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ABSTRACT. It has been proven that vaccine can play an important role for eradication of hepatitis B
infection. When the mutant strain of virus appears, it changes all treatments strategies. The current
problem is to find the critical vaccine threshold which can stimulate the immune system for eradicate
the virus, or to find conditions at which mutant strain of the virus can persist in the presence of a CTL
vaccine. In this paper, the dynamical behavior of a new hepatitis B virus model with two strains of
virus and CTL immune responses is studied. We compute the basic reproductive ratio of the model
and show that the dynamic depend of this threshold. After that, we extend the model incorporating
pulse vaccination and we find conditions for eradication of the disease. Our result indicates that if the
vaccine is sufficiently strong, both strains are driven to extinction, assuming perfect adherence.

RÉSUMÉ. Il a été démontré que le vaccin peut jouer un rôle très important dans le processus
d’éradication de l’hépatite B. Lorsque la souche mutante apparait, elle modifie les stratégies de luttes.
Le problème courant est celui de déterminer le seuil vaccinal capable de stimuler le système immuni-
taire pour éliminer le virus, ou de trouver les conditions pour lesquelles la souche mutante persistera
en présence du vaccin. Dans ce travail, nous considérons un nouveau modèle d’hépatite B dans le-
quel nous prenons en compte une souche de virus sauvage et une souche mutante et leur interaction
avec les cellules du système immunitaire. Nous calculons le taux de reproduction de base et montrons
que la dynamique dépend de ce seuil. Une extension de ce modèle est faite afin d’inclure un schéma
impulsionnel de vaccination et de déterminer les conditions pour éliminer la maladie. Nos résultats
montrent que si le vaccin est suffisamment puissant, les deux souches pourront être éliminées.
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1. Introduction
Hepatitis B virus (HBV) infection is a disease of global health. According to the data

of World Health Organization (WHO), approximately 30% of world’s population, i.e.
about 2 billion people have been infected with HBV at some time in their lives. Of these,
about 350 million remain infected chronically and become carriers of the virus. Every
year, there are over 4 million acute clinical cases of HBV, and about 25% of carriers.
Hepatitis B causes about 1 million people to die from chronic active hepatitis, cirrhosis,
or primary liver cancer annually [13].

The rate of chronicity of viral infection is dramatically higher in neonates born from
infected mothers, suggesting that mature immunity is important to clear infection. Pa-
tients with chronic hepatitis B (CHB) are at increased risk of developing severe liver
disease, including cirrhosis and hepatocellular carcinoma (Figure 1) [7, 8]. As HBV is
currently viewed as a non-cytopathic virus, HBV-associated liver damage is thought to be
the consequence of a long lasting cytolytic immune response against infected hepatocytes
[10, 11].

Figure 1: Natural history of HBV infections. HCC, hepatocellular carcinoma; NK, natural
killer cells; NKT, natural killer T cells.

Both innate and adaptive arms of the immune system are generally involved in re-
sponding to viral infection, with innate responses being important for control of viral
replication and dissemination very early after infection, as well as for timely orchestra-
tion of virus-specific adaptive responses [12]. In the case of HBV, it has been clearly
shown that the adaptive response is needed for efficient and persistent control of infec-
tion [10, 11]. However, the role of innate immunity has been more difficult to analyze,
as HBV infection is usually diagnosed several weeks after the onset of infection when

4  -  ARIMA - volume 21 - 2015

ARIMA Journal



viremia is already high; thus the role of innate immunity in defense against HBV remains
controversial.

HBV mutants have recently been identified in patients with acute, fulminant, or chronic
infections. Sequence analysis of virus isolates from many individual patients has revealed
the occurrence of certain mutational hot spots in the genome, some of which appear to
correlate with the patient’s immunological and/or disease status; however, cause and ef-
fect are not always easily discernible [5]. This holds particularly for the issue of whether
virus variants exist that have an increased pathogenic potential; due to the scarcity of ap-
propriate in vivo experiment models, such hypotheses are difficult to prove. Similarly,
because of the compact organization of the HBV genome, almost every single mutation
may have pleiotropic phenotypic effects.

Naturally occurring mutations have been identified in all viral genes and regulatory
elements, most notably in the genes coding for the structural envelope and nucleocapsid
proteins [6]. Mutations in the gene coding for the HBsAg may result in infection or
viral persistence despite the presence of antibodies against HBsAg (anti-HBs). Mutations
in the gene encoding the pre-core/core protein (pre-core stop codon mutant) result in a
loss of HBeAg (HBeAg minus mutant) and seroconversion to antibodies to HBeAg (anti-
HBe) with persistence of HBV replication [5]. Mutations in the core gene may lead
among others to an “immune escape" due to a T cell receptor antagonism [5]. Mutations
in the gene coding for the polymerase/reverse transcriptase can be associated with viral
persistence or resistance to nucleoside analogues [5]. Thus, HBV mutations may affect
the natural course of infection, viral clearance and response to antiviral therapy. The exact
contribution of specific mutations to diagnosis and therapy of HBV infection as well as
patient management in clinical practice remain to be established. In addition, despite the
availability of an effective prophylactic vaccine, further extensive efforts are required to
monitor the emergence of vaccination and therapy-resistant HBV variants and to prevent
their spread in the general population.

