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RÉSUMÉ. Nous nous intéressons à un problème de cauchy mal posé, celui de la complétion de don-
nées frontières pour les équations de Stokes. Nous voulons reconstituer les données manquantes sur
une partie non accessible de la frontière du domaine à partir de données peu surdéterminées sur
la partie accessible. Nous formulons ce problème inverse sous forme de minimisation d’une fonction-
nelle de type énergie. Les conditions d’optimalité du premier ordre sont écrites en termes d’équation
d’interface utilisant les opérateurs de Stecklov-Poincaré. Nous donnons des résultats numériques
attestant l’efficacité de la méthode.

ABSTRACT. We are interested in this paper with the ill-posed Cauchy-Stokes problem. We consider
a data completion problem in which we aim recovering lacking data on some part of a domain bound-
ary, from the knowledge of partially overspecified data on the other part. The inverse problem is
formulated as an optimization one using an energy-like misfit functional. We give the first order opti-
mality condition in terms of an interfacial operator. Displayed numerical results highlight its accuracy.
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1. Introduction
We are interested in this work with the Cauchy-Stokes problem that consists in sol-

ving Stokes system on a domain from overspecified boundary data. In the literature, this
situation is referred to as the boundary data completion problem.
The most common task in such inverse problem consists in recovering the missing boun-
dary conditions on the inaccessible part of the boundary of known Cauchy data on the
accessible part.
There is a huge literature dealing with the scalar case (namely the Laplace operator, see
[8] and the references therein) whereas the PDE’s systems are less treated. Up to our
knowledge, there are few papers dealing with the Cauchy-Stokes system (see [1],[7] and
the references therein). In [6, 2], the authors deal with the inverse problem of detecting an
immersed body in a fluid. In [10], the authors were concerned with identifying a Robin
coefficient on a non accessible part of the boundary from available data on the other part.
While in [16], the inverse problem of viscosity’s identification was treated.
However, in many engineering applications, and particularly in bioengineering ones, these
data are often not complete, i.e. the available data often refers to the velocity field and only
one component of the normal stress.
Such kind of systems naturally appears in the modelling of biological problems, one can
think of blood flow in cardiovascular system or airflow in the lungs. Such situations may
also occur in many other physical studies such as coating flows [12], flows in semicon-
ductor melts [13] or problems related to Newtonian fluid flows at solid interfaces [21].
Our focus in this work is on the reconstruction of the velocity and the pressure.
The Cauchy problem has been known since Hadamard to be severely ill posed. However,
we deal here with partially overspecified boundary conditions, namely only one com-
ponent of the stress tensor is given on the accessible part of the boundary. This seems to
be delicate since no unique continuation result is available in this case.
We would like to refer to a new work in this area [17] where these kind of problems has
been addressed for the bilaplacian operator in 2D situations.
In this paper, we propose to perform a method based on minimization of an energy-like
functional introduced in [7, 3], to the case of partially overdetermined data. This paper is
organized in 8 sections. In Section 2, we introduce the partially overdetermined Cauchy
problem and report some useful theorical results. Section 3 is devoted to the solvability is-
sues related to the forward problem as well as the inverse one. In Section 4, we formulate
the partially overdetermined Cauchy problem as a data completion one and introduce the
related minimization problem. For the Neumann-Dirichlet approach, we prove the unique-
ness of the minimizer. Using Steklov-Poincaré operators, first-order optimality conditions
are obtained in terms of an interfacial transmission problem. The numerical procedure for
solving the partially overdetermined Cauchy-Stokes problem is described in Section 5.
In Section 6, we present various examples that illustrate the efficiency of the proposed
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method. Then we apply our study to identify a Robin coefficient of the Stokes system :
it’s the Section 7. Section 8 is devoted to concluding remarks.

2. Problem setting
We denote by H1(Ω)d =

{
u ∈ L2(Ω)d, ∂ui/∂xj ∈ L2(Ω) for i, j = 1, · · · , d

}
the

standard first-order L2-based Sobolev space equipped with usual first-order Sobolev norm
and L2

0(Ω) = {q ∈ L2(Ω) :
∫

Ω
q = 0}. In addition, for any subset Γ a connected

component of ∂Ω, we will use frequently the fractional Sobolev spaceH1/2(Γ), the space
of the traces of elements ofH1(Ω)d on Γ. We will note by V 1(Γ) = H

