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RÉSUMÉ. Dans ce papier, on a prouvé une estimation de stabilité pour le problème inverse de dé-
termination du champ magnétique dans l’équation des ondes donné sur un domaine non borné à
partir de l’opérateur de Dirichlet-to-Neumann. On a montré un résultat de stabilité pour ce problème
inverse, dont la démonstration est basée sur la construction de solutions optique géométrique pour
l’équation des ondes avec un potentiel magnétique 1-périodique.

ABSTRACT. We consider the boundary inverse problem of determining the aligned magnetic field
appearing in the magnetic wave equation in a periodic quantum cylindrical waveguide from boundary
observations. The observation is given by the Dirichlet to Neumann map associated to the wave
equation. We prove by means of the geometrical optics solutions of the magnetic wave equation
that the knowledge of the Dirichlet-to-Neumann map determines uniquely the aligned magnetic field
induced by a time independent and 1-periodic magnetic potential. We establish a Hölder-type stability
estimate in the inverse problem.
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1. Introduction
Let Ω = R × ω be an infinite waveguide, where ω is a bounded domain of R2, with

C2-boundary ∂ω. Throughout this text we write x = (x1, x
′) with x′ = (x2, x3) for

every x = (x1, x2, x3) ∈ Ω. Let A = (aj)1≤j≤3 ∈ W 3,∞(Ω;R3) be time independent
and 1-periodic magnetic potential with respect to x1 i.e.

A(x1 + 1, x′) = A(x1, x
′), (x1, x

′) ∈ Ω = R× ω. (1.1)

Given T > 0, we consider the initial boundary value problem (IBVP) for the wave equa-
tion, 

(∂2t −∆A)u = 0 in Q = (0, T )× Ω,
u(0, ·) = 0 in Ω,
∂tu(0, ·) = 0 in Ω
u = g on Σ = (0, T )× ∂Ω,

(1.2)

where ∆A is the magnetic Laplacian defined by

∆A =
3∑

j=1

(∂j + iaj)
2 = ∆+ 2iA · ∇+ idiv(A)− |A|2.

In this paper, we are interested in determining the magnetic potential A from the know-
ledge of the Dirichlet-to-Neumann (abbreviated to DN in the following) map associated
with A

ΛA(g) = (∂ν + iA · ν)u, (1.3)

where u is the solution to (1.2) and ν = ν (x) denotes the unit outward normal to ∂Ω at
x. As was noted in [8], the DN map is invariant under the gauge transformation of the
magnetic potential : Namely, given Ψ ∈ C1(Ω) such that Ψ|∂Ω = 0, it ensues from the
identities,

e−iΨ∆Ae
iΨ = ∆A+∇Ψ, e−iΨΛAe

iΨ = ΛA+∇Ψ, (1.4)

that
ΛA = ΛA+∇Ψ.

From this information and from a geometric view point, we may reformulate the basic
inverse problem considered in this article as follows.
Inverse problem for the magnetic wave equation : is it possible to determine the ma-
gnetic field dαA given by

dαA =
3∑

i,j=1

(
∂ai
∂xj

− ∂aj
∂xi

) dxj ∧ dxi,

from the knowledge of the boundary measurements ΛA.
The problem inverse of recovering time-independent coefficient for partial differential
equations such as the wave equation have attracted many attention over the recent years.
For example, in [14], Rakesh study the determination of the time-independent scalar po-
tentials in a wave equations, from the DN map. Bellassoued and Benjoud proved in [2]
that the knowledge of the Dirichlet-to-Neumann map for the magnetic wave equation
measured on the boundary determines uniquely the magnetic field. There methods is es-
sential based on the construction of geometric optics solution.
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In this results, the DN map gives on the whole boundary. The uniqueness by a local DN
map is well solved (Belishev [1], Eskin-Ralston [9], Eskin [6], Katchalov, Kurylev, and
Lassas [11]).
Note here that all these results are concerned in a bounded domain. In this article We
consider the inverse problem of determining the magnetic field appearing in the magnetic
wave equation in an infinite cylindrical domain. There are only a small number of ma-
thematical papers dealing with with inverse boundary problems in an unbounded domain.
In [13], Li and Uhlmann proved that the knowledge of DN map determines uniquely the
scalar potential in an infinite slab. In [5] Choulli , Kian, and Socoorsi proved a logarith-
mic stability in the determination of the time-dependent scalar potential in a 1-periodic
quantum cylindrical waveguide, from the boundary measurements of the solution to the
dynamic Schrödinger equation. See also the refs. ([10], [12] and [13]).

1.1. Notations
Throughout this text we denote by

Ω̃ = (0, 1)× ω, Q̃ = (0, T )× Ω̃, Σ̃ = (0, T )× (0, 1)× ∂ω. (1.5)

Further, we denote by |y| :=
(∑3

i=1 y
2
i

)1/2
the Euclidian norm of y = (y1, y2, y3) ∈ R3

and we write

B (x0, r) = {x = (x1, x2, x3) ∈ R3; |x− x0| ≤ r}, for all r > 0.

