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ABSTRACT. This paper deals with an hyperbolic inverse problem of determining a time-dependent
coefficient a appearing in a dissipative wave equation, from boundary observations. We prove in
dimension n greater than two, that a can be uniquely determined in a precise subset of the domain,
from the knowledge of the Dirichlet-to-Neumann map.

RÉSUMÉ. Dans ce travail, on étudie le probl ème inverse de la détermination d’un coefficient dépen-
dant de la variable d’espace et du temps apparaissant dans une équation d’onde dissipative, à partir
des mesures faites sur tout le bord du domaine. On démontre que ce coefficient peut être déterminé
d’une manière unique dans une partie précise du domaine à partir des mesures de type Neumann.
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1. Introduction

1.1. Statement of the problem
The present paper is devoted to the study of the following hyperbolic inverse problem:

Given T > 0 and a bounded domain Ω ⊂ Rn, n ≥ 2, with C∞ boundary Γ = BΩ, determine
the absorbing coefficient a present in the following initial boundary value problem for the
wave equation from boundary observations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B
2
t u −∆u + a(x, t)Btu = 0 in Q = Ω × (0, T ),

u(x,0) = 0, Btu(x,0) = 0 in Ω,

u(x, t) = f(x, t) on Σ = Γ × (0, T ),

(1)

where f ∈ H1(Σ), and the coefficient a ∈ C2(Q) is assumed to be real valued. It is well
known (see [10] and [9] ) that if the compatibility condition is satisfied, that is f(⋅,0) = 0,
then, there exists a unique solution u to the equation (1) that belongs to the following
space

u ∈ C([0, T ],H1(Ω)) ∩ C1([0, T ], L2(Ω)).
Moreover, there exists a constant C > 0 such that we have

∥Bνu∥L2(Σ) ≤ ∥f∥H1(Σ), (2)

where ν denotes the unit outward normal to Γ at x and Bνu stands for∇u⋅ν. In the present
paper, we focus on the uniqueness issue in the study of the inverse problem of determin-
ing the time-dependent absorbing coefficient a from the knowledge of the Dirichlet-to-
Neumann map.

From a physical view point, the inverse problem under consideration consists in re-
covering the absorbing coefficient a in an homogeneous medium by probing it with dis-
turbances generated on the boundary. The data are the responses of the medium to these
disturbances measured on all the boundary. Here the coefficient a can be seen as one of
the medium properties and we aim to recover it in a specific subset of the domain from
boundary measurements, after probing the medium by a Dirichlet data f . The medium is
assumed to be quiet initially.

The problem of recovering coefficients that depend only on the spatial variable is
considered by many authors. In [16] Rakesh and Symes proved a uniqueness result in
recovering a time-independent potential appearing in a wave equation from measurements
made on the whole boundary. The main tools in the derivation of this result are first, the
construction of geometric optics solutions and second, the relation linking the hyperbolic
Dirichlet-to-Neumann map to the X-ray transform. As for the uniqueness from local
Neumann measurements, we refer to Eskin [7]. One can also see the paper of Isakov [11],
in which a uniqueness result was proved in the determination of two time-independent
coefficients appearing in a dissipative wave equation.

The stability in the case where the Neumann data are observed on a subdomain of the
boundary was considered by Bellassoued, Choulli and Yamamoto [1], where a stability
estimate of log-type was proved in recovering a time-independent coefficient appearing
in a wave equation. In [13], Isakov and Sun established a stability result of Hölder type in
determining a coefficient in a subdomain from local Neumann data. As for the stability in
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the case where Neumann data are observed on the whole boundary, we refer to Sun [21],
Cipolatti and Lopez [6].

When the coefficients depend also on the time variable, there is a uniqueness result
proved by Ramm and Rakesh [17], in which they proved that a time-dependent potential
appearing in a wave equation can be uniquely determined in a precise subset made of lines
making an angle of 45○ with the t-axis and meeting the planes t = 0 and t = T outside Q,
from global Neumann-data. It’s clear from [10] that this coefficient can not be recovered
over the whole domain Q and this is actually due to the homogeneous initial conditions
imposed in the system. However, Isakov proved in [12], that the time-dependent coef-
ficient may be uniquely determined over the whole domain Q, but he needed to know
much more information about the solution of the wave equation. We can also refer to
[8, 18, 19, 20].