1/2
00 (Γ) the set of all

the restrictions to Γ of the functions of H1/2(∂Ω) that vanish on ∂Ω \ Γ and by V −1(Γ)
it’s topological dual space. In the entire text Ω ⊂ Rd, d=2 or 3, is a lipschitz bounded
and connected domain. Assume that ∂Ω is split into three parts Γc, Γs and Γi of non-
vanishing measure such that Γs is closed and Γc ∩ Γs ∩ Γi = ∅. Throughout the paper,
we adopt the convention that a boldface character denotes a vector or a tensor. For any
vector field v on ∂Ω, we shall denote by vn its normal component while we shall denote
by vτ the projection of v on the tangent hyperplane to ∂Ω. In other words vn = v · n
and vτ = v− vnn. The partially overdetermined Cauchy problem we are interested in is
defined as follows :

Definition 1 (Partially overdetermined Cauchy problem) Assuming that the given data
Φ ∈ V 1(Γc)

2 and T ∈ V −1(Γc) are compatible, i.e. that this pair is indeed the shear
stress and the Dirichlet data of a unique function u, the problem is :
Find (ϕ, t) = (u,σ(u)n)|Γi

∈ V 1(Γi)
2×V −1(Γi)

2 such that (u, p) ∈ H1(Ω)2×L2
0(Ω)

be the solution of 
−ν∆u+∇p = 0 in Ω
∇ · u = 0 in Ω
u = 0 on Γs
u = Φ, [σ(u)n]τ = T on Γc

(1)

where ν is the viscosity of the fluid, σ denotes the stress tensor

σ(u)ij = −pδij + 2νD(u)ij , 1 ≤ i, j ≤ d

where D(u) is the linear strain tensor defined by

D(u)ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, 1 ≤ i, j ≤ d.

Note that [σ(u)n]τ denotes the tangential component of the stress acting on the boun-
dary, that can be expressed by the symmetrized gradient of u such that [σ(u)n]τ =
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2ν [D(u)n]τ . Therefore this condition does not contain the pressure p, which is an essen-
tial difference from the pure Neumann condition. It can easily be observed that (D(u)n)
is in L2(Ω) and its divergence also is in L2(Ω). Thus, D(u) has a trace in V −1(∂Ω),
which is what we can understand by (∂u/∂n) · τ .

Since Hadamard, it is well-known that the Cauchy problem is severely ill-posed. Thus
problem (1) has no solution unless overspecified data on Γc are compatible, and if a
solution exists, it does not depend continuously on the data (Φ, T ). We expect worse
behaviour in our case (i.e. Definition 1).

3. Solvability issues
The Stokes equations with different boundary conditions in this text will be formulated

variationally. Often the Stokes equations are given with Dirichlet boundary conditions,
or a combination of a Dirichlet and Neumann conditions. In this section we recall the
existence and uniqueness of weak solution for the following Stokes system with friction
boundary conditions : 

−ν∆u+∇p = 0 in Ω
∇ · u = 0 in Ω
u = 0 on Γs
[σ(u)n]τ = T on Γc
u · n = 0 on Γc
u = ϕ on Γi

(2)

While the mathematical literature on Dirichlet and Neumann boundary conditions is vast
and the well-posedness results are well known, friction boundary conditions have been
studied less extensively. We briefly recall the variational formulation of the problem (2)
and solvability issues which will be needed in the sequel. For this aim, we need the follo-
wing lemma that provides a general integration-by-parts formula and where we denote by

A : B the tensorial product between A and B defined as follows : A : B =
d∑

i,j=1

AijBij

Lemma 2 If u ∈ H1(Ω)d such that∇ · u = 0, then ∆u = 2∇ ·D(u) and

−
∫

Ω

ν∆uv =

∫
Ω

2νD(u) : D(v) −
∫
∂Ω

2νD(u)nv , ∀v,u ∈ H1(Ω)d. (3)

The boundary integral term has to be interpreted as a duality product of v ∈ V 1(∂Ω)d

with the normal derivative νD(u)n ∈ V −1(∂Ω)d. Then a mixed formulation of the
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Stokes equations is obtained by multiplying the first equation of (2) by a test function,
integrating over Ω, and applying Lemma 2 as well as the divergence theorem,∫

Ω

2νD(u) : D(v) −
∫

Ω

p∇ · v =

∫
∂Ω

(2νD(u)n− pn) · v . (4)

We focus now on the boundary terms of (4). It follows from the following decomposition
[4]

v = vnn+ vττ, and D(u)n = [D(u)n]nn+ [D(u)n]ττ, (5)

that D(u)nv = [D(u)n]nvn+[D(u)n]τvτ , and σ(u)nv = [σ(u)n]nvn+[σ(u)n]τvτ .
Hence (4) becomes∫

Ω

2νD(u) : D(v) −
∫

Ω

p∇ · v =

∫
∂Ω

[σ(u)n]nvn +

∫
∂Ω

[σ(u)n]τvτ . (6)

The Sobolev space that contains the velocity field which fulfill the penetration condition
as an essential part of the boundary conditions of (2) is denoted by

H1
ess(Ω) :=

{
u ∈ (H1(Ω))d, s. t. u|Γs = 0 and u · n|Γc = 0 in the sense of traces

}
.

