and Proposition 14.2,

u(t+ ε, x)− u(t, x) = Sφ(t+ ε, x;u− u−ε,0) + ST (t+ ε, x;u− u−ε,0) ' 0.

Combining, we conclude that u(t+ ε, x) ' u(t, x) holds for all limited x.
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8. Higher order S-derivability of the solutions
Theorem 28. The solution is of class Sn for all standard n ∈ N at all (t, x) ∈ D with
t � T and x � φ(t).

To prove the theorem it suffices to prove that, when t � T and x � φ(t), the nth

discrete derivative u0,n of the solution with respect to space is limited for all standard
n ∈ N. Indeed, then un,0 is also limited for t � T and x � φ(t), because un,0(t −
2nδt, x) = − 1

2u0,2n(t, x − nδx). It follows that un,0 and u0,n are S-continuous in both
variables, for un+1,0 and u0,n+1 are limited.

To estimate u0,n we write it in the form of a path sum with respect to an appropriate
broken line. This broken line consists of a horizontal part η ≡ (t, x′)(t′, x′) below the
point (t, x) at appreciable distance (x′ � x), followed by a vertical part (t′, x′)(t′, x +
t′−t√
δt

) to the right of (t, x) also at appreciable distance, i.e t � t′; the vertical part goes
upwards until hitting the upmost trajectory of the Wiener walk passing through (t, x).
The angular point (t′, x′) is chosen to avoid the curve φ; this is possible because φ is
S-continuous. On behalf of (13) the solution satisfies

u(t, x) = Sη(t, x;u) + St′(t, x;u).

Then by Proposition 3 and 2

u(t, x) =
∑

t+(x′−x)
√
δt≤τ≤t′

u(τ, x′)b2(t− τ − δt, x− x′ −
√
δt) + (35)

∑
x′<y<x+ t′−t√

δt

u(t′, y)(b(t− t′, y − (x− x′))− b(t− t′, y + (x− x′))).

Next proposition extends (35) to differences with respect to space of the solution. It has a
straightforward combinatorial proof.

Proposition 29. Let (t, x) ∈ D with t � T and x � φ(t). Then there exists (t′, x′) ∈ D
with x′ � x, t � t′ � T and x′ � φ(τ) for all τ ∈ [0 · ·t′], such that for all standard
n ∈ N

u0,n(t, x) (36)

=
∑

t+(x′−x)
√
δt≤τ≤t′

u(τ, x′)b0,n+1(t− τ − δt, x− x′ −
√
δt)δx+

∑
x′<y<x+ t′−t√

δt

u(t′, y)(b0,n(t− t′, y − (x− x′))− b0,n(t− t′, y + (x− x′)))δx.
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In proving that u0,n is limited, the terms at times τ ' t in the first sum of (36) must be
handled with care, for we are considering the difference quotients b0,n+1 at infinitesimal
times. We will prove that the sums are nearly equal to standard convergent improper
Riemann-integrals, hence are limited. The second sum (36) is more easy to deal with.

Lemma 30. Let (t, x) ∈ D. Assume 0 � x − x′ � ∞ and t � t′ � T . Then for all
standard n ∈ N∑

x′<y<x+ t′−t
δt

u(t′, y)(b0,n(t− t′, y − (x− x′))− b0,n(t− t′, y + (x− x′)))δx

'
∫ ∞
x′

◦u(t′, y)(G
(n)
2 (t− t′, y − (x− x′))−G(n)

2 (t− t′, y + (x− x′)))dy.