Inspired by the work of Bellassoued and Dos Santos [2], Waters [22] proved recently
that one can stably recover the X-ray transform of a time-dependent lower order term
present in a wave equation from the knowledge of the Dirichlet-to-Neumann map, in
the Riemmanian case. In the euclidian case, Ben Aïcha [5] and Kian [14, 15], showed
by taking inspiration from the work of Bellassoued-Jellali-Yamammoto [3, 4], stability
results in the recovery of a zeroth order time-dependent coefficient appearing in a wave
equation.

In this paper, we prove that the time-dependent absorbing coefficient a can be uniquely
determined with respect to the Dirichlet-to-Neumann map in a specific subset of the do-
main Q, provided that a is known outside this subset.

1.2. Main results
In order to state our main result we first introduce the following notations.
Let r > 0 be such that T > 2r and Ω ⊆ B(0, r/2) = {x ∈ Rn, ∣x∣ < r/2}. We set

Qr = B(0, r/2) × (0, T ). We consider the annular region around the domain Ω,

Ar = {x ∈ Rn, r
2
< ∣x∣ < T − r

2
} ,

and the forward and backward light cones:

C +

r = {(x, t) ∈ Qr, ∣x∣ < t − r
2
, t > r

2
} ,

C −

r = {(x, t) ∈ Qr, ∣x∣ < T − r
2
− t, T − r

2
> t} ,

Cr = {(x, t) ∈ Qr, ∣x∣ ≤ r
2
− t, 0 ≤ t ≤ r

2
}.

Finally, we denote
Q∗

r = C +

r ∩C −

r and Qr,∗ = Q ∩Q∗

r .

We remark that the open subset Qr,∗ is made of lines making an angle of 45○ with the
t-axis and meeting the planes t = 0 and t = T outside Qr. We notice that Qr,∗ ⊂ Q. Note,
that in the particular case where Ω = B(0, r/2), we have Qr,∗ = Q∗

r (see Figure 1 in [5]).
Our set of data will be given by the the Dirichlet-to-Neumann map Λa defined as

follows
Λa ∶ H1(Σ)Ð→ L2(Σ)

f z→ Bνu,
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By (2) we have that Λa is continuous from H1(Σ) to L2(Σ). We denote by ∥Λa∥ its
norm in L(H1(Σ), L2(Σ)). Let us now introduce the admissible set of the absorbing
coefficients a. Given a0 ∈ C2(Qr) and M > 0 we set

A(a0,M) = {a ∈ C2(Qr), a = a0 in Qr ∖Qr,∗, ∥a∥C2(Q) ≤M}.
Having said that we may state the main results of this paper

Theorem 1.1 (Non uniqueness) For any a ∈ A(a0,M) such that Supp(a) ⊂ Cr, we have
Λa = Λ0.

Theorem 1.2 (Uniqueness) Let T > 2Diam(Ω) and ai ∈ A(a0,M), i = 1,2. Then, we
have

Λa2 = Λa1 implies a2 = a1 on Qr,∗.

The outline of this paper is as follows. In Section 2, we develop the proof of Theorem
1.1. Section 3 is devoted to the construction of geometric optics solutions to the equation
(1). Using these particular solutions, we prove in Section 3 Theorem 1.2.

2. Non uniqueness in determining the time-dependent
coefficient

In this section we aim to show that it is hopeless to recover the time-dependent coef-
ficient a over the whole domain in the case where the initial conditions are zero.

2.1. Preliminary
This section is devoted to the proof of a fundamental result which is borrowed from

[10]. Let us first introduce the following notations. We define

V = ⋃
0≤τ≤t′

D(τ) = ⋃
0≤τ≤t′

(Cr ∩ {t = τ}),

where 0 < t′ < r/2. Moreover, we denote by

S = BCr ∩ (Ω×]0, t′[), and BV = S ∪D(t′) ∪D(0).
Lemma 2.1 Let us denote by u the solution of the dissipative wave equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B2
t −∆ + a(x, t)Bt)u(x, t) = 0 inQ,

u(x,0) = 0 = Btu(x,0) in Ω,

u(x, t) = f(x, t) on Σ.

Then, u(x, t) = 0 on the set Cr.