(7)
The mixed weak formulation of problem (2) considered in [22, 25] seeks (u, p) ∈ H1

ess(Ω)×
L2

0(Ω) such that u = ϕ on Γi and∫
Ω

2νD(u) : D(v) −
∫

Ω

p∇ · v =

∫
Γc

Tvτ , ∀v ∈ H1
ess(Ω), (8)∫

Ω

∇ · u q = 0, ∀q ∈ L2
0(Ω), (9)

and its well-posedness is given by the following theorem [22].

Theorem 3 Suppose that the following assumptions hold : Γi∩Γc∩Γs = ∅, measure(Γi) >
0, and T ∈ V −1(Γc). Then there exists a unique solution (u, p) ∈ H1

ess(Ω) × L2
0(Ω) of

(8)-(9). Moreover, the regularity estimate

||u||H1(Ω) + ||p||L2(Ω) ≤ C{||T ||V −1(Γc) + ||ϕ||V 1(Γi)}

holds for some constant C > 0.

Note that in case of |Γc| = 0 (that is Γc is of measure zero), this problem is not uniquely
solvable and the solution (u, p) is only unique up to a rigid body motion and belongs to
H1
ess(Ω) ∩ < where

< =
{
Ax+ b |A ∈ Rd×d skew symmetric , b ∈ Rd

}
.
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4. Energy-like minimization method
The approach followed here extends the one given in [7] to the partially overdetermi-

ned Cauchy system. More precisely, we focus on a method based on the minimization of
an energy-like functional. This approach in which two distinct fields are introduced, each
of them representing only one item of the given data has to be adapted to our formulation.
In our case, in lack of complete Neumann boundary condition it is really important to
introduce another boundary conditions on Γc in order to obtain two different well-posed
problems. More precisely, the Dirichlet boundary data can be separated into two parts :

{
u · n = Φ · n, on Γc,
u · τ = Φ · τ, on Γc,

(10)

and the normal component part u · n will be posed as an essential boundary condition.
For what follows we consider Φ · n = 0 and we introduce two distinct fields (u1, p1)
and (u2, p2) solutions of problems which differ by their boundary conditions and meeting
some of the existing boundary data : We attribute to the first problem a Dirichlet boundary
data on Γc and one unknown on Γi, while we attribute to the second one Navier boundary
condition given shear stress and penetration conditions on Γc and one unknown on Γi.
Hence, given pair (g, η) ∈ V 1(Γc)

2×V −1(Γc)
2, we obtain the following mixed boundary

value problems

(PD)


−ν∆uη1 +∇pη1 = 0 in Ω
∇ · uη1 = 0 in Ω
uη1 = 0 on Γs
uη1 = Φ on Γc
σ(uη1)n+ αuη1 = η + αg on Γi

(PN )



−ν∆ug2 +∇pg2 = 0 in Ω
∇ · ug2 = 0 in Ω
ug2 = 0 on Γs
[σ(ug2)n]τ = T on Γc
ug2 · n = 0 on Γc
σ(ug2)n+ βug2 = η + βg on Γi

where we denote by α and β two non-negative real coefficients that permit to define
various approaches that differ by the number of unknown fields on Γc. Note that the
existence and uniqueness of the solution of the two problems is guaranteed by Theorem 3
for (PN ) and by [4] for (PD).

In what follows, we will show how it is possible to prescribe the shear stress and the
normal velocity forming Navier boundary condition for recovering the boundary data on
Γi [5]. We consider now the following energy-like functional in order to compare the two
fields (uη1 , p

η
1) and (ug2, p

g
2)

Eαβ(g, η) =
1

2

∫
Ω

σ(uη1 − u
g
2) : ∇(uη1 − u

g
2) (11)
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where they are equal only when the pair (g, η) meets the real data (ϕ, t) on the boundary
Γi. Hence, the desired data (ϕ, t) can be characterized as the solution of the following
minimization problem :

(ϕ, t) = arg min
(g,η)

Eαβ(g, η), (12)

with g ∈ V 1(Γi)
2 and η ∈ V −1(Γi)

2. Throughout the paper we will treat the minimi-
zation problem using Neumann-Dirichlet approach, (α = 0, β = ∞) denoted by ND,
which corresponds to consider (PD) with Neumann boundary condition on Γi, and (PN )
with Dirichlet boundary condition on Γi. The Dirichlet-Dirichlet approach (α = β =∞)
which will be denoted by DD, corresponds to consider (PD) and (PN ) with the same
unknown Dirichlet boundary condition on Γi. The third approach is Neumann-Neumann
approach denoted by NN (α = β = 0) and where we consider (PD) and (PN ) with the
same unknown Neumann boundary condition on Γi.