Current treatment options for chronic hepatitis B depend on interferon (IFN) α and
direct antivirals, i.e. nucleoside or nucleotide analogues. Although there now are seven
approved therapies for HBV infection (two IFN formulations and five nucleoside ana-
logues) [18, 19]. HBV cannot be cleared by currently available antiviral therapy and
therefore requires long-term antiviral treatment, which is costly, often selects for drug
resistant viral variants and may have long-term side effects [18]. So there is a need for
alternative treatment approaches. For HBV highly effective and safe prophylactic vac-
cines are available. These, however, showed no effect in the setting of chronic infection
[20, 21, 22, 23], indicating the need for a specific therapeutic vaccine design. We here
focus on the options to design and develop a therapeutic hepatitis B vaccine.

Since its widespread introduction in 1983, the hepatitis B vaccine has become an es-
sential part of infant immunization programmes globally, and is the key component of
the global hepatitis B control programme for the World Health Organization (WHO)[1].
Infection with hepatitis B virus (HBV) can cause acute liver disease, as well as chronic
infection that may lead to liver failure or hepatocellular carcinoma. The vaccine has been
particularly important for countries where the incidence of HBV-related hepatocellular
carcinoma is high. In effect, the hepatitis B vaccine was the world’s first anticancer vac-
cine.

Therapeutic vaccines are currently developed for chronic viral infections, such as hu-
man papillomavirus (HPV), human immunodeficiency virus (HIV), herpes virus and hep-
atitis B (HBV) and C (HCV) virus infections. As an alternative to antiviral treatment or
to support only partially effective therapy a therapeutic vaccine shall activate the patient’s
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immune system to fight and finally control or ideally even eliminate the virus. HBV can
be eliminated by the immune system after acute infection or sometimes even when the
immune balance in chronic infection tips. Since shifting this balance towards immune
control is the aim of therapeutic vaccination, those viruses are primary targets for a proof-
of-concept of therapeutic vaccination.

Within-host models are used for different purposes : explanation of observations, to
predict impact of interventions (antimalarial drugs), estimate hidden states or parameters.
Experimental results show that one of the main reasons for CTL response failure is viral
escape from CTLs [2]. Moreover, if escape mutation to the vaccine occurs, then either the
wild type or the mutant can outcompete the other strain [14]. In this paper, we investigate
the effect of viral mutation on the ability of CTLs to control the viral infection when a
post-infection vaccine is administered at regular intervals. The novelty in our model is
that its not only takes into account two strains of virus, but also assumes that a regulatory
negative feedback force, operates to suppress immune population growth at a net rate
proportional to the square of its density. This implies regulation of the response at hight
antigen concentration.

This work is organized as follows. In the next Section, we propose our model. We
analyze the model in Section 3. We extend this model in Section 4 to incorporate pulse
vaccination and to find conditions for eradication of the viruses. We give some numerical
simulations in Sect. 5 to explain our mathematical results. We end this paper with a brief
discussion and conclusion.

2. The model formulation
We begin by introducing the model constructed by Nowak and Bangham [9] when

there is no mutation. This model is given by


ẋ = λ− dxx− βxv,
ẏ1 = βxv − dyy − ρyI,
v̇1 = ky − dvv,

İ = αyI − γI.

(1)

where x is the number of susceptible host cells, y1 is the number of infected cells, v1 is the
number of free virus, and I is the number of CTL cells. All the parameters λ, dx, β, dy ,
ρy , ky , dv , α and γ are positive. dx, dy , dv , and γ are the death rates of uninfected cells,
infected cells, free virus, and CTL cells, respectively. λ represents a constant production
of the target cells. β is the contact rate between uninfected cells and free virus. Infected
cells are removed at rate ρI by CTL immune responses. The virus-specific CTL cells
proliferate at rate αy by contact with infected cells. Free virus is produced from infected
cells at rate ky.

Now we include mutant virus and we use a special function to describe immune re-
sponses. This function assume a regulatory negative feedback force, which operates to
suppress immune population growth at a net rate proportional to the square of its density.
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This implies regulation of the response at hight antigen concentration. So, the model we
consider in this paper is given as follows:

ẋ = λ− dxx− β1v1x− β2v2x,
v̇1 = k1y1 − dvv1,
v̇2 = k2y2 − dvv2,
ẏ1 = (1− ε)β1v1x− ρ1y1I − dyy1,
ẏ2 = εβ1v1x+ β2v2x− ρ2y2I − dyy2,

İ = α(y1 + y2)I + pI − qI2.

(2)

where x is the number of uninfected liver cells, v1 is the number of wild-type virus, v2 is
the number of mutant virus, y1 is the number of liver cells infected with wild-type, y2 is
the number of liver cells infected with mutant strains, and I is the number of CTL cells.
All the parameters λ, dx, β1, β2, k1, dv , ε, k2, dy , α, p, and q are positive. Uninfected liver
cells are produced with constant rate λ and die with rate dx. They are infected with wild-
type and mutant strains respectively at rate β1 and β2. The chance of the novo mutation is
ε. Free virus particles and infected liver cells die at rate dv and dy respectively. Infected
liver cells are also cleared by the body’s defensive CTLs; this happens respectively at
rate ρ1 and ρ2. CTLs reproduced in the presence of infected liver cells at rate α. The
parameter p denotes the proliferation rate of immune cells and q the density-dependent
rate of immune cells suppression. New virus particles are produced at rate k1 by wild-type
virus and k2 by mutant virus respectively.

3. Mathematical analysis of the model
Herein, we present some basic results, such as the positive invariance of model system

(2), the boundedness of solutions, the existence of equilibria and its stability analysis.

3.1. Positivity and boundedness of solutions
The following result guarantees that model system (2) is biologically well behaved and
its dynamics is concentrated on a bounded region of R6

+. More precisely, the following
result holds.