We denote by P = B
2
t −∆ + a(x, t)Bt. A simple calculation gives us

∫
V

2Pu(x, t) Btu(x, t)dxdt = ∫
V

2B2
t u(x, t)Btu(x, t)dxdt − ∫

V
2∆u(x, t) Btu(x, t)dxdt

+∫
V

2a(x, t)∣Btu(x, t)∣2 dxdt

= ∫
V
Bt (∣Bt∣2 + ∣∇u∣2) dxdt + ∫

V

n

∑
j=1

Bj(Btu Bju)dxdt

+∫
V

2a(x, t)∣Btu(x, t)∣2 dxdt.
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Then, using the above identity, we see that

∫
V

2Pu(x, t)Btu(x, t)dxdt = ∫
V
Bte(x, t)dxdt+∫

V

n

∑
j=1

BjXj(x, t)dxdt+∫
V

2a(x, t)∣Btu(x, t)∣2 dxdt,

where e(x, t) = ∣Btu(x, t)∣2 + ∣∇u(x, t)∣2 and Xj(x, t) = −2Btu(x, t)Bju(x, t). Next, by
applying the divergence theorem, one gets

∫
V

2Pu(x, t)Btu(x, t)dxdt = ∫
S
(e(x, t)η +

n

∑
j=1

Xj(x, t)µj)dσ + ∫
D(t′)

e(x, t′)dx − ∫
D(0)

e(x,0)dx

+∫
V

2a(x, t)∣Btu(x, t)∣2 dxdt, (3)

where dσ denotes the surface element of S and the vector (η,µ1, µ2, ..., µn) ∈ Rn+1 is
the outward unit normal vector at (x, t) ∈ S such that

η =
⎛
⎝
n

∑
j=1

µ2
j

⎞
⎠

1/2

. (4)

On the other hand, from Cauchy-Schwarz inequality and (4), we can see that

∫
S
(e(x, t)η +

n

∑
j=1

Xj(x, t)µj)dσ ≥ ∫
S
(∣Btu(x, t)∣2 + ∣∇u(x, t)∣2) η − 2∣Btu(x, t)∣∣∇u(x, t)∣η dσ

≥ 0. (5)

Then, since e(x,0) = 0 we get from (3) and (5) this estimation

∫
D(t′)

e(x, t′)dx ≤ ∫
V

2Pu Btu(x, t)dxdt − ∫
V

2a(x, t)∣Btu(x, t)∣2 dxdt

Now, using the fact that Pu(x, t) = 0 for any (x, t) ∈ V , we get

∫
D(t′)

e(x, t′)dx ≤ C ∫
t′

0
∫
D(t)

(e(x, t) + ∣u(x, t)∣2)dxdt, (6)

where, the positive constant C is depending on M . Now bearing in mind that

∣u(x, t′)∣2 = ∣u(x,0)∣2 + ∫
t′

0
Bt(∣u(x, t)∣2)dt ≤ ∫

t′

0
e(x, t)dx. (7)

Thus, from (6) and (7) we deduce that

∫
D(t′)

(e(x, t′) + ∣u(x, t′)∣2)dx ≤ ∫
t′

0
∫
D(t)

(e(x, t) + ∣u(x, t)∣2)dxdt.

In view of Gronwall’s Lemma we end up deducing that u(x, t) = 0 for any x ∈D(t′) and
t′ ∈ (0, r/2). This completes the proof of the lemma.
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2.2. Proof of Theorem 1.1
Let a ∈ A(a0,M) such that Supp(a) ⊂ Cr. Let f ∈H1(Σ) and u satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B
2
t u −∆u + a(x, t)Btu = 0 in Q,

u(x,0) = 0, Btu(x,0) = 0 in Ω,

u = f on Σ,

Since from Lemma 2.1, we have u = 0 in the conic set Cr and using the fact that Supp(a) ⊂
Cr, we deduce that u solves also the following hyperbolic boundary-value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B
2
t v −∆v = 0 in Q,

v(x,0) = 0, Btv(x,0) = 0 in Ω,

v = f on Σ.

Then, we conclude that Λa(f) = Λ0(f) for all f ∈H1(Σ).

3. Construction of geometric optics solutions
In this section, we construct suitable geometrical optics solutions for the dissipative

wave equation (1), which are key ingredients to the proof of our main result. We first state
the following lemma that will be used in order to prove the main statement of this section.