We noteHp (Ω) the p-th order Sobolev space on Ω for every p ∈ N, whereH0 (Ω) stands
for L2 (Ω) . Finally, we put

Dω = inf{R ∈ R+ : ω ⊂ B (x′0, R) for some x′0 ∈ R2}.

We may now define the trace operator τ by

τw = w|Σ, for w ∈ C∞
0 ([0, T ]× R, C∞ (ω)) .

Recall that since ω is a bounded domain of R2 with C2-boundary, we can extend τ to
a bounded operator from H2

(
0, T ;H2 (Ω)

)
into L2

(
(0, T )× R, H3/2 (∂ω)

)
. Then the

space X0 = τH2
(
0, T ;H2 (Ω)

)
endowed with the norm

∥ w ∥X0= inf{∥W∥H2(0,T ;H2(Ω)); W ∈ H2
(
0, T ;H2 (Ω)

)
such that τW = w},

is Hilbertian. Moreover, the linear operator ΛA defined by (1.3), is bounded from X0 to
L2 (Σ).

1.2. Main results
In this subsection we state the main results of this article. Ours first result can be stated

as follows.

Theorem 1.1 We consider two potentials Ai, i = 1, 2 in W 3,∞(Ω;R3) obey the condi-
tions ∥Ai∥W 3,∞(Ω̃) ≤M, i = 1, 2, For M > 0 be fixed. Assume moreover that

A1 = A2 on (0, 1)× ∂ω, (1.6)

∂jA1 = ∂jA2 on (0, 1)× ∂ω, j = 1, 2, 3. (1.7)
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Then there exist a constant C > 0 and µ ∈ (0, 1), such that∥∥∥∥∂a2∂x3
− ∂a3
∂x2

∥∥∥∥
H−1(Ω̃)

≤ C∥ΛA2 − ΛA1∥µ.

where C depends on T , ω and M .

Theorem 1.1 follows from a result we shall make precise below, which is related to the
following IBVP with quasi-periodic boundary conditions,

(∂2t −∆A)u = 0 in Q̃,
u(0, ·) = 0 in Ω̃,

∂tu(0, ·) = 0 in Ω̃,

u = h on Σ̃,
u(·, 1, ·) = eiθu(·, 0, ·) on (0, T )× ω,
∂x1u(·, 1, ·) = eiθ∂x1u(·, 0, ·) on (0, T )× ω,

(1.8)

where θ is arbitrarily fixed in [0, 2π). To this purpose, for any subspace R = (0, 1)× R2

or R3, we take

H1
θ (R) = {u ∈ H1(R); u(1, ·) = eiθu(0, ·) and ∂x1u(1, ·) = eiθ∂x1u(0, ·) in R2},

and

H2
θ (R) = {u ∈ H2(R); u(1, ·) = eiθu(0, ·) and ∂x1

u(1, ·) = eiθ∂x1
u(0, ·) in R2}.

We denote by τ̃ the linear bounded operator from H2
(
0, T ;H2

(
Ω̃
))

into

L2
(
(0, T )× (0, 1) ,H3/2 (∂ω)

)
, such that

τ̃w = w|Σ̃ for w ∈ C∞
0 ([0, T ]× (0, 1) , C∞ (ω)) .

Then the space X̃θ = τ̃
(
H2
(
0, T ;H2

θ

(
Ω̃
)))

endowed with the norm

∥ w ∥X̃θ
= inf{∥W∥H2(0,T ;H2(Ω̃)); W ∈ H2

(
0, T ;H2

(
Ω̃
))

such that τ̃W = w},

is Hilbertian. The operator

ΛA,θ : h ∈ X̃θ 7−→ (∂ν + iA · ν)u ∈ L2
(
Σ̃
)
, (1.9)

where u is the solution to (1.8), is bounded. The following result essentially claims that
Theorem 1.1 remains valid upon substituting ΛAj ,θ for Aj , j = 1, 2, for θ arbitrary in
[0, 2π).

Theorem 1.2 Let A1 and A2 obey the conditions of Theorem 1.1 for M > 0. Then we
may find a constant C > 0 depending only T, M and ω, such that the estimate∥∥∥∥∂a2∂x3

− ∂a3
∂x2

∥∥∥∥
H−1(Ω̃)

≤ C∥ΛA2,θ − ΛA1,θ∥µ,

holds for every θ ∈ [0, 2π).

It is clear that Theorem 1.1 yields uniqueness in the identification of the aligned magnetic
field from the knowledge of the DN map.
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2. Geometric optics solutions
In this section we define geometric optics solutions for the magnetic wave equation in

(0, T )× Ω̃ with quasi-periodic boundary conditions. These functions are essential tools in
the proof of Theorems 1.1 and 1.2. The main difficulty here is the quasi-periodic boundary
conditions. We shall adapt the method suggested by Bellassoued and Ben joud in [2], for
building geometric optics solutions to the magnetic wave equation in a bounded domain,
to the framework of periodic media.
Let v = v (t, x) ∈ C1

(
[0, T ] ;L2

(
Ω̃
))

∩ C
(
[0, T ] ;H1

(
Ω̃
))

be a given solution of the
following magnetic wave equation :

(
∂2t −∆A

)
v = 0 in Ω̃,

v(T, .) = 0 in Ω̃,

∂tv(T, .) = 0 in Ω̃,

v = h in Σ̃,
v(., 1, .) = eiθv(., 0, .) in (0, T )× ω,
∂x1v(., 1, .) = eiθ∂x1v(., 0, .) in (0, T )× ω.