4.1. Neumann-Dirichlet case :
We consider two mixed well-posed problems : the first one is a classical Dirichlet

problem (PD) (with Dirichlet condition on Γc), and the second one is a Stokes problem
with Navier boundary condition on Γc. We attribute to each of them one unknown on
Γi i.e. (13) with unknown Neumann boundary condition on Γi, and (14) with unknown
Dirichlet boundary condition on Γi :


−ν∆uη1 +∇pη1 = 0 in Ω
∇ · uη1 = 0 in Ω
uη1 = 0 on Γs
uη1 = Φ on Γc
σ(uη1)n = η on Γi

(13)



−ν∆ug2 +∇pg2 = 0 in Ω
∇ · ug2 = 0 in Ω
ug2 = 0 on Γs
[σ(ug2)n]τ = T on Γc
ug2 · n = 0 on Γc
ug2 = g on Γi

(14)

In this case, the functional (11) depends on the pair (g, η)

END(g, η) =
1

2

∫
Ω

σ(uη1 − u
g
2) : ∇(uη1 − u

g
2) (15)

Then, the gradient of END can be obtained from its partial derivatives with respect to g
and η, that is

Proposition 4 For a pair (g, η) ∈ V 1(Γi)
2 × V −1(Γi)

2

∂END(g, η)

∂η
· h = 2ν

∫
Ω

D(uη1 − u
g
2) : ∇rh1

=
∫

Γi
σ(uη1 − u

g
2)nrh1 , ∀h ∈ V −1(Γi)

2,
∂END(g, η)

∂g
· w = −2ν

∫
Ω

D(rw2 ) : ∇(uη1 − u
g
2)

= −
∫

Γi
σ(rw2 )n(uη1 − u

g
2), ∀w ∈ V 1(Γi)

2,

(16)
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where (rh1 , s
h
1 ) and (rw2 , s

w
2 ) are the solution of


−ν∆rh1 +∇sh1 = 0 in Ω
∇ · rh1 = 0 in Ω
rh1 = 0 on Γs
rh1 = 0 on Γc
σ(rh1 )n = h on Γi

(17)



−ν∆rw2 +∇sw2 = 0 in Ω
∇ · rw2 = 0 in Ω
rw2 = 0 on Γs
[σ(rw2 )n]τ = 0 on Γc
r2
w · n = 0 on Γc

rw2 = w on Γi

(18)

Proof : We easily derive the partial derivative of END with respect to η

∂END(g, η)

∂η
· h = 2ν

∫
Ω

D(uη1 − u
g
2) : ∇rh1 =

∫
∂Ω

σ(uη1 − u
g
2)nrh1 , ∀h ∈ V −1(Γi)

2,

using that rh1 = 0 on Γc ∪ Γs, then the first derivative holds.
Now, using the Green formula we obtain, ∀w ∈ V 1(Γi)

2 :

∂END(g, η)

∂g
· w = −2ν

∫
Ω

D(rw2 ) : ∇(uη1 − u
g
2) = −

∫
∂Ω

σ(rw2 )n(uη1 − u
g
2),

thanks to (5), we obtain

∂END(g, η)

∂g
· w = −

∫
Γi

σ(rw2 )n(uη1 − u
g
2)−

∫
Γc

[σ(rw2 )n]n (uη1 − u
g
2)n

−
∫

Γc

[σ(rw2 )n]τ (uη1 − u
g
2)τ ,

then, since (uη1 − u
g
2)n = 0 and [σ(rw2 )n]τ = 0 on Γc, the second derivative in (16)

follows.

4.2. Dirichlet-Dirichlet case :
In this case, we consider two well-posed problems with the same unknown Dirichlet

condition on Γi.
−ν∆ug1 +∇pg1 = 0 in Ω
∇ · ug1 = 0 in Ω
ug1 = 0 on Γs
ug1 = Φ on Γc
ug1 = g on Γi

(19)



−ν∆ug2 +∇pg2 = 0 in Ω
∇ · ug2 = 0 in Ω
ug2 = 0 on Γs
[σ(ug2)n]τ = T on Γc
ug2 · n = 0 on Γc
ug2 = g on Γi

(20)

In this case, the functional (11) depends only on the unknown trace g :