Lemma 3.1 (see [10]) Let T, M1, M2 > 0, a ∈ L∞(Q) and b ∈ L∞(Q), such that
∥a∥L∞(Q) ≤ M1 and ∥b∥L∞(Q) ≤ M2. Assume that F ∈ L1(0, T ;L2(Ω)). Then, there
exists a unique solution u to the following equation

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B
2
t u −∆u + a(x, t)Btu + b(x, t)u(x, t) = F (x, t) in Q,

u(x,0) = 0 = Btu(x,0) in Ω,

u(x, t) = 0 on Σ,

(8)

such that
u ∈ C([0, T ];H1

0(Ω)) ∩ C1([0, T ];L2(Ω)).
Moreover, there exists a constant C > 0 such that for t ∈ (0, T ) we have

∥Btu(⋅, t)∥L2(Ω) + ∥∇u(⋅, t)∥L2(Ω) ≤ C∥F ∥L1(0,T ;L2(Ω)). (9)

By the use of the above lemma, we may construct suitable geometrical optics solutions
to the equation (1) and to the retrograde problem. We shall first consider a function
ϕ ∈ C∞0 (Rn). Notice that for all ω ∈ Sn−1 the function φ given by

φ(x, t) = ϕ(x + tω), (10)

solves the following transport equation

(Bt − ω ⋅ ∇)φ(x, t) = 0. (11)

Let us now prove the following Lemma.
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Lemma 3.2 Let M1, M2 > 0, a ∈ A(a0,M1) and b ∈W 1,∞(Q) such that ∥b∥W 1,∞(Q) ≤
M2. Given ω ∈ Sn−1 and ϕ ∈ C∞0 (Rn), we consider the function φ defined by (10). Then,
for any λ > 0, the following equation

B
2
t u −∆u + a(x, t)Btu + b(x, t)u = 0 in Q, (12)

admits a unique solution

u+ ∈ C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)),

of the following form

u+(x, t) = φ(x, t)ã+(x, t)eiλ(x⋅ω+t) + r+(x, t), (13)

where ã+(x, t) is given by

ã+(x, t) = exp ( − 1

2
∫

t

0
a(x + (t − s)ω, s)ds), (14)

and r+(x, t) satisfies

r+(x,0) = Btr
+(x,0) = 0, in Ω, r+(x, t) = 0 on Σ. (15)

Moreover, there exists a positive constant C > 0 such that

λ∥r+∥L2(Q) + ∥Btr+∥L2(Q) ≤ C∥ϕ∥H3(Rn). (16)

In order to prove this lemma, it will be enough to prove the existence of r+ satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B2
t −∆ + a(x, t)Bt + b(x, t))r+ = g(x, t),

r+(x,0) = Btr
+(x,0) = 0,

r+(x, t) = 0,

(17)

and obeying the estimate (16), where g(x, t) is given by

g(x, t) = −(B2
t −∆ + a(x, t)Bt + b(x, t))(φ(x, t)ã+(x, t)eiλ(x⋅ω+t)).

Bearing in mind that ã+(x, t) solves the following equation

2(Bt − ω ⋅ ∇)ã+(x, t) = −a(x, t)ã+(x, t),

one can see from (11) that

g(x, t) = −eiλ(x⋅ω+t)(B2
t −∆+a(x, t)Bt+b(x, t))(φ(x, t)ã+(x, t)) = −eiλ(x⋅ω+t)g0(x, t),

where g0 ∈ L1(0, T,L2(Ω)). Hence, in light of Lemma 3.1, we deduce the existence of a
unique solution r+ such that

r+ ∈ C([0, T ];H1
0(Ω)) ∩ C1([0, T ];L2(Ω)),
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and satisfying (17). We set

w(x, t) = ∫
t

0
r+(x, s)ds. (18)

Then, in light of (17) and (18), we get

(B2
t −∆ + a(x, t)Bt + b(x, t))w(x, t) = ∫

t

0
g(x, s)ds + ∫

t

0
(b(x, t) − b(x, s))r+(x, s)ds

+∫
t

0
Bsa(x, s)r+(x, s)ds,

Then, the function w is a solution to the following equation
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B2
t −∆ + a(x, t)Bt + b(x, t))w(x, t) = F1(x, t) + F2(x, t) in Q,

w(x,0) = 0 = Btw(x,0) in Ω,

w(x, t) = 0 on Σ.

Here F1 and F2 are given by

F1(x, t) = ∫
t

0
g(x, s)ds, (19)

and

F2(x, t) = ∫
t

0
(b(x, t) − b(x, s))r+(x, s)ds + ∫

t

0
Bsa(x, s)r+(x, s)ds.

Considering τ ∈ [0, T ] and applying Lemma 3.1 on the interval [0, τ], we obtain

∥Btw(., τ)∥2
L2(Ω) ≤ C(∥F1∥2

L2(Q) + T (M2
1 + 4M2

2 )∫
τ

0
∫

Ω
∫

t

0
∣r+(x, s)∣2 dsdxdt).