Theorem 3.1. Let R6
+ = {(x, v1, v2, y1, y2, I) ∈ R6 : x ≥ 0, v1 ≥ 0, v2 ≥ 0, y1 ≥

0, y2 ≥ 0, I ≥ 0}. Then, R6
+ is positively invariant under the flow induced by model

system (2). Moreover, the region

∆ =
{
(x, v1, v2, y1, y2, I) ∈ R6 : x+ y1 + y2 ≤ λ

µ
, v1 + v2 ≤ (k1 + k2)λ

µdv
,

p

q
≤ I ≤ pµ+ αλ

µq

}
.

is positively invariant and absorbing with respect to model system (2), where
µ = min{dx, dy}.

Proof. Let µ = min{dx, dy}. No solution of model system (2) with initial conditions
(x(0), v1(0), v2(0), y1(0), y2(0), I(0)) ∈ R6

+ is negative. In fact, for
(x(t), v1(t), v2(t), y1(t), y2(t), I(t)) ∈ R6

+, we have ẋ |x=0= λ > 0, v̇1 |v1=0= k1y1 ≥
0, v̇2 |v2=0= k2y2 ≥ 0, ẏ1 |y1=0= (1− ε)β1v1x ≥ 0, ẏ2 |y2=0= εβ1v1x+ β2v2x ≥ 0,
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İ |I=0= 0 ≥ 0, this immediately implies that all solutions of model system (2) with initial
condition (x(0), v1(0), v2(0), y1(0), y2(0), I(0)) ∈ R6

+ stay in the first quadrant.
For the invariance property of ∆, it suffices to show that the vector field, on the bound-

ary, does not point to the exterior. Adding the first, fourth and fifth and second equations
of model system(2) yields on the boundary of ∆:

d(x+ y1 + y2)

dt

∣∣∣∣
x+y1+y2=

λ
µ

= λ− dxx− dyy1 − dyy2 − (ρ1y1 + ρ2y2)I |x+y1+y2=
λ
µ

≤ (λ− µ(x+ y1 + y2))|x+y1+y2=
λ
µ
= 0

Similarly, we get

d(v1 + v2)

dt

∣∣∣∣
v1+v2=

(k1+k2)λ
µdv

≤ (k1+k2)λ
µ − dv(v1 + v2)

∣∣∣
v1+v2=

(k1+k2)λ
µdv

= 0,

dI

dt

∣∣∣∣
I= p

q

≥ (p− qI) I|I= p
q
= 0 i.e I(t) ≥ p

q , ∀t ≥ 0,

and
dI

dt

∣∣∣∣
I= pµ+αλ

µq

≤
(
αλ

µ
+ p− qI

)
I

∣∣∣∣
I= pµ+αλ

µq

= 0

Therefore, solutions starting in ∆ will remain there for t ≥ 0.
Now, we prove the attractiveness of the trajectories of model system (2). To do so,

from model system (2), one has
d(x+ y1 + y2)

dt
≤ λ − µ(x + y1 + y2). Therefore,

lim sup
t→∞

(x+ y1+ y2)(t) ≤
λ

µ
. Similarly, since

d(v1 + v2)

dt
≤ (k1 + k2)λ

µ
− dv(v1+ v2),

one has lim sup
t→∞

(v1(t)+ v2(t)) ≤
(k1 + k2)λ

µdv
. Concerning the variable I , we have

dI

dt
≤(

αλ

µ
+ p

)
I − qI2 which implies that I(t) ≤ 1

µq
pµ+αλ +

(
1

I(0) −
µq

pµ+αλ

)
e−(p+

αλ
µ )t

.

So, I is bounded and hence, ∆ is attracting, that is, all solutions of model system (2)
eventually enters ∆. This concludes the proof.

3.2. Basic reproduction number and equilibria
The basic reproduction number is defined as the average number of secondary infec-

tions produced by one infected cell during the period of infection when all cells are unin-
fected. This threshold is obtained at the virus free equilibrium. The virus free equilibrium
is obtained by setting v1 = 0 in all equations of model system (2) at the equilibrium.
We obtain that the virus free equilibrium is P1(x

∗, 0, 0, 0, 0, 0, I∗), where x∗ = λ
dx

and
I∗ = p

q . We use the method of van den Driessche[3] to compute the basic reproduction
number. Using the notations of van den Driessche and Watmough[3], for model system
(2), we have

F =


0 0 k1 0
0 0 0 k2

(1− ε)β1x
∗ 0 0 0

εβ1x
∗ β2x

∗ 0 0

 and
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V =


dv 0 0 0
0 dv 0 0
0 0 ρ1I

∗ + dy 0
0 0 0 ρ2I

∗ + dy

 .

Thus, the basic reproduction number is given by:

R0 = max {R01 ; R02} . (3)

where R01 =
k1(1− ε)β1x

∗

dv(dy + ρ1I∗)
and R02 =

k2β2x
∗

dv(dy + ρ2I∗)
. From theorem 2 of Van Den

Driessche[3], we have the following result.

Lemma 3.1. The virus-free equilibrium P1 of the model system (2) is locally asymptoti-
cally stable (LAS) if R0 < 1, and unstable if R0 > 1.