EDD(g) =
1

2

∫
Ω

σ(ug1 − u
g
2) : ∇(ug1 − u

g
2) (21)

Analogously, we derive the partial derivative of EDD with respect to g
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Proposition 5 For g ∈ V 1(Γc)
2

∂EDD(g)

∂g
· h =

1

2

∫
Γi

σ(ug1 − u
g
2)nh ∀h ∈ V 1(Γi)

2, (22)

where (rh1 , s
h
1 ) and (rh2 , s

h
2 ) are the respective solutions of


−ν∆rh1 +∇sh1 = 0 in Ω
∇ · rh1 = 0 in Ω
rh1 = 0 on Γs
rh1 = 0 on Γc
rh1 = h on Γi

(23)



−ν∆rh2 +∇sh2 = 0 in Ω
∇ · rh2 = 0 in Ω
rh2 = 0 on Γs[
σ(rh2 )n

]
τ

= 0 on Γc
r2
h · n = 0 on Γc

rh2 = h on Γi

(24)

Proof : The weak formulation of the adjoint problems leads to

∂EDD(g)

∂g
· h =

1

2

∫
∂Ω

σ(ug1 − u
g
2)nrh1 −

1

2

∫
∂Ω

(ug1 − u
g
2)σ(rh2 )n, ∀h ∈ V 1(Γi)

2,

using that rh1 = 0 on Γc ∪ Γs, and (ug1 − u
g
2) · n = 0 on Γc then we obtain

∂EDD(g)

∂g
· h =

1

2

∫
Γi

σ(ug1 − u
g
2)nrh1 −

1

2

∫
Γc

(ug1 − u
g
2) · τ

[
σ(rh2 )n

]
τ
, ∀h ∈ V 1(Γi)

2,

then using
[
σ(rh2 )n

]
τ

= 0, the derivative of EDD with respect to g is

∂EDD(g)

∂g
· h =

1

2

∫
Γi

σ(ug1 − u
g
2)nh, ∀h ∈ V 1(Γi)

2. (25)

4.3. Neumann-Neumann case :
In this case, we impose unknown Neumann condition on Γi. We consider the following

mixed boundary value problems


−ν∆uη1 +∇pη1 = 0 in Ω
∇ · uη1 = 0 in Ω
uη1 = 0 on Γs
uη1 = Φ on Γc
σ(uη1)n = η on Γi

(26)



−ν∆uη2 +∇pη2 = 0 in Ω
∇ · uη2 = 0 in Ω
uη2 = 0 on Γs
[σ(uη2)n]τ = T on Γc
uη2 · n = 0 on Γc
σ(uη2)n = η on Γi

(27)

Let us recall that here the functional (11) depends only on the variable η :

ENN (η) =
1

2

∫
Ω

σ(uη1 − u
η
2) : ∇(uη1 − u

η
2) (28)

The gradient of ENN is then
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Proposition 6 For η ∈ V −1(Γc)
2

∂ENN (η)

∂η
· ψ = −1

2

∫
Γi

(uη1 − u
η
2)ψ, ∀ψ ∈ V −1(Γi)

2, (29)

and where (rψ1 , s
ψ
1 ) and (rψ2 , s

ψ
2 ) solves



−ν∆rψ1 +∇sψ1 = 0 in Ω

∇ · rψ1 = 0 in Ω

rψ1 = 0 on Γs
rψ1 = 0 on Γc
σ(rψ1 )n = ψ on Γi

(30)



−ν∆rψ2 +∇sψ2 = 0 in Ω

∇ · rψ2 = 0 in Ω

rψ2 = 0 on Γs[
σ(rψ2 )n

]
τ

= 0 on Γc

r2
ψ · n = 0 on Γc

σ(rψ2 )n = ψ on Γi

(31)

Proof : The weak formulation of the adjoint problems leads, ∀ψ ∈ V −1(Γi)
2, to

∂ENN (η)

∂η
· ψ =

1

2

∫
∂Ω

σ(uη1 − u
η
2)nrψ1 −

1

2

∫
∂Ω

(uη1 − u
η
2)σ(rψ2 )n, (32)

using that rψ1 = 0 on Γc ∪Γs, (uη1 −u
η
2) ·n = 0 on Γc and σ(uη1 −u

η
2)n = 0 on Γi, we

obtain

∂ENN (η)

∂η
· ψ = −1

2

∫
Γi

(uη1 − u
η
2)σ(rψ2 )n− 1

2

∫
Γc

(uη1 − u
η
2) · τ

[
σ(rψ2 )n

]
τ
,

finally using that
[
σ(rψ2 )n

]
τ

= 0 on Γc, the derivative of END with respect to η is

∂ENN (η)

∂η
· ψ = −1

2

∫
Γi

(uη1 − u
η
2)σ(rψ2 )n (33)

Remark 7 We can show that in case of lack of one component of the the normal stress on
the accessible boundary Γc, the gradient of the functional in the different approaches is
still expressed by an integral involving only the boundary Γi. The same results hold when
available data refered to the Dirichlet data with the normal component of the normal
stress :

u = Φ and [σ(u)n]n = T on Γc.