(2.1)

Let u = u (t, x) ∈ C1
(
[0, T ] ;L2

(
Ω̃
))

∩ C
(
[0, T ] ;H1

(
Ω̃
))

satisfy the conditions

u (0, .) = ∂tu (0, .) = 0 in Ω̃, u = 0 in Σ̃, (2.2)

and

u (., 1, .)− eiθu (., 0, .) = ∂x1u (., 1, .)− eiθ∂x1u (., 0, .) = 0, in (0, T )× ω.

Then, from the Green formula, we have∫
Q̃

(
∂2t u−∆Au

)
vdxdt =

∫
Q̃

u(∂2t v −∆Av)dxdt−
∫
Σ̃

(∂ν + iA · ν)uvdσxdt

= −
∫
Σ̃

(∂ν + iA · ν)uvdσxdt.
(2.3)

2.1. Geometric optics solutions in periodic media
For all r > 0, we take ϱ > 0, such that

T > T − 4ϱ > DΩ′ and Ω′ ⊂ B(x0, (T/2)− 2ϱ),

and let ϕ0 ∈ C∞
0

(
R2
)

such that
suppϕ0 ⊂ Dϱ, (2.4)

where

Dϱ = B

(
0,
T

2

)
\B

(
0,
T

2
− 2ϱ

)
. (2.5)

Now, for κ′ ∈ S1, θ fixed in [0, 2π) and ϕθ ∈ H2
θ

(
(0, 1)× R2

)
, we may introduce the

following subspace of H2
(
(0, 1)× R2

)
,

H2
θ,κ′ (Dϱ) = {ϕ = ϕθϕ0 ∈ H2

(
(0, 1)× R2

)
; κ′ · ∇x′ϕ ∈ H2

(
(0, 1)× R2

)
}
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where
ϕ0 ∈ H2

(
R2
)

satisfies (2.4)

endowed with the natural norm :

Nκ′ (ϕ) = ∥ϕ∥H2((0,1)×R2) + ∥κ′ · ∇x′ϕ∥H2((0,1)×R2).

It is apparent from (2.4) and (2.5) that, for all ϕ ∈ H2
θ,κ′ (DR)

suppϕ ∩ ω = ∅, (suppϕ± Tκ′) ∩ ω = ∅, ∀κ′ ∈ S1. (2.6)

Next, for all t ∈ R and ϕ ∈ H2
θ,κ′ (DR) , we put

Φ (t, x) = ϕ (x1, x
′ + tκ′) , t ∈ R, (x1, x′) ∈ R3, (2.7)

then it is clear that the function Φ is solution to the transport equation

(∂t − κ′ · ∇x′)Φ (t, x) = 0, (t, x) ∈ R× R3. (2.8)

Having seen this, we define

b (t, x) = exp

(
i

∫ t

0

κ′ ·A′ (x1, x
′ + sκ′) ds

)
. (2.9)

where

A′ (x) =

{
(a2, a3) (x) , if x ∈ Ω,
0, if not.

It is easy to see that

(∂t − κ′ · ∇x′ − iκ′ ·A′) b (t, x) = 0, for all (t, x) ∈ R× R3. (2.10)

Let us now prove the following lemma.

Lemma 2.1 Assume that A ∈ W 3,∞ (Ω;R3
)

satisfies (1.1). Pick Φ (resp. b) as in (2.7)
(resp. (2.9)). Then for all θ ∈ [0, 2π) and λ > 0, one can construct a solution u ∈
C1
(
[0, T ] ;L2

(
Ω̃
))

∩ C
(
[0, T ] ;H1

θ

(
Ω̃
))

to the equation(
∂2t −∆A

)
u = 0, (t, x) ∈ Q̃, (2.11)

of the form
u (t, x) = Φ (t, x) b (t, x) eiλ(x

′·κ′+t) + ψλ (t, x) ,

where the correction term ψλ satisfies ψλ (0, .) = ψλ (T, .) = 0 in Ω̃, ψλ = 0 on Ω̃
together with the quasi-periodic boundary conditions

ψλ (., 1, .)− eiθψλ (., 0, .) = ∂x1ψλ (., 1, .) = eiθ∂x1ψλ (., 0, .) = 0 in (0, T )× ω.

Moreover, the following estimate

λ ∥ψλ∥L2(Q̃) + ∥∇ψλ∥L2(Q̃) ≤ CNκ′ (ϕ) , (2.12)

holds for some constant C > 0 depending only on Ω̃, T and ∥A∥W 3,∞(Ω).
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Proof 2.1 To prove our Lemma, it would be enough to show that if ψλ solves

(
∂2t −∆A

)
ψλ =

−
(
∂2t −∆A

) (
ϕ (x1, x

′ + tκ′) b (t, x) eiλ(x
′·κ′+t)

)
in Q̃,

ψλ (0, .) = 0 in Ω̃,

∂tψλ (0, .) = 0 in Ω̃,

ψλ = 0, on Σ̃,
ψλ (., 1, .) = eiθψλ (., 0, .) in (0, T )× ω,
∂x1ψλ (., 1, .) = eiθ∂x1ψλ (., 0, .) in (0, T )× ω.