We now study the existence of equilibria of model system (2). Setting the right-hand
sides of model system (2) equals to zero gives

λ− dxx− β1v1x− β2v2x = 0, (4)

k1y1 − dvv1 = 0, (5)

k2y2 − dvv2 = 0, (6)

(1− ε)β1v1x− ρ1y1I − dyy1 = 0. (7)

εβ1v1x+ β2v2x− ρ2y2I − dyy2 = 0, (8)

α(y1 + y2)I + pI − qI2 = 0. (9)

Model system (2) has always equilibrium P1 = (x∗, 0, 0, 0, 0, I∗) which is the virus free
equilibrium and represents the state when the viruses are absent. If R02 > 1, then the
model has one mutant-only equilibrium P̃2(x̃, 0, ṽ2, 0, ỹ2, Ĩ), where x̃ = λdv

dxdv+β2k2ỹ2
,

ṽ2 = k2

dv
ỹ2, Ĩ = p

q +
α
q ỹ2, and ỹ2 is the unique positive solution of the following equation:

ρ2αβ2k2
q

ỹ22 +

(
dyβ2k2 +

ρ2αdxdv + ρ2pβ2k2
q

)
ỹ2 + (1−R02)dxdv(dy + ρ2I

∗) = 0

(10)
In what follows, we study the existence of the third equilibrium P̄ = (x̄, v̄1, v̄2, ȳ1, ȳ2, Ī),
which is obtained when the two virus strains coexist. From equations (4), (5), (6) and (9),
we have

x̄ =
λdv

dxdv + β1k1ȳ1 + β2k2ȳ2
, v̄1 =

k1
dv

ȳ1, v̄2 =
k2
dv

ȳ2, and Ī =
p

q
+
α

q
(y1+y2).

Substituting the above relations in Eqs. (7)−(8),we obtain the following system:
ȳ1 =

dx(1− ε)β1k1x
∗ȳ1

(dxdv + β1k1ȳ1 + β2k2ȳ2)
[
dy + ρ1

(
p
q + α

q (ȳ1 + ȳ2)
)]

ȳ2 =
εdxβ1k1x

∗ȳ1 + β2k2ȳ2x
∗dx

(dxdv + β1k1ȳ1 + β2k2ȳ2)
[
dy + ȳ2ρ2

(
p
q + α

q (ȳ1 + ȳ2)
)] (11)

Solving the above fixed point problem, we obtain the following result:
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Proposition 3.1. If R0 > 1, then the model has a unique endemic equilibrium P̄ =
(x̄, v̄1, v̄2, ȳ1, ȳ2, Ī).

Remark 3.1. 1) The proof of Proposition 3.1 is given in Appendix C.

2) Due to mutation, there is no wild-type-only equilibrium. In fact, when v2 = 0
in (4)-(9), then v1 = 0.

3.3. Stability of equilibria
Here, we analyze the stability of equilibria obtained in the previous section. We have

the following result.

Lemma 3.2. If R01 < 1, then
k1(1− ε)β1x̃

dv(ρ1Ĩ + dy)
< 1.

Proof : If R01 < 1, then k1(1 − ε)β1x
∗ < dv(ρ1I

∗ + dy). since x∗ > x̃ and
I∗ < Ĩ , we have the result. �
Theorem 3.2. Let us consider the model system (2). If R01 < 1 and R02 > 1, then the
mutant-only equilibrium P̃2 exists and is locally asymptotically stable in ∆.

Proof : The characteristic equation of the jacobian matrix evaluated at P̃ is given
by

P (ξ) =

[
ξ2 + ξ(ρ1Ĩ + dy + dv) + dv(ρ1Ĩ + dy)

(
1− k1(1− ε)β1x̃

dv(ρ1Ĩ + dy)

)](
4∑

i=0

aiξ
4−i

)
(12)

where the coefficients a0, a1, a2, a3 and a4 are positive and are given in the appendix A.
The Maple program shows that a1a2a3 > a23 + a21a4. It follows that the stability of P̃2 is
determined by the solution of equation:

ξ2 + ξ(ρ1Ĩ + dy + dv) + dv(ρ1Ĩ + dy)

(
1− k1(1− ε)β1x̃

dv(ρ1Ĩ + dy)

)
= 0. (13)

Since the discriminant is delta = (dv − ρ1Ĩ − dy)
2 + 4k1(1 − ε)β1x̃ > 0, if R01 < 1

then from lemma 3.2, equation (13) has two negative solutions. So, it follows from the
Routh-Hurwitz criterion that if R01 < 1 then P̃2 is locally asymptotically stable. �

Using the Routh-Hurwitz criterion, about the stability of equilibrium P̄ when the two
virus co-exist, we have the following result.

Theorem 3.3. If R0 > 1, there exists one endemic equilibrium P̄ = (x̄, v̄1, v̄2, ȳ1, ȳ2, Ī)
for the model system (2) which is locally asymptotically stable in ∆ if the following con-
ditions holds:

1) ui > 0, i = 2, ..., 6 since u1 > 0,

2) u1u2u3 > u2
3 + u2

1u4,

3) (u1u4 − u5)(u1u2u3 − u2
3 − u2

1u4) > u5(u1u2 − u3)
2 + u1u

2
5,

4) u5(u1u2u3u4+2u2
1u2u6+u1u4u5+u1u5u4+u2u3u5)+u3u6(u

2
1u4+u3) >

u5(3u1u3u6 + u2
1u

2
4 + u1u

2
2u5 + u2

3u4 + u2
5) + u1u6(u2u

2
3 + u2

1u6).
where ui, i = 1, ..., 6 are given in Appendix D.
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4. The model with pulse vaccination
In this section, we consider the previous model and we extend that model by incor-

porating pulse vaccination. We suppose that at fixed vaccination times tk, k = 1, 2, ...
vaccination increases CTL cells by a fixed amount Î which is proportional to the total
number of CTLs the vaccine stimulates. This hypothesis is make to determine the critical
vaccine threshold for eradication of the virus or to find conditions at which mutant strain
of the virus can persist in the presence of a CTL vaccine. For t ̸= tk, the model is

ẋ = λ− dxx− β1v1x− β2v2x,
v̇1 = k1y1 − dvv1,
v̇2 = k2y2 − dvv2,
ẏ1 = (1− ε)β1v1x− ρ1y1I − dyy1,
ẏ2 = εβ1v1x+ β2v2x− ρ2y2I − dyy2,

İ = α(y1 + y2)I + pI − qI2,

(14)

and for t = tk,
∆I ≡ I(t+k )− I(t−k ) = Î (15)

where I(t−k ) is the CTL concentration immediately before the impulse and I(t+k ) is the
CTL concentration immediately after the impulse.