Similar changes need to be made when using these data. The Neumann problem (PN )
should be modified consequently, and we impose the tangential component of velocity
uτ = Φτ with [σ(u)n]n = T as boundary conditions.

Theorem 8 The functional (g, η) 7−→ END(g, η) defined by (15) is a positive quadratic
functional. It’s strictly convex on V 1(Γi)

2 × V −1(Γi)
2 and consequently has a unique

minimum on V 1(Γi)
2 × V −1(Γi)

2 for a compatible data (Φ, T ).
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Proof : First, since∇ · (uη1 − u
g
2) = 0, we can write :

END(g, η) = ν

∫
Ω

D(uη1 − u
g
2) : D(uη1 − u

g
2) (34)

which shows the positive quadratic aspect of END.
Recall that the derivative of END with respect to g is given by (16) :

∂END(g, η)

∂g
· w = −2ν

∫
Ω

D(rw2 ) : ∇(uη1 − u
g
2)

where rw2 is a solution of (18). The second derivative is then given by :

∂2END(g, η)

∂g2
(w,w) = 2ν

∫
Ω

D(rw2 ) : D(rw2 ) = 2ν‖D(rw2 )‖2L2(Ω), ∀w ∈ V 1(Γi)
2,

Using Korn inequality [18], we deduce that there exists a constant C > 0 such that :

∂2END(g, η)

∂g2
(w,w) ≥ C‖rw2 ‖2H1(Ω)

and then

∂2END(g, η)

∂g2
(w,w) ≥ k‖w‖2V 1(Γi)2

for some constant k > 0. This proves the strict convexity of END with respect to g.
By the same way, using (16), we can write :

∂2END(g, η)

∂η2
(h, h) = 2ν‖D(rh1 )‖2L2(Ω), ∀h ∈ V −1(Γi)

2 (35)

(36)

where rh1 is a solution of (17). This shows the convexity of END with respect to η. To

prove the strict convexity, we use the boundary expression of
∂END(g, η)

∂η
, we obtain :

∂2END(g, η)

∂η2
(h, h) =

∫
Γi

σ(rh1 )nrh1 =

∫
Γi

hrh1 , ∀h ∈ V −1(Γi)
2,

consequently, if
∂2END(g, η)

∂η2
(h, h) = 0, ∀h ∈ V −1(Γi)

2, we deduce that rh1 = 0 on

Γi. Since rh1 is zero on Γs and Γc we deduce that it’s a trivial solution of (17) in Ω and
therefore h = 0 in V −1(Γi)

2.
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Remark 9 We prove in the same way the convexity ofEDD andENN . The strict convexity
in these two cases is not obvious due to lack of unique continuation result. Nevertheless,
we have used the Dirichlet-Dirichlet and the Neumann-Neumann approach in the sequel
and for the numerical procedure in order to have a full overview of the subject.

4.4. The first order optimality condition
We derive the first optimality conditions and we have the following result :

Theorem 10 With partially overspecified Cauchy data (Φ, T ) but compatible, lets note
the pair (ϕ, t) solution of

(ϕ, t) = arg min
(g,η)

END(g, η), and END(ϕ, t) = 0,

ϕ = argminEDD(g)
g∈V 1(Γi)2

, and EDD(ϕ) = 0,

t = argminENN (η)
η∈V −1(Γi)2

, and ENN (t) = 0.

(37)

When the functional Eαβ reach its minimum, the solutions (ut1, p
t
1) and (uϕ2 , p

ϕ
2 ) verify :{

ut1 = uϕ2 +K, on Γi
σ(ut1)n = σ(uϕ2 )n, on Γi,

(38)

where K is a constant.

Proof : Neumann-Dirichlet case : We consider the Steklov-poincaré operator :

S1 : V 1(Γi)
2/R −→ V −1(Γi)

2

w 7−→ σ(rw2 )n
(39)

where rw2 is the solution of (18). It is straightforward to check that S1 is an isomorphism.
Using this argument, first condition follows from the equation (16). In a similar way, using
the inverse of the Steklov-poincaré operator :

S−1
2 : V −1(Γi)

2 −→ V 1(Γi)
2

h 7−→ rh1
(40)

where rh1 is the solution of (17), one gets from (16) that σ(uη1 − u
g
2)n = 0 on Γi.