(2.13)

Then the estimate (2.12) holds. We set

k (t, x) = −
(
∂2t −∆A

) (
ϕ (x1, x

′ + tκ′) b (t, x) eiλ(x
′·κ′+t)

)
, (t, x) ∈ (0, T )× Ω̃.

(2.14)
Thus, we have

k (t, x) = −eiλ(x
′·κ′+t) (∂2t −∆A

)
(Φ (t, x) b (t, x))

−2iλeiλ(x
′·κ′+t) (∂t − κ′ · ∇x′) (Φ (t, x))

−2iλeiλ(x
′·κ′+t) (∂t − κ′ · ∇x′ − iκ′ ·A′) (b (t, x)) .

Since Φ(t, x) = ϕ (x1, x
′ + tκ′) and b (t, x) are the respective solutions of (2.8) and

(2.10) we deduce that

k (t, x) = −eiλ(x
′·κ′+t) (∂2t −∆A

)
(Φ (t, x) b (t, x)) = −eiλ(x

′·κ′+t)k0 (t, x)

where k0 satisfies
∥k0∥L2(Q̃) + ∥∂tk0∥L2(Q̃) ≤ CNκ′ (ϕ) .

Since the coefficient A does not depend on t, the function

w (t, x) =

∫ t

0

ψ (s, x) ds,

solves the mixed hyperbolic problem (2.13) with the right side

k1 (t, x) =

∫ t

0

k (s, x) ds =
1

iλ

∫ t

0

k0 (s, x) ∂s

(
eiλ(x

′·κ′+s)
)
ds.

Integrating by part with respect to s, we conclude that

∥k1∥L2(Q̃) ≤
C

λ
Nκ′ (ϕ) ,

and it follows from the energy estimate for w that

∥ψλ∥L2(Q̃) = ∥∂tw∥L2(Q̃) ≤
C

λ
Nκ′ (ϕ) ,

Since ∥k∥L2(Q̃) ≤ CNκ′ (ϕ) we obtain

∥∇ψλ∥L2(Q̃) ≤ CNκ′ (ϕ) ,

which completes the proof.

remark 1 We have a similar result by replacing the condition ψλ (0, .) = 0 in Ω̃ by
ψλ (T, .) = 0 in Ω̃.
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3. Stability estimate

3.1. Preliminary estimate
Let us introduce

A = A2 −A1,

where the function Aj , j = 1, 2, is as in Theorem (1.1). Recall that since A1 − A2 = 0
on ∂Ω, we can extend A = (a1, a2, a3) to H1

(
R3
)

and we set

b (t, x) =
(
b2b1

)
(t, x) = exp

(
i

∫ t

0

κ′ ·A′ (x1, x
′ + sκ′) ds

)
,

where A′ = (a1, a2) .
The main purpose of this subsection is the following technical result.

Lemma 3.1 Let θ ∈ [0, 2π) be fixed. For j = 1, 2, let ϕj ∈ H2
θ,κ′ (DR). Then for any

κ′ ∈ S1, there exists a constant C = C (M,ω) > 0 such that,

Iκ′ (ϕ1, ϕ2) ≤ C

(
λ ∥ΛA1,θ − ΛA2,θ∥+

1

λ

)
Nκ′ (ϕ1)Nκ′ (ϕ2) . (3.1)

where

Iκ′ (ϕ1, ϕ2) =

∣∣∣∣∣
∫ T

0

∫ 1

0

∫
R2

κ′ ·A′ (x)
(
ϕ2ϕ1

)
(x1, x

′ + tκ′) b (t, x) dxdt

∣∣∣∣∣ .
Proof 3.1 Lemma 2.1 guarantees the existence of geometric optics solution
u2 ∈ C1

(
[0, T ] ;L2

(
Ω̃
))

∩ C
(
[0, T ] ;H1

θ

(
Ω̃
))

to the equation
(
∂2t −∆A2

)
u in Q̃,

with the form

u2 (t, x) = ϕ2 (x1, x
′ + tκ′) b2 (t, x) e

iλ(x′·κ′+t) + ψ2,λ (t, x) , (3.2)

where ψ2,σ satisfies
ψ2,λ (0, .) = 0 in Ω̃,

∂tψ2,λ (0, .) = 0 in Ω̃,

ψ2,λ = 0 on Σ̃,
ψ2,λ (., 1, .) = eiθψ2,λ (., 0, .) in (0, T )× ω,
∂x1ψ2,λ (., 1, .) = eiθ∂x1ψ2,λ (., 0, .) in (0, T )× ω,

(3.3)

and
λ ∥ψ2,λ∥L2(Q̃) + ∥∇ψ2,λ∥L2(Q̃) ≤ CNκ′ (ϕ2) . (3.4)

We denote by u1, the solution of

(
∂2t −∆A1

)
u1 = 0 in Q̃,

u1 (0, .) = ∂tu1 (0, .) = 0 in Ω̃,

u1 = u2 = fλ,2 on Σ̃,
u1 (., 1, .) = eiθu1 (., 0, .) in Ω̌,

∂x1u1 (., 1, .) = eiθ∂x1u1 (., 0, .) in Ω̃.