4.1. Impulsive orbit and local stability
Because of the impulsive effect in I, there are no classical equilibria for System (14).

In this case, we have the impulse orbit which are obtained when ẋ = ẏ1 = ẏ2 = v̇1 =
ẏ2 = 0 and I ̸= 0. Let r1 = ρ1I + dy and r2 = ρ2I + dy . We obtain the disease-free

orbit P̂0 =
(

λ
dx
, 0, 0, 0, 0

)
, the mutant-only orbit P̂1 = (x̂, 0, v̂2, 0, ŷ2), where x̂ = r2dv

β2k2
,

v̂2 = λβ2k2−dxr2dv

β2r2dv
, ŷ2 = λβ2k2−dxr2dv

β2r2k2
. Due to mutation, there is no wild-type only

orbit. For both strains of the virus to be eradicated, the disease-free orbit must be locally
stable. If both the disease-free and mutant-only orbits are locally unstable, then the two
virus strains will coexist in the presence of the vaccine.

Definition 4.1. Let I∗1 be the value of I such that dxdvr1 = (1 − ε)β1k1λ. That is
I∗1 =

(1−ε)β1k1λ−dxdvdy

dxdvρ1
. Let I∗2 be the value of I such that dxdvr2 = β2k2λ. That is

I∗2 =
β2k2λ−dxdvdy

dxdvρ2
. Finally, let I∗3 be the value of I such that (1− ε)β1k1r2 = β2k2r1.

That is I∗3 =
(1−ε)β1k1dy−β2k2dy

β2k2ρ1−(1−ε)β1k1ρ2
. The value I∗1 determines the long-term behavior of the

wild-type strain, while I∗2 determines the long-term behavior of the mutant strain. The
parameter I∗3 can take any sign and is critical in the analysis of the competition between
the two virus strains.

Lemma 4.1. Either I∗1 = I∗2 = I∗3 or I∗3 > I∗1 > I∗2 or I∗2 > I∗1 > I∗3 .

Remark 4.1. The proof of the previous lemma is given in the appendix B.

About the local stability of the disease free orbit and mutant-only orbit, we have the
following result:

Theorem 4.2. The disease-free orbit is locally stable if and only if I > I∗1 and I > I∗2 .
The mutant-only orbit is locally stable if and only if I∗3 < I < I∗2 .

Mathematical analysis of the effect of a pulse vaccination to an HBV mutation model  -  11

ARIMA Journal



Proof : The characteristic polynomial of the jacobian matrix at the disease-free P̂0

orbit is given by

P (ζ) = (−dx − ζ)
(
ζ2 + (dv + r1)ζ + dvr1 − r1(1− ε)β1

λ
dx

)
×(

ζ2 + (dv + r2)ζ + dvr2 − k2β2
λ
dx

)
.

(16)

At the disease free orbit, −dx is an eigenvalue which is negative. From equation (16),
the equilibrium P̂ is locally asymptotically stable if dvr1 − r1(1 − ε)β1

λ
dx

> 0 and
dvr2 − k2β2

λ
dx

> 0; i.e I > I∗1 and I > I∗2 .
The characteristic polynomial of the jacobian matrix at the mutant-only orbit P̂1 is

given by:

Q(ζ) = −
(
ζ2 + (dv + r1)ζ + dvr1 − k1(1− ε)β1

r2dv
β2k2

)(
ζ3+b1ζ

2+b2ζ+b3

)
(17)

where b1 = r2 + dv + λβ2k2

r2dv
, b2 = (r2 + dv)

λβ2k2

r2dv
and b3 = λβ2k2 − dxr2dv . Since

b1 > 0 and b1b2 > b3, from the Routh-Hurwitz criterion, the equilibrium P̂1 is locally
asymptotically stable if only if dvr1 − k1(1 − ε)β1

r2dv

β2k2
> 0 and b3 > 0. These lead to

I > I∗3 and I < I∗2 ; that is I∗3 < I < I∗2 . �

Remark 4.2. 1) By Lemma 4.1, for stability of mutant only orbit, either I∗3 <
I∗1 < I < I∗2 or I∗3 < I < I∗1 < I∗2 .

2) The condition for eradication of the both strains of the virus is I > I∗1 and
I > I∗2 . So, it is important for the vaccine to be strong enough to guarantee I > I∗1 and
I > I∗2 . Moreover, if I∗2 > I∗1 and if the vaccine is such that I∗3 < I < I∗2 , then the mutant
strain may become dominant. The both strains coexist when 0 ≤ I < I∗3 < I∗1 < I∗2 . The
coexistence both strains can also exists when 0 < I < I∗3 < I∗1 < I∗2 or I2 < I < I1 <
I∗3 .

This remark is summarized in Figure 2.