Dirichlet-Dirichlet case : In this case first condition follows from the assumption of the
same unknown Dirichlet condition on Γi. Second condition is a simple result of condition
(22).
Neumann-Neumann case : Equivalently, first condition follows from the assumption of
the same unknown Neumann condition on Γi. Second condition is a simple result of
condition (29).
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5. The numerical procedure
We propose a numerical procedure based on the preconditioned gradient algorithm

for the reconstruction of the data on the inaccessible boundary Γi. The following iterative
algorithm for the Neumann-Dirichlet case is in the same spirit of the algorithm given in
[7] and detailed in [9] for the Dirichlet-Dirichlet or Neumann-Neumann cases.

Algorithm.
1-Initialization : set k = 0 and chosen g(0) and η(0).
2-The stopping criteria : END(g(k), η(k)) ≤ ε where ε is a given tolerance level :

(a) solve the problems (13) and (14) using η = η(k) and g = g(k).
(b) computation of the gradient : compute r(k)

1 and r(k)
2 solutions to

two adjoint problems (A1) and (A2) defined by :

(A1)



−ν∆r
(k)
1 +∇s(k)

1 = 0 in Ω

∇ · r(k)
1 = 0 in Ω

r
(k)
1 = 0 on Γs

σ(r
(k)
1 )n = σ(uη1 − u

g
2)n on Γi

r
(k)
1 = 0 on Γc

(A2)



−ν∆r
(k)
2 +∇s(k)

2 = 0 in Ω

∇ · r(k)
2 = 0 in Ω

r
(k)
2 = 0 on Γs

r
(k)
2 = (uη1 − u

g
2) on Γi[

σ(r
(k)
2 )n

]
τ

= 0 on Γc

r2
(k) · n = 0 on Γc

(c) set g(k+1) = g(k) − ρr(k)
1 and η(k+1) = η(k) − ρr(k)

2 .
(d) k −→ k + 1.

3- End do.

6. Numerical results
In this section, we will consider two test functions : a polynomial and a singular one.

All the calculations are run under Freefem Software environement [23]. We consider Ω as
a two-dimensional annular domain with radii R1 = 2 and R2 = 1. The outer boundary is
chosen to be Γc while the inner boundary is considered as Γi, as depicted in Figure 6. To
explore the efficiency of the proposed approach procedure, we consider the reconstruction
of the velocity field and the stress force on the inner circle form partially overdetermined
data on the outer circle.
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Ω

Γc

n

Γi

Figure 1. Computational domain

The minimization of the functional error is achieved by ensuring the optimality condi-
tion of the first order. To recover the velocity and the stress tensor with accuracy, a mesh
with 50 nodes on Γi is used.

6.1. A Stokes flow in a ring with smooth data :
In this test case we take a polynomial example, given by the following analytical

function

u(x, y) :=
(
4y3 − x2, 4x3 + 2xy − 1

)
, p(x, y) := 24xy − 2x.

Note that in this case u · n 6= 0 . Figures 2, 3 and 4 show the reconstructed Dirichlet and
Neumann data on Γi as well as the reconstructed normal component of the normal stress
on Γc. They are compared with the exact data. Note that for the Neumann-Dirichlet and
Neumann-Neumann, the reconstructed fields are in close agreement with the exact ones,
while the Dirichlet-Dirichlet method gives worst result.
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Figure 2. First test : The reconstructed velocity on Γi

0 1 2 3 4 5 6 7
−15

−10

−5

0

5

10

15

 

 
t1
t1NN
t1DD
t1ND

0 1 2 3 4 5 6 7
−15

−10

−5

0

5

10

15

 

 
t2
t2NN
t2DD
t2ND

Figure 3. First test : The reconstructed stress tensor on Γi

6.2. A Stokes flow in a ring with Singular data
This example has already been addressed in [7] and it involves a singularity in the

vicinity of the inner boundary.

u(x, y) =
1

4π

(
log

1√
(x− a)2 + y2

+
(x− a)2

(x− a)2 + y2
,

(x− a)y

(x− a)2 + y2

)
,

p(x, y) =
1

2π

(x− a)

(x− a)2 + y2
.
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Figure 4. First test : The reconstructed stress on Γc

We have reconstructed the unknown data on Γi using the Neumann-Dirichlet and
Neumann-Neumann approaches. Figs 5 shows the obtained results. Note that the results
are weaker than those obtained for complete Cauchy data, but the algorithm is still effi-
cient in detecting the singularities.
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Figure 5. Singular data test : reconstructed velocity and the stress tensor on Γi
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In order to test the robustness of the used method, we introduce a white noise pertur-
bation to the data with an amplitude ranging from 1 to 15%. We reconstruct the velocity
and the stress tensor on Γi from these noisy data. We observe in Figure6 that the method
used is more robust with smooth data (left) than with singular one (right).