(3.5)
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Further, as u1 − u2 = 0 on Σ̃, we get from (3.5) and (3.2) that u = u1 − u2 ∈
C1
(
[0, T ] ;L2

(
Ω̃
))

∩ C
(
[0, T ] ;H1

θ

(
Ω̃
))

verifies

(
∂2t −∆A1

)
u = 2iA · ∇u2 + V u2 in Q̃,

u (0, .) = ∂tu (0, .) = 0 in Ω̃,

u = 0 on Σ̃,

u (., 1, .) = eiθu (., 0, .) in Ω̃,

∂x1u (., 1, .) = eiθ∂x1u (., 0, .) in Ω̃,

where we have set
V = i div (A)− (A2 ·A2 −A1 ·A1) .

Next let v ∈ C1
(
[0, T ] ;L2

(
Ω̃
))

∩ C
(
[0, T ] ;H1

θ

(
Ω̃
))

be a solution of the wave equa-

tion
(
∂2t −∆A1

)
v = 0, in Q̃, having the form

v (t, x) = ϕ1 (x1, x
′ + tκ′) b1 (t, x) e

iλ(x′·κ′+t) + ψ1,λ (t, x) , (3.6)

where ψ1,λ satisfies
ψ1,λ (T, .) = 0 in Ω̃,

ψ1,λ = 0 on Σ̃,
ψ1,λ (., 1, .) = eiθψ1,λ (., 0, .) in (0, T )× ω,
∂x1ψ1,λ (., 1, .) = eiθ∂x1ψ1,λ (., 0, .) in (0, T )× ω,

(3.7)

and
λ ∥ψ1,λ∥L2(Q̃) + ∥∇ψ1,λ∥L2(Q̃) ≤ CNκ′ (ϕ1) . (3.8)

Set
gλ (t, x) = ϕ1 (x1, x

′ + tκ′) b1 (t, x) e
iλ(x′·κ′+t), (t, x) ∈ Σ̃,

In light of (2.3) , we deduce from (3.5), the following orthogonality identity∫
Q̃

2iA · ∇u2vdxdt+
∫
Q̃

V (x)u2vdxdt = −
∫
Σ̃

(ΛA1,θ − ΛA2,θ) (fλ) gλdσdt

= −⟨(ΛA1,θ − ΛA2,θ) (fλ) , gλ⟩.
(3.9)

On the other hand by (3.2) and (3.6) we have∫
Q̃

2iA · ∇u2u1dxdt = −
∫
Q̃

2λκ′ ·A′ (x)
(
ϕ2ϕ1

)
(x1, x

′ + tκ′)
(
b2b1

)
(t, x) dxdt

+Iλ,
(3.10)

where

Iλ =

∫
Q̃

2iA · ∇ (Φ2 (t, x) b2 (t, x)) Φ1 (t, x) b1 (t, x) dxdt

+

∫
Q̃

2iA · ∇ (Φ2 (t, x) b2 (t, x)) e
iλ(x′·κ′+t)ψ1,λ (t, x) dxdt

+

∫
Q̃

2iA · ∇ψ2,λ (t, x) Φ1 (t, x) b1 (t, x) e
iλ(x′·κ′+t)

+

∫
Q̃

2iA · ∇ψ2,λ (t, x)ψ1,λ (t, x) dxdt

−
∫
Q̃

2λκ′ ·A′ (x) b2 (t, x) Φ2 (t, x)ψ1,λe
iλ(x′·κ′+t)dxdt.
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Using (3.4) and (3.8), we obtain that

|Iλ| ≤ CNκ′ (ϕ2)Nκ′ (ϕ1) . (3.11)

From this and (3.9)-(3.10), it follows that

λ

∣∣∣∣∫
Q̃

κ′ ·A′ (x)
(
ϕ2ϕ1

)
(x1, x

′ + tκ′)
(
b2b1

)
(t, x) dxdt

∣∣∣∣
≤ C(

∣∣∣∣∫
Q̃

V u2vdxdt

∣∣∣∣+ ∣∣∣∣∫
Σ1

(ΛA1, θ − ΛA2, θ) (fλ) gλdσdt

∣∣∣∣
+ Nκ′ (ϕ2)Nκ′ (ϕ1)). (3.12)

Moreover, by (3.2), (3.4), (3.6) and (3.8), one gets∣∣∣∣∫
Q̃

V (x)u2vdxdt

∣∣∣∣ ≤ CNκ′ (ϕ2)Nκ′ (ϕ1) . (3.13)

By a trace inequality, we have∣∣∣∣∫
Σ̃

(ΛA1,θ − ΛA2,θ) (fλ) gλdσdt

∣∣∣∣ =
∣∣∣⟨(ΛA1,θ − ΛA2,θ) (fλ) , gλ⟩L2(Σ̃)