4.2. Perfect adherence of vaccine
We have established in the previous section, the critical level of CTLs necessary to

control the virus. Here, we determine the maximal time between the vaccinations, de-
pending on the vaccine strength, to ensure that the CTL amount always exceeds the de-
sired level. Establishing this maximal time frame allows us to recommend a CTL vaccine
treatment.

The vaccination is operate at time tk and I(t+k ) ( is the CTL concentration immediately
after the impulse. From the impulsive differential equation for I , we have: İ = α(y1 +
y2)I + pI − qI2 > pI − qI2 as y1 and y2 are positive. So, we obtain

I(t) > 1

p
q+

(
1

I(t
+
k

)
− p

q

)
e−p(t−tk)

for tk < t < tk+1.

Let us suppose that vaccination is successful (y1 and y2 are very small) and let us consider
the following approximaltion of I(t):

I(t) = 1

p
q+

(
1

I(t
+
k

)
− p

q

)
e−p(t−tk)

for tk < t < tk+1.
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(a)

(b)

Figure 2: Regions of stability of impulsive orbits. When I∗2 < I∗1 , if I > I∗1 , the disease-free
orbit becomes stable and the mutant cannot survive on its own (see Fig. 2 (a)). Conversely,
if I < I∗1 , both strains coexist. If I∗2 > I∗1 The disease-free orbit is stable if I > I∗2 and
unstable otherwise. When I∗3 < I < I∗2 , the mutant survives on its own, while if 0 ≤ I < I∗3 ,
both strains coexist.

Let us suppose that I(0)) = 0 and the vaccine is taken at regular intervals with length τ .
Then, we have
I(t+1 ) = Î , I(t−2 ) =

pÎ

qÎ+(p−qÎ)e−pτ
, I(t+2 ) =

(p+q)Î+Î(p−qÎ)e−pτ

qÎ+(p−qÎ)e−pτ
, .... We will show

numerically that trajectories converge to an impulsive periodic orbit.

5. Numerical simulation
In this section, we use numerical simulations to illustrate the results. The parameter

values are taken as: λ = 252666.6667, dx = 0.0039, β1 = 7 × 10−5, β2 = 7 × 10−5;
k1 = 100; dv = 0.021; k2 = 100, ε = 3 × 10−5, dy = 0.0693, ρ1 = 0.03, ρ2 = 0.042,
α = 0.03, p = 0.5, q = 0.03 and Î = 50 (these data based on [4, 15, 16], others values
are assumed) in the following simulations except as noted in the figures.

Firstly, Fig. 3(a) illustrates that under regular vaccinations, the CTL count oscillates
in an impulsive periodic orbit. If the vaccine is sufficiently strong, both strains are driven
to extinction, assuming perfect adherence (see Fig. 3.(b)). In this figure we have also
increase the value of dv . So, if the vaccine can reduce the life span of viruses, the two
strains can be eradicated.

Fig. 4(a) show that the mutant and wild type can coexist if vaccination is low, but
nonzero, and if we increase the time life of virus. Both values approach a stable orbit.
When I∗3 < I∗2 , the mutant persists at high levels, while the wild type is driven to extinc-
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Figure 3: When the vaccine is taken every ten days, stimulating 50 cells/1L, CTL cells con-
verge to an impulse periodic orbit (Fig 3.(a)); if the vaccination frequency is increased, then
we have eradication of both strains (Fig 3.(b)).

tion if vaccination is low or zero. The mutant go to an impulsive orbit (see Fig. 4 b). In
this case, the disease-free orbit is also unstable.

From Figure 5. (a), we observe that when the immune system is against only infected
cells y1, it has an important effect on wild strain virus v1. In this case, the behavior of
v1 is the same as if the immune system is against the two strains. The result is similar
when immune system reacts against y2 because its has an important effect on mutant
virus v2 (see Fig. 5. (b)). So, if the immune system reacts only against y1, he does not
affect v2; and if the immune system is only against y2, he does not affect v1. From these
observations, we can conclude that it is important that the immune system reacts against
the both two population.

6. Conclusion
In this paper we analyse the pulse vaccination strategy in a new HBV within-host

model with with cell-mediated immunity and two strains virus. We first examined the
model when there is no pulse vaccine. We have analyzed the existence and the local
stability of equilibria. Our analysis shows that the basic reproductive ratio satisfies a
threshold property with threshold value 1. After introduction of pulse vaccine in our
model, we find that a CTL vaccine can theoretically eradicate both the wild-type and
resistant strains of the virus, if taken with sufficient frequency, at regular intervals and if
the vaccine can reduce the life span of the virus.

We have proved that there exist three critical values of I which are I∗1 , I∗2 and I∗3 .
When I∗2 < I∗1 , if I > I∗1 , the disease-free orbit becomes stable and the mutant cannot
survive on its own. Conversely, if I < I∗1 , both strains coexist. If I∗2 > I∗1 The disease-
free orbit is stable if I > I∗2 and unstable otherwise. So, If the vaccine is sufficiently
strong, both strains are driven to extinction, assuming perfect adherence. Imperfect adher-
ence may allow the mutant to persist at low, but nonnegligible levels. When I∗3 < I < I∗2 ,
the mutant survives on its own, while if 0 ≤ I < I∗3 , both strains coexist.