Proof. Notice that both t − t′ and x − x′ are appreciable. Hence by the higher-order
DeMoivre-Laplace Theorem b0,n(t− t′, y − (x− x′)) ' G(n)

2 (t− t′, y − (x− x′)) and
b0,n(t− t′, y + (x− x′)) ' G

(n)
2 (t− t′, y + (x− x′)) for all limited y > x′. Moreover

b0,n(t − t′, y − (x − x′)), b0,n(t − t′, y − (x − x′)) = £ exp(−@y2) for all unlimited
y ∈ [x′ ··x+ t′−t

δt ]. Now u(t′, y) is S-continuous for all limited y > x′, and by Proposition
15 has at most linear exponential growth for y ∈ [x′ ··x+ t′−t

δt ]. So we have by the Lemma
of Dominated Approximation∑

x′<y<x+ t′−t
δt

u(t′, y)(b0,n(t− t′, y − (x− x′))− b0,n(t− t′, y + (x− x′)))δx

'
∫ ∞
x′

◦u(t′, y)(G
(n)
2 (t− t′, y − (x− x′))−G(n)

2 (t− t′, y + (x− x′)))dy.

Next lemma states that a similar result holds for the first sum.

Lemma 31. Let (t, x) ∈ D, and n ∈ N be standard. Assume 0 � x − x′ � ∞ and
t � t′ � T . Then ∑

(x′−x)
√
δt≤τ≤t′

u(τ, x′)b0,n+1(τ − t− δt, x− x′ −
√
δt)δx

'
∫ t′

0

◦u(τ, x′)G
(n+1)
2 (τ − t, x− x′)dτ.

The lemma is a direct consequence of the next two lemmas, where the interval of
summation respectively integration are divided into two parts: an appropriate interval of
infinitesimal length near the origin and its complement with respect to the whole time-
interval. We start with the latter.
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Lemma 32. Let (t, x) ∈ D, and n ∈ N be standard. Assume 0 � x − x′ � ∞ and
t � t′ � T . Then there exists s > 0, s ' 0 such that

∑
s≤τ≤t′

u(τ, x′)b0,n+1(τ − t− δt, x− x′ −
√
δt)δx

'
∫ t′

s

◦u(τ, x′)(G
(n+1)
2 (τ − t, x− x′)dτ.

Proof. Let s � 0. Then by the higher-order DeMoivre-Laplace Theorem for all τ ∈ [s··t′]

b0,n+1(τ − t− δt, x− x′ −
√
δt) ' G

(n+1)
2 (τ − t− δt, x− x′ −

√
δt)

' G
(n+1)
2 (τ − t, x− x′).

Because u(τ, x′) is limited for all τ ∈ [t · ·t′],∑
s≤τ≤t′

u(τ, x′)b0,n+1(τ − t− δt, x− x′ −
√
δt)δx (37)

'
∫ t′

s

◦u(τ, x′)(G
(n+1)
2 (τ − t, x− x′)dτ.

By the Fehrele Principle (37) still holds for some s ' 0.

Lemma 33. Let (t, x) ∈ D, and n ∈ N be standard. Assume 0 � x−x′ �∞ and t � T .
Let s > 0, s ' 0. Then

∑
0≤τ≤s

u(τ, x′)b0,n+1(τ − t− δt, x− x′ −
√
δt)δx

'
∫ s

0

◦u(τ, x′)G
(n+1)
2 (τ − t, x− x′)dτ ' 0.

Proof. Let l be limited such that u(τ, x′) ' l for all τ ∈ [0 · ·s]. Since (x − x′)/
√
δt is

unlimited, it follows from Lemma 8 that b0,n+1(τ − t − δt, x − x′ −
√
δt) ' 0 for all

τ ∈ [(x− x′)/
√
δt · ·s]. Hence∑

(x−x′)/
√
δt≤τ≤s

u(τ, x′)b0,n+1(τ − t− δt, x− x′ −
√
δt)δx ' 0.

Now
∫ t′

0
◦u(τ, x′)G

(n+1)
2 (τ − t, x − x′)dτ is a standard convergent improper Riemann-

integral. So
∫ s

0
◦u(τ, x′)G

(n+1)
2 (τ−t, x−x′)dτ ' 0. Combining, we derive the lemma.
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Proof of Theorem 28: It follows directly from Proposition 29, Lemma 31 and Lemma
30 that there exists (t′, x′) ∈ D with 0 � x− x′ �∞, t � t′ � T and x′ � φ(τ) for all
τ ∈ [0 · ·t′], such that for all standard n ∈ N

u0,n(t, x) '
∫ t′

0

◦u(τ, x′)G
(n+1)
2 (τ − t, x− x′)dτ+∫ ∞

x′

◦u(t′, y)(G
(n)
2 (t− t′, y − (x− x′))−G(n)

2 (t− t′, y + (x− x′)))dy.