∣∣∣
≤ ∥(ΛA1,θ − ΛA2,θ)(fλ)∥L2(Σ̃) ∥gλ∥L2(Σ̃)
≤ ∥ΛA1,θ − ΛA2,θ∥ ∥fλ∥X̃θ

∥gλ∥L2(Σ̃)
≤ Cλ2 ∥ΛA1,θ − ΛA2,θ∥

Nκ′ (ϕ1)Nκ′ (ϕ2) . (3.14)

From (3.12)-(3.13) and (3.14), we derive for λ sufficiently large∣∣∣∣∣
∫ T

0

∫ 1

0

∫
R2

κ′ ·A′ (x)
(
ϕ2ϕ1

)
(x1, x

′ + tκ′) b (t, x) dxdt

∣∣∣∣∣
≤ C

(
λ ∥ΛA1,θ − ΛA2,θ∥+

1

λ

)
Nκ′ (ϕ1)Nκ′ (ϕ2) . (3.15)

This completes the proof of the lemma.

3.2. X-ray transform estimate
The X-ray transform is an integral transform, defined by integrating over lines. More

precisely, if κ′ ∈ S1 and f is a function defined on R3, then the X-ray transform of f in
the direction κ′ is the function Pf defined by

(Pf) (κ′, x) =
∫
R
f (x1, x

′ + sκ′) ds, x = (x1, x
′) ∈ R3. (3.16)

It is easy to see that (Pf) (ω′, x) does not change if x′ is moved in the direction ω′.
Therefore we normally restrict x′ to ′̃⊥ = {ς ∈ R2; ς · ω′ = 0}. For j = 1, 2, 3, let us
introduce the following notations

ρj (x) = κ′ · ∂A
′

∂xj
(x) =

3∑
i=2

κi
∂ai
∂xj

(x) , x ∈ R3. (3.17)

and
D+

ϱ (κ′) = {x′ ∈ Dϱ, x
′ · κ′ > 0}.

Then, the X-ray transform stability estimate of the functions ρj is as follows
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Lemma 3.2 Let M > 0, and let Aj , for j = 1, 2, be as in theorem 1.1. Then, there exists
constants C > 0 and λ0 > 0 such that for all κ′ ∈ S1 and all ϕ = ϕθϕ0 ∈ H2

κ′,θ (Dϱ)

satisfying supp (ϕ0) ⊂ D+
ϱ and ∂jϕ ∈ H2

κ′,θ (Dϱ), the estimate∣∣∣∣∫ 1

0

e−i2kπx1

∫
R2

ϕ2 (x) (Pρj) (κ′, x) exp
(
i

∫
R
κ′ ·A′ (x1, x

′ + sκ′) ds

)
dx

∣∣∣∣ ≤
C

(
λ ∥ΛA1,θ − ΛA2,θ∥+

1

λ

)
Nκ′ (ϕ)Nκ′ (∂jϕ) ,

holds for any λ ≥ λ0, k ∈ Z and j = 2, 3.

Proof 3.2 For ϕ1, ϕ2 ∈ H2
κ′,θ (Dϱ), we have∫ T

0

∫ 1

0

∫
R2

κ′ ·A′ (x)
(
ϕ2ϕ1

)
(x1, x

′ + tκ′) b (t, x) dx′dx1dt

=

∫ T

0

∫ 1

0

∫
R2

κ′ ·A′ (x1, x
′ − tκ′)

(
ϕ2ϕ1

)
(x) b (t, x1, x

′ − tκ′) dx′dx1dt

=

∫ 1

0

∫
R2

(
ϕ2ϕ1

)
(x)

∫ T

0

κ′ ·A′ (x1, x
′ − tκ′)

= exp

(
i

∫ t

0

κ′ ·A′ (x1, x
′ − sκ′) ds

)
dtdx′dx1

= i

∫ 1

0

∫
R2

(
ϕ2ϕ1

)
(x)

∫ T

0

d

dt
exp

(
i

∫ t

0

κ′ ·A′ (x1, x
′ − sκ′) ds

)
dtdx1dx

′

= i

∫ 1

0

∫
R2

(
ϕ2ϕ1

)
(x)

[
exp

(
i

∫ T

0

κ′ ·A′ (x1, x
′ − sκ′) ds

)
− 1

]
dx. (3.18)

We choose ϕ1 and ϕ2 such that ϕ2 (x) = e−i2kπx1ϕ (x), ϕ1 = ∂jϕ, j ∈ {2, 3} and
integrating by parts, so (3.18) yields∫ T

0

∫ 1

0

∫
R2

κ′ ·A′ (x)
(
ϕ2ϕ1

)
(x1, x

′ + tκ′) b (t, x) dxdt

=
i

2

∫ 1

0

∫
R2

e−i2kπx1ϕ2 (x)
∂

∂xj

[
exp

(
i

∫ T

0

κ′ ·A′ (x1, x
′ − sκ′) ds

)]
dx

= −1

2

∫ 1

0

∫
R2

e−i2kπx1ϕ2 (x)
∂

∂xj

(∫ T

0

κ′ ·A′ (x1, x
′ − sκ′) ds

)

exp

(
i

∫ T

0

κ′ ·A′ (x1, x
′ − sκ′) ds

)
dx. (3.19)

Since the support of A′ is contained in R×B (0, T/2− 2ϱ) , we have∫ T

0

κ′ ·A′ (x1, x
′ − sκ′) ds =

∫
R
κ′ ·A′ (x1, x

′ − sκ′) ds, (3.20)

for all x′ ∈ D+
ϱ (κ′) . In fact, for all s ≥ T and x′ ∈ DR it is easy to see that

(x1, x
′ + sκ′) /∈ supp (A′) , for each x1 ∈ [0, 1]. Therefore we have∫ T

0

κ′ ·A′ (x1, x
′ − sω′) ds =

∫ ∞

0

κ′ ·A′ (x1, x
′ − sκ′) ds, (x1, x

′) ∈ [0, 1]×D+
ϱ (κ′) .

