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ABSTRACT. Epidemiology had an important development these last years allowing the resolution of
a large number of problems and had good prediction on disease evolution. However, the transmission
of several vector-borne diseases is closely connected to environmental protagonists, specially in the
parasite-host interaction. Moreover, understanding the disease transmission is related to studying
the ecology of all protagonists. These two levels of complexity(epidemiology and ecology) cannot be
separated and have to be studied as a whole in a systematic way. Our goal is to understand the
interaction of climate change on the evolution of a disease when the vector has ecological niche that
depends on physiological state of development. We are particularly interested in tick vector diseases
which are serious health problem affecting humans as well as domestic animals in many parts of the
world. These infections are transmitted through a bite of an infected tick, and it appears that most of
these infections are widely present in some wildlife species.

RÉSUMÉ. L’épidémiologie a connu un développement important ces dernières années. Cette disci-
pline a permis une meilleure compréhension de l’évolution de maladies. Cependant, plusieurs mala-
dies à transmission vectorielle sont étroitement liées aux protagonistes environnementaux. Ce constat
est particulièrement vrai dans le contexte des interactions du parasite avec son hôte. De plus, com-
prendre la transmission de maladie est lié à l’étude de l’écologie de tous les protagonistes. Notre
objectif est de comprendre l’influence du changement climatique sur l’évolution des maladies lorsque
la niche écologique du vecteur dépend de l’état de développement physiologique de son hôte. Nous
sommes particulièrement intéressés par les maladies vectorielles à tiques qui constituent un grave
problème de santé touchant l’être humain et les animaux domestiques dans de nombreuses régions
du monde. Ces infections sont généralement transmises par la piqûre d’une tique infectée et il appa-
raît que la plupart de ces infections sont largement présentées dans certaines espèces fauniques.
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1. Introduction
Tick-borne diseases (theileriosis, rickettsiosis, Lyme disease, Ehrlichiosis, relapsing

fever, TBE(tick-borne encephalitis)) are serious health problem affecting humans as well
as domestic animals in many parts of the world. These infections are generally transmitted
through a bite of an infected tick, and it appears that most of these infections are widely
present in some wildlife species; hence, an understanding of tick population dynamics
and its interaction with hosts is essential to understand and control such diseases [6]. For
example, the vector of tropical theileriosis in North Africa, the tick Hyalomma detritum,
has seasonal activity, while Hyalomma anatolicum is active throughout the year in several
parts of Africa and Asia leading to animals being challenged with infection all over the
year, this provides a solid immunity during the year contrasting with a very high infection
leading to possible endemic stability.

The object of the present work is to develop a tick-borne biology model specific to
Hyalomma detritum species in Tunisia. The model will be fitted to field data that have
been previously gathered from several Tunisian farms [1].

Our ultimate goal in this paper is to construct models in order to study :
– Epidemiology: The effect of climate change on the evolution of tick-borne diseases

particularly Theileriosis.
– Ecological question: What is the most important fact of tick life cycle regulation:

Seasonality vs food.
– Control result: The effect of different control actions on tick population.

In order to achieve our goal, we need to solve the two following steps:
1) Modeling the tick life cycle, taking account of temperature fluctuation and sea-

sonality: In this part our objective is to model tick life cycle in order to study the effect of
temperature and seasonality on density of the ticks. The model used here will be a partial
differentiable equation. The model will be tested using the data from [12] that have been
previously gathered from several Tunisian farms [1]. This model will be the foundation
of the late epidemiological model.

2) Integration the preceding model of tick life cycle into an epidemiological model:
- Tick: SI model and host: SIR model.
Our work is organized as follows: in the next section, we describe the biology of tick

population and present the epidemiological interactions between ticks and their hosts. In
section three, we describe both the tick life cycle and its mathematical models; introduce
the model which represents the host-parasite epidemiological interaction. Section four is
devoted to the conclusion and recommendation.