Therefore, in view of (18), we deduce that

∥Btw(., τ)∥2
L2(Ω) ≤ C(∥F1∥2

L2(Q) + ∫
τ

0
∫

t

0
∥Bsw(., s)∥2

L2(Ω) dsdt)

≤ C(∥F1∥2
L2(Q) + T ∫

τ

0
∥Bsw(., s)∥2

L2(Ω) ds).

As a consequence, we find out from Gronwall’s Lemma that

∥Btw(., τ)∥2
L2(Ω) ≤ C∥F1∥2

L2(Q).

Hence, from (18), one deduce that ∥r+∥L2(Q) ≤ C∥F1∥L2(Q). In view of (19), one can
easily see that F1 can be written as follows

F1(x, t) = ∫
t

0
g(x, s)ds = 1

iλ
∫

t

0
g0(x, s)Bs(eiλ(x⋅ω+s))ds.

Therefore, by integrating by parts with respect to s, we get

∥r+∥L2(Q) ≤
C

λ
∥ϕ∥H3(Rn),

for some C > 0. Since ∥g∥L2(Q) ≤ C∥ϕ∥H3(Rn) and using the energy estimate (9) associ-
ated to the problem (17) we obtain the following estimation

∥Btr+∥L2(Q) + ∥∇r+∥L2(Q) ≤ C∥ϕ∥H3(Rn).

This completes the proof of the lemma.
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Lemma 3.3 LetM1, M2 > 0, a ∈ A(a0,M1) , and b ∈W 1,∞(Q) such that ∥b∥W 1,∞(Q) ≤
M2. Given ω ∈ Sn−1 and ϕ ∈ C∞0 (Rn), we consider the function φ defined by (10). Then,
the following equation

B
2
t u −∆u − a(x, t)Btu + b(x, t)u = 0 in Q, (20)

admits a unique solution

u− ∈ C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)),
of the following form

u−(x, t) = ϕ(x + tω)ã−(x, t)e−iλ(x⋅ω+t) + r−(x, t), (21)

where ã−(x, t) is given by

ã−(x, t) = exp (1

2
∫

t

0
a(x + (t − s)ω, s)ds), (22)

and r−(x, t) satisfies

r−(x,T ) = Btr
−(x,T ) = 0, in Ω, r−(x, t) = 0 on Σ. (23)

Moreover, there exists a constant C > 0 such that

λ∥r−∥L2(Q) + ∥Btr−∥L2(Q) ≤ C∥ϕ∥H3(Rn). (24)

We prove this result by proceeding as in the proof of Lemma 3.2. Putting

g̃(x, t) = −(B2
t −∆ − a(x, t)Bt + b(x, t))(φ(x, t)ã−(x, t)e−iλ(x⋅ω+t)).

Then, it is easy to see that if r−(x, t) is solution to the following system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B2
t −∆ − a(x, t)Bt + b(x, t))r−(x, t) = g̃(x, t) in Q,

r−(x,T ) = 0 = Btr
−(x,T ) in Ω,

r−(x, t) = 0 on Σ,

then, r+(x, t) = r−(x,T − t) is a solution to (17) with g(x, t) = g̃(x,T − t) and a(x, t),
b(x, t) are replaced by a(x,T − t) and = b(x,T − t).

4. Proof of Theorem 1.2
This section is devoted to the proof of Theorem 1.2. The proof is based on the ge-

ometric optics solutions constructed in Section 3 and the following preliminary identity.
We need first to introduce the following notations. Let ω ∈ Sn−1, a1, a2 ∈ A(a0,M). We
set

ã(x, t) = (ã−ã+)(x, t) = exp ( − 1

2
∫

t

0
a(x + (t − s)ω, s)ds),

where ã−1 and ã+2 are given by

ã−1(x, t) = exp (1

2
∫

t

0
a1(x+(t−s)ω, s)ds), ã+2(x, t) = exp (−1

2
∫

t

0
a2(x+(t−s)ω, s)ds).

Moreover, we define a in Rn+1 by a = a2 − a1 in Qr and a = 0 on Rn+1 ∖Qr.
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4.1. An identity for the absorbing coefficient
The main purpose of this section is to give a preliminary identity for the absorbing

coefficient a .