(3.21)
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On the other hand, if s ≤ 0 and x′ ∈ D+
ϱ it holds true that |x′ − sκ′|2 = |x′|2 + s2 −

2sx′ · κ′ ≥ (T/2− 2ϱ)
2 hence A (x1, x

′ + sκ′) = 0. This and (3.21) entail (3.20).
Further, upon inserting (3.20) into the equation (3.19), we obtain∫ T

0

∫ 1

0

∫
R2

κ′ ·A′ (x)
(
ϕ2ϕ1

)
(x1, x

′ + tκ′) b (t, x) dxdt

= −1

2

∫ 1

0

∫
R2

e−i2kπx1ϕ2 (x)
∂

∂xj

(∫
R
κ′ ·A′ (x1, x

′ − sω′) ds

)
exp

(
i

∫
R
κ′ ·A′ (x1, x

′ − sκ′) ds

)
dx

= −1

2

∫ 1

0

∫
R2

e−i2kπx1ϕ2 (x)P (ρj) (κ
′, x) exp

(
i

∫
R
κ′ ·A′ (x1, x

′ − sκ′) ds

)
dx,

where ρj is given by (3.17). From this and Lemma 3.1, we obtain for any λ > λ0 that∣∣∣∣∫ 1

0

e−i2kπx1

∫
R2

ϕ2 (x)P (ρj) (κ
′, x) exp

(
i

∫
R
κ′ ·A′ (x1, x

′ − sκ′) ds

)
dx′dx1

∣∣∣∣ ≤
C

(
λ ∥ΛA1,θ − ΛA2,θ∥+

1

λ

)
Nκ′ (ϕ)Nκ′ (∂jϕ) .

The proof is then complete.

3.3. Aligned magnetic field estimation
In this subsection, we estimate the the partial Fourier transform of the aligned ma-

gnetic field, in terms of the DN map. To this end, we denoted by f̂ the partial Fourier
transform of the function f with respect to the variable x′ ∈ ω, i.e

f̂ (x1, ξ
′) = (2π)

−1
∫
R2

f (x1, x
′) e−ix′·ξ′dx′, ξ′ ∈ R2, x1 ∈ R.

Further, setting ω′⊥ = {ς ∈ R2; ς · ω′ = 0}, we recall from the definition (3.16) that

Lemma 3.3 Let f ∈ L1
(
R3
)

and κ′ ∈ S1. Then (Pf) (κ′, .) ∈ L1
(
R× κ′

⊥
)

and

̂((Pf) (κ′, .)) (x1, ξ′) = (2π)
−1
∫
κ′⊥

e−ix′·ξ′(Pf) (κ′, x1, x′) dx′ = f̂ (x1, ξ
′) ,

for all ξ′ ∈ κ′
⊥.

Let us now estimate the Fourier transform of the aligned magnetic field σ23, where

σij =
∂ai
∂xj

− ∂aj
∂xi

, i, j = 1, 2, 3.

More precisely, with the aid of Lemma 3.2 and lemma 3.3 we may establish the following
result.
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Lemma 3.4 Let M > 0, and let Aj , for j = 1, 2, be as in theorem (1.1). Then, there
exists a constant C > 0 such that for any λ > λ0 the following estimate∣∣∣∣∫ 1

0

ei2kπx1 σ̂23 (x1, ξ
′) dx1

∣∣∣∣ ≤ C

(
λ ∥ΛA1,θ − ΛA2,θ∥+

1

λ

)
⟨(k, ξ′)⟩5, (3.22)

holds uniformly in k ∈ Z and ξ′ ∈ R2, with ⟨(k, ξ′)⟩ =
(
1 + k2 + |ξ′|2

)1/2
and where

σ̂23 denotes the partial Fourier transform of σ23 with respect to x′.

Proof 3.3 We fix z′0 ∈ κ′⊥ ∩ B (0, T/2− ϱ) . Let h ∈ C∞
0 (R) be supported in (0, ϱ/4)

and satisfy the condition ∫
R
h2 (t) dt = 1.

Let

ηz′
0
=

(
T

2
− ϱ

2

)2

− |z′0|
2
, z′1 = z′0 + ηz′

0
κ′.

It is not difficult to check that

B (z′1, ϱ/2) ⊂ D+
ϱ (κ′) .