2. Biological Model
Several field observations on tick biology show a huge polymorphism in their biology

(prolificity, mortality, phenology). This polymorphism is enhanced during the parasitic
stages of the tick (during feeding stages) because of the interaction between the tick and
the host (immunity of the host, surface of exposure, biology of the host). This degree
of interaction is again more complicated when the tick-borne infections are considered.
Describing this biology of the tick is possible by monitoring infested animals and questing
instars and presenting the observations as descriptive results. Nevertheless, understanding
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and predicting the mechanisms leading to a determined phenology is quite impossible.
Moreover, the prediction of the impact of different control actions is difficult. Modeling
represents a powerful tool offering the opportunity to counter account these difficulties. It
is possible to model in silico both tick dynamic and the impact of different control options
before implementing them, offering then a dramatic decrease of the control costs.

Mathematical modeling represents a powerful tool offering the opportunity to avoid
these difficulties. Indeed, it is possible to model in silico both tick-host and epidemio-
logical interactions in order to investigate and understand climate change on disease evo-
lution. Moreover, modeling offer tools to test impact of different control options before
implementing them, offering then a dramatic decrease of the control costs.

2.1. Effect of vector life cycle on disease transmission
The tick life cycle includes three post-embryonic developmental stages: larva, nymph

and adult. Each stage can be subdivided in turn according to the activity phases: ’quest-
ing’, in which the unfed tick seeks a host and ’feeding’, in which the attached tick feeds,
becomes engorged and drops off. After dropping off their hosts, the cattle, ticks go
through a period of development, after which they emerge as questing ticks at the next
stage (or eggs hatch, if the feeding ticks are adult females). The transition from one
stage to an other depends closely on the successful questing period that depends on host
density. Moreover, the physiological development depends on temperature fluctuations .
These two phenomenons are strictly connected to climate change. Indeed, on one hand,
it is evident that temperature fluctuation depends on the climate change and on the other
hand cattle populations are strictly connected to the agricultural habit which depends on
environment.

A variety of approaches have been used to model the tick population with various
degrees of complexity. Models often describe in a discrete way the various stages of tick
development from egg-larvae-nymph-adult, whether the ticks are attached to hosts, and if
disease is part of the model, whether the ticks themselves are infected [15], [16].

Therefore, we propose in this paper two kind of models. The first model is a system
of ordinary differential equations with delay where physiological structure is described
in a discrete form. This time delay cannot be ignored because the development of the
ticks between stages takes time. Moreover, the time delay depends on the weather and
climate situation. For this first model our aim is to model tick life cycle in order to study
the effect of temperature and seasonality on ticks density. For the second model, the
transition from one physiological stage to an other is considered as a continuous process.
In this case, we propose to build a PDE model where tick population density satisfies
the McKendrick-Von Foerster model with or without blood meal as a limiting factor. All
models constructed will be tested using the data from [12], data that have been previously
gathered from several Tunisian farms [1] and several data from laboratory colonies. These
models will be the foundation of the previous epidemiological model.

2.2. Host - Tick epidemiological interaction
The infection transmission is incorporated into models by adding more states to record

the infected status of the ticks and hosts. Typically a mass action law assumption is
adopted by the rate of new infections which is directly proportional to the product of
susceptible hosts and infectious ticks. However, if larval and nymphs bites are statistically
independent, then such clustering would tend to reduce tick and host infection prevalence.
In this sense, as positive co-variance of larval and nymphal bites would tend to increase
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infection prevalence, as larval bites would be clustered on the host individuals most likely
to be infected and infective. An alternative approach to explicitly modeling the host and
tick populations was provided by [4] who instead consider the life cycle of the Theileria
parva parasite as it progresses through the vertebrate and tick hosts and estimates the
time in days (from infection) of disease characteristics in cattle considering challenges
from different numbers of infective ticks. It is often assumed that infected ticks behave
in the same way as uninfected ones with the mortality of ticks being independent of their
infection status. Although as has been seen a pathogen may have a negative impact on
the tick in the same manner as a host. Generally models do not consider non-systemic
infection (see above) although in a study by [16] this possibility was introduced. However
trans-ovarian infection is usually excluded due to the lack of evidence for this in the
literature. Reservoir decay or host turnover might enhance positive feedback of infection
transmission, for example an increasing prevalence of infected nymphs would increase the
frequency at which hosts are re-infected, keeping hosts in a state of high specific infective
with a greater probability of infecting the next generation of ticks.