In a future project, we shall combine the model (2) with clinical data of drug therapy
to study the dynamical behavior of hepatitis B virus with the two strains virus and we
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Figure 4: 0 ≤ I < I∗3 , dv = 0.00021 and the two populations coexist (Fig.4 (a)). The mutant
exists at high levels (approximately 2.7×106 virions/1L), but the wild type is eradicated. This
one is obtained when I∗3 < I∗2 (Fig.4.(b)).

shall also consider the role of time delay of CTL cells responses in the model. This work
will be helpful to study the treatment protocols.
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(b). The two strains population exist. The target of immune response strongly influences the
outcome of infection in HBV model with two strains.
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Appendix A : Coefficients of the characteristic polynomial at P̃

a4 = (dx + β2v2)[dvqĨdy + qĨk2β2x̃+ ρ2dvpĨ] + β2
2 ṽ2x̃k2qĨ

a3 = (dx + β2v2)[(ρ2Ĩ + dy + qĨ)dv + qĨdy + k2β2x̃+ ρ2pĨ]

+ dvqĨdy + qĨk2β2x̃+ ρ2dvpĨ + β2
2 ṽ2x̃k2

a2 = (dx + β2v2)(dv + ρ2Ĩ + dy + qĨ) + dv(ρ2Ĩ + dy + qĨ) + qĨdy + k2β2x̃

+ ρ2pĨ

a1 = dx + dv + dy + β2v2 + (ρ2 + q)Ĩ
a0 = 1

Appendix B : Proof of lemma 4.1.
Proof : Case 1: Suppose that I∗1 = I∗2 = I . Since λ

dxdv
= r1

(1−ε)β1k1
and λ

dxdv
= r2

k2β2
,

we obtain r1
(1−ε)β1k1

= r2
k2β2

⇒ r2(1− ε)β1k1 = r1β2k2 ⇒ I = I∗3 .

Case 2: Let us suppose that I∗1 > I∗2 . Set I = I∗2 then I < I∗1 ⇔ r1 < (1−ε)β1k1λ
dxdv

⇔
I < I∗3 . Hence I∗3 > I2∗. By the same method, we establish that I∗3 > I∗2 . The case 3 is
obtained by the same method as in case 2. �

Appendix C : Proof of Proposition 3.1.
We use a theorem for the existence and uniqueness of a positive fixed point of a multi-

variable function. We labeled this theorem as follows.

Theorem 7.1. (Thieme [17], theorem 2.1) Let F (x) be a continuous, monotone non-
decreasing, strictly sub linear, bounded function which maps the non-negative orthant
Rn

+ = [0,+∞) into itself. Let F (0) = 0 and F ′(0) exists and be irreducible. Then F (x)
does not have a non-trivial fixed point on the boundary of Rn

+. Moreover, F (x) has a
positive fixed point iff ρ(F ′(0)) > 1. If there is a positive fixed point, then it is unique.

Let us show that the system (11) has a positive solution. (11) can be written as:
Y = F (Y ) where Y = (ȳ1, ȳ2)

T and

F =


dx(1− ε)β1k1x

∗

(dxdv + β1k1ȳ1 + β2k2ȳ2)
[
dy + ρ1

(
p
q + α

q (ȳ1 + ȳ2)
)]

εdxβ1k1x
∗ȳ1 + β2k2ȳ2x

∗dx

(dxdv + β1k1ȳ1 + β2k2ȳ2)
[
dy + ȳ2ρ2

(
p
q + α

q (ȳ1 + ȳ2)
)]

 ,
(

F1(Y )
F2(Y )

)

We have F1(Y ) ≤ dx(1− ε)β1k1x
∗ȳ1

(dxdv + β1k1ȳ1)
(
dy + ρ1

p
q

) ≤ M1 and

F2(Y ) ≤ εdxβ1k1x
∗ȳ1

(dxdv + β1k1ȳ1)
(
dy + ρ2

p
q

) +
β2k2ȳ2x

∗dx

(dxdv + β2k2ȳ2)
(
dy + ρ2

p
q

) ≤ M2.

In this case, F (Y ) is continuous, bounded function which maps

Γ = {(y1, y2) : 0 < y1 < M1, 0 < y2 < M2}
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It is easy to find that F (Y ) is infinitely differentiable and is a monotone nondecreasing
function. Moreover, F (0, 0) = (0, 0) and

F ′(0, 0) =


R01 0

εβ1k1x
∗

dv(dy + ρ2I∗)
R02



Hence ρ(F ′(0, 0)) = max{R01,R02} = R0 > 1. Thanks to the graph theory, we
claim that F ′(0, 0) is irreducible because the associated graph of the matrix is strongly
connected.

Let us now prove that F is strictly sub linear in Γ, i.e., F (rY ) > rF (Y ), for any
Y ∈ Γ. with Y > 0, and r ∈ (0; 1). Some calculations give

r1F1(Y )

F1(r1Y )
=

(dxdv + r1β1k1ȳ1 + r1β2k2ȳ2)
[
dy + ρ1

(
p
q + r1

α
q (ȳ1 + ȳ2)

)]
(dxdv + β1k1ȳ1 + β2k2ȳ2)

[
dy + ρ1

(
p
q + α

q (ȳ1 + ȳ2)
)] < 1,

r2F2(Y )

F2(r2Y )
=

(dxdv + r2β1k1ȳ1 + r2β2k2ȳ2)
[
dy + ρ2

(
p
q + r2

α
q (ȳ1 + ȳ2)

)]
(dxdv + β1k1ȳ1 + β2k2ȳ2)

[
dy + ρ2

(
p
q + α

q (ȳ1 + ȳ2)
)] < 1

So the function F (Y ) is strictly sub linear with r = min(r1; r2). This ends the proof of
Proposition 3.1.