Figure 6. Comparaison of velocity’s first component for noisy data : Smooth data(left),
Singular data with a=0.8 (right)

7. Application
As we said in the Introduction, our work was motivated first by the study of airway

resistance in pneumology which characterizes the patient’s ventilation capability [19] and
essentially by the study of the resistivity of the stent which is a medical device used to
prevent rupture of aneurysms [14] where the stent is modelized as a porous media with a
resistivity R.
The problem of identifying Robin coefficient has been studied by Chaabane and Jaoua
[11] for Laplace equations and by Boulakia, Egloffe and Grandmont [10] for Stokes pro-
blem where they consider the full overdetermined problem namely the velocity and the
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hole stress tensor on Γc.
We consider for our aim the following problem :

(P)



−ν∆u+∇p = 0 in Ω
∇ · u = 0 in Ω

u = 0 on Γs
[σ(u) · n]τ = T on Γc

u · n = Φ · n on Γc
σ(u) · n+Ru = 0 on Γi

(41)

where R is the Robin coefficient assumed hereafter to be a positive number. We want to
determine the coefficient R from the knowledge of u.τ on Γc.
We begin by recovering the lacking velocity and normal stress on Γi as explained in the
previous sections, then we determine the value of the real parameterR using the formula :

|R| =

∣∣∣∣∣∣∣∣
∫

Γi

[σ(u2).n]1 +

∫
Γi

[σ(u2).n]2∫
Γi

[u2]1 +

∫
Γi

[u2]2

∣∣∣∣∣∣∣∣ (42)

where for a vector u of R2, [u]k denotes the kth component of u.
We give the numerical results for two different choices of the domain Ω. The first choice
corresponds to an annular domain and the second to a rectangular one. For each case
and for different test values of R, we will compare on Γi the normal stress of u1 and
u2 respective solutions of (13) and (14) with the limit condition Ruexact then we will
reconstruct the value of the Robin coefficient that we will call ρ and compare it with the
exact used value.

First example : Let Ω be the annular domain with radius R1 = 1 and R2 = 2. Γc will
be the outer circle and Γi the inner one (Figure 6). We mesh with 150 nodes on Γc and
100 nodes on Γi. ε = 6× 10−4 (80 iterations were required).
The reconstructed stress tensor on Γi from u1 and u2 are compared with the one from the
exact solution (Figure 7). We give the result for R = 20 but the numerical tests are done
for several values of R and the results are satisfying.
In table 1, we compare the exact value of the Robin coefficient R with the identified one
by our method called ρ, we note that the error rate is interesting and varies between 0.5%
and 8.9%.
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Figure 7. First example with smooth data, R=20 : the reconstructed stress tensor on Γi

Second example : In this case, Ω is a rectangular domain with L = 2 and ` = 1. ∂Ω =
Γc∪Γi∪Γs, where Γc = [0, 2]×{1}, Γi = [0, 2]×{0}, Γs = ({0}×[0, 1])∪({2}×[0, 1]).
We mesh with 60 nodes on Γc and Γi, and with 50 nodes on Γs. ε = 3×10−3 (50 iterations
were required).

In Figure 8 we plot the lacking component of the normal stress on Γc (left) and com-
pare the normal stress with Ruexact on Γi (right). Note that these reconstructed fields are
in close agreement with the exact ones. We test for several values of R.
In table 2 we reconstruct the value of the Robin coefficient ρ and compare it with the exact
one R. The error rate is varing between 1.2% and 7%.

Tableau 1. Comparaison of ρ and R : The annular domain

R 5 10 50 70 100

ρ 5.07301 9.94297 45.5175 67.1686 93.8794
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Figure 8. Second example with smooth data, R=100 : the reconstructed data on Γc(left)
and comparing normal stress with Ruexact on Γi (right)

8. Conclusion
In spite of a great amount of work treating of the numerical resolution of Cauchy

problems, very few publications are devoted to the Stokes system. Our contribution deals
with partially overdetermined boundary data which was not treated up to our knowledge.
The purpose here is to treat numerically such an inverse problem. The proposed method
seems encouraging, especially for capturing singular data. The forthcoming task is to get
stability estimates and to adapt the proposed method for 3D situations.

Tableau 2. Comparaison of ρ and R : The rectangular domain

R 2 5 10 20 50 100

ρ 2.05149 4.93797 9.63617 18.8812 46.4296 92.9558
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