Infection is a one-way through the tick vectors, larvae/nymphae can transmit (trans-
stadially) to the hosts of the adults they become, and adults can transmit (trans-ovally) to
hosts of the larvae/nymphae that they become.There are two basic frameworks: those who
treat the tick density as a parameter, and those who include the processes determining the
density of ticks.

3. Implementation of models

3.1. Tick life cycle models
A structured population model is a summary of rules specifying how the number and

distribution of individuals within a population changes over time [17]. Most structured
population models fall into one of three categories: matrix models, ordinary differential
equation (ODE) models, and partial differential equation (PDE) models. In this classifica-
tion, model type is determined by whether time is discrete (matrix) or continuous (ODE,
PDE), and whether the individual-level state is treated as a discrete (matrix, ODE) or a
continuous (PDE) variable.

Matrix projection models are popular, because they have relatively simple structure
and provide useful information. The eigenvalues and eigenvectors of the projection ma-
trix provide estimates of the population growth rate, the stable age or stage distribution,
reproductive value, and the sensitivities of population growth rate to changes in life his-
tory parameters [2]. However, whenever a matrix projection or ODE model is applied to
population characterized by a continuous state variable (e.g., age, mass, or physiological
stage), individuals must be divided into a discrete set of classes.

In partial differential equation models, the individual-level state variables are contin-
uous, and individuals are not lumped into categories. Like the matrix models, PDE mod-
els can incorporate a variety of biological situations, including density dependence, and
stage- or age-structured populations [7], that’s why the basic model structure is the same
in all cases. Furthermore, tick population dynamics can be expressed by the McKendrick-
Von Foerster equation which is based on partial differential equations (PDE).

As we announced previously, our first objective is to construct a physiological stage
dependent PDE model for the tick population dynamics. This model will be in order to fit
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to field data from Tunisia that have been previously gathered from several Tunisian farms
and several data from laboratory colonies.

As a second step we will investigate the effects of climate on geographic range and
seasonality of the tick and compare our results with the ones in [9].

3.2. Parameter definition
We denote by s the tick physiological parameter and t the time parameter and sup-

pose that host populations are fixed at given densities H . To understand the relationship
between our PDE model and classical ODE model: we use a physiological parameters
s and interstadal development rate, g and let us define smaxegg , smaxlarvae, s

max
nymph,smaxadult, the

maximum length in the eggs, larvae, nymph and adult class.
To properly model the tick population the rates of tick mortality, reproduction rate

(egg-laying) K, and interstadal development rate, g, must be obtained, while to prevent
the tick population exponentially increasing issues regarding density dependence should
be addressed.

3.3. Mathematical Models
We describe here the mathematical models that we propose to study.

3.3.1. Model 1
The functional equation considered in this model is derived from a physiological-

structured model for a population divided into several stages in which individuals change
their stage when a certain magnitude reaches a predetermined threshold value. This means
that the physiological parameter s of passing from one stage to the next is time-dependent,
giving rise to a moving boundary. More details can be found in [10].

To illustrate the ideas underlying the model, consider a population divided into two
stages, larvae (l) and adults (L), each one being structured by the age in the stage.

Denote by l(s, t) the density of larvae, n(s, t) the density of nymph and a(s, t) the
density of adult at time t and in physiological state s. Capitals, L, N and A, denote the
total population of larvae, nymph and adult respectively at time t.