Because ◦u and G(n+1)
2 are standard and continuous∫ t′

0

◦u(τ, x′)G
(n+1)
2 (τ − t, x− x′)dτ '

∫ ◦t′
0

◦u(τ,◦ x′)G
(n+1)
2 (τ − ◦t,◦ (x− x′))dτ.

Applying the Lemma of Dominated Approximation, we find∫ ∞
x′

◦u(t′, y)(G
(n)
2 (t− t′, y − (x− x′))−G(n)

2 (t− t′, y + (x− x′)))dy

'
∫ ∞
x′

◦u(◦t′, y)(G
(n)
2 (t− ◦t′, y − ◦(x− x′))−G(n)

2 (t− ◦t′, y + ◦(x− x′)))dy.

Hence

u0,n(t, x) '
∫ ◦t′

0

◦u(τ,◦ x′)G
(n+1)
2 (τ − ◦t,◦ (x− x′))dτ+∫ ∞

x′

◦u(t′, y)(G
(n)
2 (t− t′, y − (x− x′))−G(n)

2 (t− t′, y + ◦(x− x′)))dy.

We conclude that u0,n, being infinitely close to a standard number, is limited. Hence u is
of class Sn in x. Because un,0(t, x) = 1

2u0,2n(t, x− nδx) the function u is also of class
Sn in t. Hence u is of class Sn.

9. S-derivability of the solution infinitely close to the free
boundary

9.1. S-derivability of the solution in space
We prove the following theorem.

Theorem 34. The solution is of class S1 in the space variable on D, in particular
u0,1(t, x) ' g0,1(t, φ(t)) for x ' φ(t), x ≥ φ(t) and u0,1(t, x) ' g0,1(T, x) for t ' T .
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We start with the case t ' T . Then we derive that the solution is S-differentiable in
the space-variable exactly at the free boundary, with discrete derivative nearly equal to
the discrete derivative with respect to the space-variable of the function g at the boundary.
The latter discrete derivative is used to express the discrete derivative of the solution
with respect to the space-variable at points above the boundary as a path sum, up to an
infinitesimal. Informally, for points (t, x) infinitely close to the boundary, the paths almost
surely hit the boundary within infinitesimal time, thus using values of g0,1(τ, φ(τ)) for
τ ' t, which are infinitely close to g0,1(t, φ(t)). So u0,1(t, x) ' g0,1(t, φ(t)) indeed
(Lemma 37). A similar argument holds near the horizon.

Proposition 35. Let (t, x) ∈ D with t ' T , x ≥ φ(t). Then u0,1(t, x) ' g0,1(T, x).

Proof. Observe that g0,1 is of class S0 in x at the horizon T , with standard linear expo-
nential growth. By (20)

u0,1(t, x) ≥ Sφ(t, x; g0,1) + ST (t, x; g0,1).

Then u0,1(t, x) & g0,1(T, x) by Proposition 15.1. By (21)

u0,1(t, x) ≤
∑

t≤τ≤T

Pφ−δx(t, x); τ, φ(τ)− δx)g0,1(τ, φ(τ)− δx)

+
∑

φ(T )−δx<y

Pφ−δx(t, x);T, y)g0,1(T, y − δx).

Applying again Proposition 15 we find that u0,1(t, x) . g0,1(T, x − δx) ' g0,1(T, x).
We conclude that u0,1(t, x) ' u0,1(T, x).

Proposition 36. Let 0 ≤ t � T . Then u0,1(t, φ(t)) ' g0,1(t, φ(t)).