Lemma 4.1 Let ϕ ∈ C∞0 (Ar) and a1, a2 ∈ A(a0,M). Assume that Λa2 = Λa1 , then, the
following identity holds

∫
Q
a(x, t)ϕ2(x + tω)ã(x, t)dxdt = 0. (25)

In light of Lemma 3.2, there exists a geometrical optics solution u+ to the equation

⎧⎪⎪⎪⎨⎪⎪⎪⎩

B
2
t u

+ −∆u+ + a2(x, t)Btu+ = 0 inQ,

u+(x,0) = Btu
+(x,0) = 0 in Ω,

in the following form

u+(x, t) = ϕ(x + tω)ã+2(x, t)eiλ(x⋅ω+t) + r+(x, t), (26)

corresponding to the coefficients a2, where r+(x, t) satisfies (15), (16). We denote by fλ
the function

fλ(x, t) = u+(x, t)∣Σ = ϕ(x + tω)ã+2(x, t)eiλ(x⋅ω+t).
We denote by u1 the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B
2
t u1 −∆u1 + a1(x, t)Btu1 = 0 inQ,

u1(x,0) = Btu1(x,0) = 0 in Ω,

u1(x, t) = fλ(x, t) on Σ.

Putting u = u1 − u+. Then, u is a solution to the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B
2
t u −∆u + a1(x, t)Btu = a(x, t)Btu+ inQ,

u(x,0) = Btu(x,0) = 0 in Ω,

u(x, t) = 0, on Σ.

(27)

where a = a2−a1. On the other hand Lemma 3.3 guarantees the existence of a geometrical
optic solution u− to the adjoint problem of (1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

B
2
t u

− −∆u− − a1(x, t)Btu− − Bta1(x, t)u− = 0 inQ,

u−(x,T ) = Btu
−(x,T ) = 0 in Ω,

corresponding to the coefficients a1 and −Bta1, in the form

u−(x, t) = ϕ(x + tω)e−iλ(x⋅ω+t)ã1
−(x, t) + r−(x, t), (28)

where r−(x, t) satisfies (23), (24). Multiplying the first equation of (27) by u−, integrating
by parts and using Green’s formula, we obtain

∫
Q
a(x, t)Btu+ u− dxdt = ∫

Σ
(Λa2 −Λa1)(fλ)u− dσ dt. (29)
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On the other hand, by replacing u+ and u− by their expressions, we get

∫
Q
a(x, t)Btu+ u− dxdt = ∫

Q
a(x, t)Btϕ(x + tω)eiλ(x⋅ω+t)ã+2r− dxdt

+∫
Q
a(x, t)ϕ(x + tω)eiλ(x⋅ω+t)Btã+2r− dxdt + ∫

Q
a(x, t)Btϕ(x + tω)ϕ(x + tω)(ã+2 ã−1)dxdt

+∫
Q
a(x, t)ϕ2(x + tω)Btã+2 ã−1 dxdt + iλ∫

T

0
∫

Ω
a(x, t)ϕ(x + tω)eiλ(x⋅ω+t)ã+2r− dxdt

+∫
Q
a(x, t)ϕ(x + tω)e−iλ(x⋅ω+t)ã−1Btr+dxdt + iλ∫

Q
a(x, t)ϕ2(x + tω)(ã+2 ã−1)dxdt

+∫
Q
a(x, t)Btr+r− dxdt = iλ∫

Q
a(x, t)ϕ2(x + tω)ã dxdt + I(λ),

where ã = ã+2 ã−1 . Then, in light of (29), we have

iλ∫
Q
a(x, t)ϕ2(x + tω)ã(x, t)dxdt = ∫

Σ
(Λa2 −Λa1)(fλ)u− dσ dt − I(λ). (30)

Note that for λ sufficiently large, we have

∣Iλ∣ ≤ C∥ϕ∥2
H3(Rn)

. (31)

Hence, using the fact that Λa2 = Λa1 , we deduce from (30), (31) and by taking λ → +∞
the desired result.

4.2. End of the proof
In this section we complete the proof of Theorem 1.2 by the use of the results we have

already obtained in the previous sections. Let us first consider the following set

E = {(ξ, τ) ∈ Rn ∖ {ORn} ×R, ∣τ ∣ < ∣ξ∣},

and denote by F̂ the Fourier transform of F ∈ L1(Rn+1) as follows:

F̂ (ξ, τ) = ∫
R
∫
Rn
F (x, t)e−ix⋅ξe−itτ dxdt.