3.3.1.1. Transition from larvae to nymph stage

Let us describe the passage through the larvae stage. We assume that the larvae turn
adult when some variable reaches a prescribed value. For example, in [10] the passage to
(n) is described in terms of a blood meal which can be measured by weight function of
larvae wl(s, t) representing the quantity of blood eaten until time t by an individual until
reaches stage s. Larvae turn nymph when the food index reaches a prescribed value Ql >
0. We also assume that there is a finite maximum age smaxlarvae > 0 for individuals in the
larval stage: individuals which have not acquired the amount Q of food past smaxlarvae > 0
will die or never reach the nymph stage.

In the model considered in [10], the weight function of larvae depends on the total
population of larvae, so that:

wl(s, t) :=

∫ t

t−a

Kl

L(σ) + Jl
dσ; L(t) :=

∫ smax
larvae

0

l(s, t) ds (1)

which means that the quantity of food available is shared in equal parts by all the
individuals occupying the same space at time t. Kl > 0 is the quantity of food entering the
species habitat per unit of volume and per unit of time, which for simplicity is considered
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to be constant. The constant J > 0 represents the food (converted into a number of
individuals) taken per unit of volume by consumers other than larvae.

Then, the age of passage to the (l) stage, denoted by s∗l (t), is defined by the threshold
condition:

wl(s, t) = Q (2)

so that

s∗l (t) =

{
s(t) solution to (2), if it exists and satisfies 0 ≤ s(t) ≤ smaxlarvae,
smaxlarva otherwise.

Bearing in mind the above considerations, the density of larvae l(s, t) satisfies the follow-
ing model:

∂l

∂t
(s, t) +

∂

∂s
(gl(s, t)l(s, t)) = −µl(s)l(s, t), 0 < s < s∗l (t), t > 0,

l(s, t) = 0, s∗l (t) ≤ s ≤ smaxlarvae, t > 0,

l(s, 0) = 0, 0 ≤ s ≤ smaxlarvae,

l(0, t) = B(t), t > 0,

where µl(s) is the age-dependent mortality rate of larvae, the initial condition ex-
presses the fact that at time t = 0 no individuals are in the (l) stage and B(t) is the
recruitment of larvae at time t. We will assume that µl is a nonnegative continuous func-
tion on [0, smaxlarva) such that

1) l(s, t) is the density of larvae that have absorbed a quantity of blood s at time t.
2) n(s, t) is the density of nymphs that have absorbed a quantity of blood s at time

t.
3) a(s, t) is the density of adults that have absorbed a quantity of blood s at time t.

The tick population dynamic is given by the following system which is composed by
three PDE:

Equation of larvae:
∂l(s, t)

∂t
+

∂

∂s
(gl(s, t)l(s, t)) = −µl(s)l(s, t),

l(0, t) = λ

∫ smax
l

0

B(σ)a(σ, t)dσ,

l(s, 0) = ψl(s).

(3)

Equation of nymphs
∂n(s, t)

∂t
+

∂

∂s
(gn(s, t)n(s, t)) = −µn(s)n(s, t),

n(0, t) = δ

∫ t

t−s̄n
l(s∗n(σ), σ)dσ,

n(s, 0) = ψn(s),

(4)

with s̄n = sup
[0,t]

s∗n(t).
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Dynamic equation of adults:
∂a(s, t)

∂t
+

∂

∂s
(ga(s, t)a(s, t)) = −µa(s)a(s, t),

a(0, t) = γ

∫ t

t−s̄a
n(s∗a(σ), σ)dσ,

a(s, 0) = ψa(s),

(5)

with s̄a = sup
[0,t]

s∗a(t).

- The functions gl, gn and ga are the growth of blood’s quantity which have absorbed
by ticks at stages l, n and a respectively.

3.3.2. Model 2
The tick population density varies satisfying the following model for all t ∈ [0,T] and

s ∈ [smin, smax] given by

∂n(s, t)

∂t
+

∂

∂s
(g(s, t)n(s, t)) = −µ(n(s, t))n(s, t),

n(smin, t) =

smax∫
smin

K(n(s, t))n(s, t)ds,

n(s, 0) = n0(s),

with smin and smax the min and the max physiological stage of the tick life cycle and T
the maximum study time.