Proof. One has u(t, φ(t) + δx) ≥ g(t, φ(t) + δx), so u0,1(t, φ(t)) ≥ g0,1(t, φ(t)). On
the other hand, by (21) and Proposition 14.1

u0,1(t, φ(t)) ≤
∑

t≤τ≤T

Pφ−δx(t, φ(t); τ, φ(τ)− δx)g0,1(τ, φ(τ)− δx)

+
∑

φ(T )−δx<y

Pφ−δx(t, φ(t);T, y)g0,1(T, y − δx)

' g0,1(t, φ(t)− δx) ' g0,1(t, φ(t)).

Combining, we derive that u2(t, φ(t)) ' g0,1(t, φ(t)).

Proposition 37. Let (t, x) ∈ D with t � T and x ≥ φ(t), x ' φ(t). Then u0,1(t, x) '
g0,1(t, φ(t)).
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Proof. By Proposition 14.1 and 36

u0,1(t, x) = Sφ(t, x;u0,1) + ST (t, x; g0,1) ' u0,1(t, φ(t)) ' g0,1(t, φ(t)).

Proof of Theorem 34. For (t, x) ∈ D with t � T and x � φ(t) the property of being of
class S1 in x is a special case of Theorem 28. If t ' T and x ≥ φ(t) the conclusion
follows from Proposition 35, and for t � T and x ' φ(t) the conclusion follows from
Proposition 37, noting that g0,1 is of class S0.

9.2. S-derivability of the solution in time
Consider a point (t, φ(t)) on the free boundary with t � T , such that the solution at

the previous point in time, at (t− 2δt, φ(t)), is not on the free boundary, i.e. of the form
u(t− 2δt, φ(t)) = µ(t− 2δt, φ(t)). We derive that the solution is S-differentiable in the
time-variable at this point, with discrete derivative nearly equal to the discrete derivative
with respect to the space-variable of the function g at the boundary. As in the previous
subsection, the latter discrete derivative is used to express the discrete derivative of the
solution with respect to the time-variable at points above the boundary as a path sum, up
to an infinitesimal. For the points (t, x) infinitely close to the boundary, the proof that
u1,0(t, x) ' g1,0(t, φ(t)) uses also the same argument as in the previous section: the
paths almost surely hit the boundary within infinitesimal time, so essentially only values
close to g1,0(t, φ(t)) matter. In contrast to the discrete derivative with respect to space,
the discrete derivative with respect to time needs not to be limited close to the horizon and
the free boundary, since g takes steps of order

√
δt instead of δt. In fact, we will prove

the following theorem.

Theorem 38. Let (t, x) ∈ D be such that 2δt ≤ t � T and x > φ(t), x ' φ(t). Then
u1,0(t, x) ' g1,0(t, φ(t)).

We consider first the point where φ takes a downward step. We will present the some-
what intricate calculations with some detail.

Lemma 39. Let 2δt ≤ t � T . If u(t− 2δt, φ(t)) = µ(t− 2δt, φ(t)),

u1,0(t− 2δt, φ(t)) ' g1,0(t− 2δt, φ(t)). (38)

Moreover, ∑
y>φ(T−2δt)

P (t, φ(t);T, y))u1,0(T − 2δt, y) ' 0. (39)

Proof. Because u(t, φ(t)) = g(t, φ(t)) and u(t− 2δt, φ(t)) > g(t− 2δt, φ(t)),

u1,0(t− 2δt, φ(t)) < g1,0(t− 2δt, φ(t)). (40)
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To prove that u1,0(t− 2δt, φ(t)) & g1,0(t− 2δt, φ(t)), we note that by (27)

u(t, φ(t))− u(t− 2δt, φ(t)) ≥ Sφ(t− 2δt, φ(t); g − g−2δt,0) (41)

+ST−2δt(t− 2δt, φ(t);u2δt,0 − u).