In light of (25), we have as λ goes to +∞, the following identity

∫
Q
a(x, t)ϕ2(x + tω) exp ( − 1

2
∫

t

0
a(x + (t − s)ω, s)ds)dxdt = 0. (32)

Then, using the fact a(x, t) = 0 outside Qr,∗ and making this change of variables y =
x + tω, one gets

∫
T

0
∫
Rn
a(y − tω, t)ϕ2(y) exp ( − 1

2
∫

t

0
a(y − sω, s)ds)dy dt = 0.

Bearing in mind that

∫
T

0
∫
Rn

a(y − tω, t) ϕ2(y) exp ( − 1

2
∫

t

0
a(y − sω, s)ds)dy dt

= −2∫
T

0
∫
Rn
ϕ2(y) d

dt
[ exp ( − 1

2
∫

t

0
a(y − sω, s)ds)]dy dt

= −2∫
Rn
ϕ2(y)[ exp ( − 1

2
∫

T

0
a(y − sω, s)ds) − 1]dy.
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we conclude that

∫
Rn
ϕ2(y)[ exp ( − 1

2
∫

T

0
a(y − sω, s)ds) − 1]dy = 0. (33)

Now, we consider a nonnegative function ψ ∈ C∞0 (Rn) supported in the unit ball B(0,1)
such that ∥ψ∥L2(Rn) = 1. We define

ϕh(x) = h−n/2ψ(
x − y
h

), (34)

where y ∈ Ar. Then, for h > 0 sufficiently small one can see that Supp ϕh ⊂ C∞0 (Ar) and
satisfies

Suppϕh ∩Ω = ∅, and Suppϕh ± Tω ∩Ω = ∅.
Then, as h goes to 0 we deduce from (33) with ϕ = ϕh that

exp ( − 1

2
∫

T

0
a(y − sω, s)ds) − 1 = 0.

Since a = a2 − a1 = 0 outside Qr,∗, we conclude that

∫
R
a(y − tω, t)dt = 0, a.e y ∈ Ar, ω ∈ Sn−1. (35)

On the other hand, if ∣y∣ ≤ r
2

, we notice that

a(y − tω, t) = 0, ∀ t ∈ R. (36)

Indeed, we have
∣y − tω∣ ≥ ∣t∣ − ∣y∣ ≥ t − r

2
, (37)

hence, (y − tω, t) ∉ C +

r if t > r/2, from (37). As (y − tω, t) ∉ C +

r if t ≤ r/2, then we have
(y− tω, t) ∉ C +

r ⊃ Qr,∗ for t ∈ R. This and the fact that a = a2−a1 = 0 outside Qr,∗, yield
(36), and consequently,

∫
R
a(y − tω, t)dt = 0, ∣y∣ ≤ r

2
.

By a similar way, we prove for ∣y∣ ≥ T −r/2, that (y−tω, t) ∉ C −

r ⊃ Qr,∗, for t ∈ R. Then
we obtain

∫
R
a(y − tω, t)dt = 0, a.e. y ∉ Ar, ω ∈ Sn−1. (38)

Thus, by (35) and (38) we find

∫
R
a(y − tω, t)dt = 0, a.e y ∈ Rn, ω ∈ Sn−1.

We now turn our attention to the fourier transform of a. Let ξ ∈ Rn. In light of (38) and
by the use of Fubini’s Theorem, we get

∫
R
∫
Rn
a(x − tω, t)e−ix⋅ξ dxdt = 0.

Making the change of variables y = x − tω, one gets

∫
R
∫
Rn
a(y, t)e−iy⋅ξe−it(ω⋅ξ) dy dt = 0.
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Let us now consider ξ′ ∈ Sn−1 such that ξ ⋅ ξ′ = 0. Setting

ω = τ

∣ξ∣2 ⋅ ξ +
¿
ÁÁÀ1 − τ2

∣ξ∣2 ⋅ ξ
′ ∈ Sn−1,

then (ξ, τ) = (ξ, ω ⋅ ξ) ∈ E. We then deduce that â(ξ, τ) = 0 in the set E. By an argument
of analyticity, we extend this result to Rn+1. Hence, by the injectivity of the Fourier
transform we get the desired result. This completes the proof of Theorem 1.2.
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