Appendix D : Coefficients ui (i = 1, ..., 6) of the characteristic
polynomial at P̄

The characteristic polynomial at P̄ is given by

Q(λ) = λ6 + u1λ
5 + u2λ

4 + u3λ
3 + u4λ

2 + u5λ+ u6
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where:

u1 = qĪ + ρ1Ī + ρ2Ī + 2dy + dx + β1v̄1 + β2v̄2 + 2dv,
u2 = −k2β2x̄+ qĪ(ρ1Ī + ρ1Ī + 2dy) + (ρ1Ī + dy)(ρ2Ī + dy) + αĪ(ρ1ȳ1 + ρ2ȳ2)

+ (dx + β1v̄1 + β2v̄2 + 2dv)(qĪ + ρ1Ī + ρ2Ī + 2dy) + 2dv(dx + β1v̄1 + β2v̄2)
+ d2v,

u3 = k2β2x̄(εβ1v̄1 − ρ1Ī − dy − dx − β1v̄1 − qĪ − dv) + β1k1(1− ε)x̄(v̄1β1 + 1)
− qĪ(ρ1Ī + dy)(ρ2Ī + dy) + αρ1ȳ1Ī(ρ2Ī + dy)
+ (dx + β1v̄1 + β2v̄2 + 2dv)

[
qĪ(ρ1Ī + ρ2Ī + 2dy) + (ρ1Ī + dy)(ρ2Ī + dy)

+ αĪρ2ȳ2(ρ1Ī + dy) + αĪ(ρ1ȳ1 + ρ2ȳ2)
]
+ d2v(dx + β1v̄1 + β2v̄2)

+ dv(qĪ + ρ1Ī + ρ2Ī + 2dy)
[
dv + 2(dx + β1v̄1 + β2v̄2)

]
u4 = k2β2x̄(εβ1v̄1 + β2v̄2)(ρ1Ī + dy + dv + qĪ)

− k2β2x̄
[
αĪρ1ȳ1 + qĪ(ρ1Ī + dy) + (dx + β1v̄1 + β2v̄2 + dv)(ρ1Ī + dy + qĪ)

+ adv
]
− (dx + β1v̄1 + β2v̄2 + 2dv)

[
qĪ(ρ1Ī + dy)(ρ2Ī + dy)− αĪρ1ȳ1(ρ2Ī + dy)

− αĪρ2ȳ2(ρ1Ī + dy)
]
+ β2

1(1− ε)v̄1k1x̄(dv + ρ2Ī + dy + qĪ)
+ dv(2dx + 2β1v̄1 + 2β2v̄2 + dv)

[
qĪ(ρ1Ī + ρ2Ī + 2dy) + (ρ1Ī + dy)(ρ2Ī + dy)

+ αĪ(ρ1ȳ1 + ρ2ȳ2)
]
+ d2v(dx + β1v̄1 + β2v̄2)(ρ1Ī + ρ1Ī + 2dy + qĪ)

+ k1(1− ε)β1x̄(dv + ρ2Ī + dy + qĪ)
u5 = −β1k1x̄(εβ1v1 + β2v2)

[
ρ1y1αĪ + k2(1− ε)x̄β2

]
+ k2β2x̄(εβ1v1 + β2v2)

[
αĪρ1ȳ1 + qĪ(ρ1Ī + dy) + dv(qĪ + ρ1Ī + dy)

+ εβ1k1ρ1αx̄ȳ1
]
+ β1k1x̄(1− ε)(β1v1 + 1)[dv(ρ2Ī + dy) + qĪ(dv + ρ2Ī + dy)

− k2β2x̄+ ρ2αĪȳ2]− k2β2x̄[(dv + dx + β1v̄1 + β2v̄2)(ρ1ĪqĪ + dyqĪ + αIρ1y1)
+ dv(dx + β1v̄1 + β2v̄2)(ρ1Ī + dy + qĪ)]
+ dv(dx + β1v̄1 + β2v̄2)[qĪ(ρ1Ī + ρ2Ī + 2dy) + (ρ1Ī + dy)(ρ2Ī + dy)
+ αĪ(ρ1ȳ1 + ρ2ȳ2)]− dv(dv + 2dx + 2β1v̄1 + 2β2v̄2)[qĪ(ρ1Ī + dy)(ρ2Ī + dy)
− αĪρ1ȳ1(ρ2Ī + dy)− αĪρ2ȳ2(ρ1Ī + dy)] + k2(1− ε)β1β2v̄1x̄(k1εβ1x̄− ρ2αĪȳ2)

u6 = β1x̄Īk1(εβ1v̄1 + β2v̄2)
[
qk2x̄(1− ε)β2 + ȳ1ρ1αdv

]
+ k2(1− ε)β1v̄1β2x̄(k1εβ1x̄qĪ − ρ2y2αĪdv) + εβ1k1dvρ1y1αĪx̄
− β2

1(1− ε)v̄1x̄k1
[
− qĪdv(ρ2Ī + dy) + k2β2x̄qĪ − ρ2ȳ2αĪdv

]
− k1(1− ε)β1x̄

[
− qĪdv(ρ2Ī + dy) + k2β2x̄qĪ − αρ2ȳ2Īdv

]
− k2β2x̄dv(dx + β1v̄1 + β2v̄2)

[
(ρ1Ī + dy)qĪ + αĪρ1ȳ1

]
− d2v(dx + β1v̄1 + β2v̄2)

[
qĪ(ρ1Ī + dy)(ρ2Ī + dy)− αĪρ1ȳ1(ρ2Ī + dy)

− αĪρ2y2(ρ1Ī + dy)
]
+ k2β2x̄vv(εβ1v̄1 + β2v̄2)

[
qĪ(ρ1Ī + dy) + αĪρ1ȳ1

]
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