The first possible hit of the curve φ made by trajectories of the Wiener walk starting at
(t−2δt, φ(t)) is at (t, φ(t), and almost all trajectories will hit φ infinitely close to (t, φ(t).
Then by Proposition 14.1, the first sum of the right-hand side of (41) is nearly equal to
g1,0(t, φ(t)) ' g1,0(t − 2δt, φ(t)). Since u2δt,0(T − 2δt, y) = u(T, y) = g(T, y), the
second sum of (41) amounts to

ST−2δt(t− 2δt, φ(t);u2δt,0 − u)

=
∑

y>φ(T−2δt)

P (t, φ(t);T − 2δt, y))
(g(T, y)− u(T − 2δt, y))

2δt
.

We will prove that this sum is infinitesimal. We start by examining the term at (T, 0). If
u(T − 2δt, 0) = g(T − 2δt, 0),

(g(T, 0)− u(T − 2δt, 0))

2δt
= g1,0(T − 2δt, 0),

which is limited, because g′1(T, 0) is well-defined. Also the left-derivative with respect to
space at (T, 0) is well-defined, so we may use a Taylor-expansion at (T, 0) to obtain

(g(T, 0)− u(T − 2δt, 0)

2δt
(42)

=
g(T, 0)− ( 1

2g(T − δt,−
√
δt) + 1

4g(T, 0) + 1
4g(T, δx))

2δt

=
δt( 1

2g
′
1(T, 0) +�)− 1

2

√
δt(g′2(T, 0) +�) + 1

4δx(g′2(T, 0) +�)

2δt

=
�√
δt
.

Now the probability of transition P (t, φ(t);T − 2δt, 0) is bounded by the probability of a
trajectory of the Wiener walk going from (t, φ(t) to (T − 2δt, 0) without restrictions, i.e.
by b(T − t+ 2δt, φ(t))δx = £δx. Hence in both cases

P (t, φ(t);T − 2δt, 0)
(g(T, 0)− u(T − 2δt, 0)

2δt
' 0.

For y > 0

(g(T, y)− u(T − 2δt, y))

2δt
= u1,0(T − 2δt, y) = u0,2(T, y − δx)

= g0,2(T, y − δx),
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which has at most standard exponential growth. Then (42) and Proposition 13 imply that
ST−2δt(t − 2δt, φ(t);u2δt,0 − u) ' 0. Hence u1,0(t − 2δt, φ(t)) & g1,0(t − 2δt, φ(t)).
Combining with (40), we derive (38).

REMARK. —
Formula (42) shows that in general, the solution is not of class S1 in time close to the
point where the free boundary is infinitely close to the horizon, for if u(T − 2δt, 0) =
µ(T − 2δt, 0), i.e, the free boundary takes two successive downward steps (counting
backward), the discrete derivative (g(T, 0)− u(T − 2δt, 0)/2δt may be unlimited.

Proof of Theorem 38. By (24), at points of the form (t− 2δt, x)

u1,0(t− 2δt, x) = Sφ(t, x; (u−2δt,0)1,0) + ST (t, x; (u−2δt,0)1,0)).

Then u1,0(t− 2δt, x) ' u1,0(t− 2δt, φ(t)) by Lemma 14.1, while u1,0(t− 2δt, φ(t)) '
g1,0(t− 2δt, φ(t)) by Lemma 39. This implies the theorem.

9.3. Non S-derivability in 2nd order of the solution in space
The previous sections showed that the function u is of class S1,1, with the possible

exception of points infinitely close to the horizon. Also, since the function u is of class
Sn for any standard n ∈ N in the continuation region at points which are neither infinitely
close to the horizon, nor the free boundary, in particular it is there of class S1,2. Here we
show that u is not of class S1,2 infinitely close to the free boundary. Intuitively this cannot
be because u satisfies the discrete heat equation in the continuation region, while in the
stopping region g does not.

Theorem 40. The second-order difference quotient u0,2 is not S-continuous at points
(t, φ(t)) with t � T , in particular u0,2(t, φ(t)− 2δx) � u0,2(t, φ(t) + δx).

Proof. Let x ' y ' φ(t) with x+ 2δx ≤ φ(t) < y. By (33) and Theorem 38

g0,2(t, x) � −2g1,0(t, x) ' −2u1,0(t, y) = u0,2(t, y).

This implies the theorem.
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