We are going to work on a set of differentiable C1 periodic functions on t, and C1

non-negative functions on s such that n(smax, t) = 0 for all times t.
On this basis, since we are dealing with C1 non-negative functions on s, we may

consider that a(s) and b(s), functions appearing in the somatic growth rate g(s, t) as non-
negative functions of s so that g(T ) ≤ a(s) for all s ∈ [smin, smax] and t ∈ [0,T].
Moreover, we may suppose that a(s) is a bounded function i.e there exists a constant
C > 0 such that

a(s) ≤ C, ∀s ∈ [smin, smax].

Thus,
g(T ) ≤ C, ∀s ∈ [smin, smax], ∀t ∈ [0,T].

Also let N be the maximum tick population density so that

n(s, t) ≤ N , ∀s ∈ [smin, smax], ∀t ∈ [0,T].

3.3.3. Model 3
The following model aims to analyze the impact of climate change on life cycle tick

and especially on hibernation period. Let x1(t) be the density of larvae at timet, x2(t) the
density of nymphs after hibernation at time t and x3(t) the density of adults at time t.

We suppose that T (t) the temperature at time t, ρ(T ) the fertility rate of adult females
at time t and µ(t, T ) the mortality rate. Thus, the system equations are written in the
following way:

dx1(t)
dt =

∫ t

t−τ
ρ(T (σ))x3(σ)dσ − µ1(t, T (t))x1(t)− f1(t, T,H, x1),

dx2(t)
dt = λ1α1(t, T,H, x1(t− r(t, T (t))))x1(t− r(t, T (t)))− µ2(t, T (t))x2(t)− f2(t, T,H, x2(t)),

dx3(t)
dt = λ2α2(t, T,H, x2(t))x2(t)− µ3(t, T (t))x3(t).
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With
– f1(t, T,H, x1) = α1(t, T,H, x1(t))x1(t).
– f2(t, T,H, x1) = α2(t, T,H, x2(t))x2(t).

3.4. Physiological SIS for ticks and SIR ODE for host Model
We consider that the number of tick is governed by the equation of section 3.2 and

that the tick are subdivided in two class Susceptible and Infected. Let nsT (t) and niT (t) be
respectively the frequencies of susceptible and infected tick parasites, i.e.,

nsT (t) + niT (t) = P (t).

But

P (t) =

∫ amax

amin

(l(a, t) + n(a, t) + a(a, t))da, ∀a ∈ [amin, amax],

where P (t) is total population of tick parasites, amin and amax are the min and the max
physiological age of the tick life cycle.

And that the host population number is constant, let nsH(t), niH(t) and nrH(t) be
respectively the frequencies of susceptible, infected and removed host population, i.e.
nsH(t) + niH(t) + nrH(t) = 1.

Consider the following assumptions:
- Let φ(n) be the factor representing the influence of ticks on the host. Thus the model

representing the host-parasite epidemiological interaction is given by the following SIR-
SIS model:

dnsH(t)

dt
= −K1n

s
H(t)niH(t) (6)

dniH(t)

dt
= K1n

s
H(t)niH(t)−K2n

i
T (t)niH(t) (7)

dnrH(t)

dt
= K2n

i
T (t)niH(t) (8)

dniT (t)

dt
= K1n

s
H(t)niH(t)− φ(n)K2n

i
T (t)niH(t) + nsT (t) (9)

nsT (t) = 1− niT (t) (10)

4. Conclusion and Recommendation
In this paper, we present the various stages of tick population dynamics which is

composed by three partial differential equations.
Our aim in the future is to adapt the numerical method developed in subsection 3.2

in order to solve the correlated EDO-EDP equations. This method will be used to test
impact of climate change on transmission of Tick disease, for that the model will be
fitted to field data that have been previously gathered from several Tunisian farms [1]
and several data from laboratory colonies (Darghouth, unpublished data) and with data
from Tunisian National Institute of Meteorology. Furthermore, our goal is to develop new
numerical methods in order to approximate solutions of the previous type of equations in
subsection 3.3.2.
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