Let β0 ∈ C∞
0

(
κ′⊥ ∩B (z′0, ϱ/4)

)
be nonnegative and for y = (y1, y

′) ∈ R3, put

ϕθ (y) = eiθy1 exp

(
− i

2

∫
R
κ′ ·A′ (y1, y

′ − sκ′) ds

)
, y = (y1, y

′) ∈ R3,

and
ϕ0 (y

′) = h
(
y′ · κ′ − ηz′

0

)
e−

i
2y

′·ξ′β
1/2
0 (y′ − (y′ · κ′)κ′) , y′ ∈ R2.

It is apparent that
supp (ϕ0) ⊂ B (z′1, ϱ/2) ⊂ D+

ϱ (κ′) .

Set
ϕ (y) = ϕθ (y)ϕ0 (y

′) , y = (y1, y
′) ∈ R3. (3.23)

It is clear that ϕ ∈ H2
κ′,θ (Dϱ) . By performing the change of variable y′ = x′ + tκ′ ∈

κ′⊥ ⊕ Rκ′ in the following integral, we get upon recalling that ξ′ ∈ κ′⊥, that∫ 1

0

∫
R2

e−i2kπx1ϕ2 (x) (Pρj) (κ′, x) exp
(
i

∫
R
κ′ ·A′ (x1, x

′ − sκ′) ds

)
dx

=

∫ 1

0

∫
R

∫
κ′⊥

e−i2kπx1ϕ2 (x1, x
′ + tκ′) (Pρj) (κ′, x1, x′ + tκ′)

exp

(
i

∫
R
ω′ ·A′ (x1, x

′ − sκ′) ds

)
dx′dtdx1

=

∫ 1

0

e−i2kπx1

∫
R

∫
κ′⊥

h2
(
t− ηz′

0

)
e−ix′·ξ′β0 (x

′) (Pρj) (κ′, x1, x′) dx′dtdx1

=

∫ 1

0

e−i2kπx1

∫
κ′⊥

e−ix′·ξ′β0 (x
′) (Pρj) (κ′, x1, x′) dx′dx1.

It follows from this and Lemma 3.2 that∣∣∣∣∫ 1

0

e−i2kπx1

∫
κ′⊥

e−ix′·ξ′β0 (x
′) (Pρj) (κ′, x1, x′) dx′dx1

∣∣∣∣
≤ C

(
λ ∥ΛA1,θ − ΛA2,θ∥+

1

λ

)
Nκ′ (ϕ)Nκ′ (∂jϕ) .
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As ϕ is given by (3.23) and Nκ′ (ϕ) = ∥ϕ∥H2((0,1)×R2) + ∥κ′ · ∇x′ϕ∥H2((0,1)×R2), an
elementary calculation gives for any ξ′ ∈ κ′⊥

Nκ′ (ϕ)Nκ′ (∂jϕ) ≤ C⟨(k, ξ′)⟩5,

where C > 0 is independent of k and ξ′.
From the last two inequalities we derive for all ξ′ ∈ ω′⊥ and k ∈ Z that∣∣∣∣∫ 1

0

e−i2kπx1

∫
κ′⊥

e−ix′·ξ′ (Pρj) (κ′, x) dx′dx1
∣∣∣∣

≤ C
(
λ ∥ΛA1,θ − ΛA2,θ∥+ 1

λ

)
⟨(k, ξ′)⟩5.

(3.24)

By Lemma 3.3 we have∣∣∣∣∫ 1

0

e−i2kπx1 ρ̂j (x1, ξ
′) dx1

∣∣∣∣ ≤ C

(
λ ∥ΛA1,θ − ΛA2,θ∥+

1

λ

)
⟨(k, ξ′)⟩5.

In view of the identity ξ′ · ω′ = 0 we have for j = 2, 3,

ρ̂j (., ξ
′) =

3∑
i=2

κiξj âi (., ξ
′) =

3∑
i=2

κi (ξj âi (., ξ
′)− ξiâj (., ξ

′)) =

3∑
i=2

κiσ̂ij (., ξ
′) .

Since κ′ ∈ S1 is arbitrary, we get, for any ξ′ ∈ R2 and k ∈ Z that∣∣∣∣∫ 1

0

e−i2kπx1 σ̂23 (x1, ξ
′) dx1

∣∣∣∣ ≤ C

(
λ ∥ΛA1,θ − ΛA2,θ∥+

1

λ

)
⟨(k, ξ′)⟩5,

proving the result.

Having established Lemma 3.4 we may now terminate the proof of Theorem 1.2.

3.4. Proof of the Theorem 1.2
For simplicity, we use the following notation

b̂ (ξ′, k) = ⟨σ̂23 (ξ′) , ϕk⟩L2(0,1) =

∫ 1

0

e−i2kπx1 σ̂23 (x1, ξ
′) dx1,

where ϕk (x1) = e−i2kπx1 for all k ∈ Z. Then, by the Parseval-Plancherel theorem, we
find that

∥σ23∥2H−1(Ω̃) =
∑
k∈Z

∫
R2

⟨(ξ′, k)⟩−2
∣∣∣b̂ (ξ′, k)∣∣∣2 dξ′

=

∫
R3

⟨(ξ′, k)⟩−2
∣∣∣b̂ (ξ′, k)∣∣∣2 dξ′dµ (k) , (3.25)

where µ =
∑

n∈Z δn. Using (3.22) we get

∥σ23∥2H−1((0,1)×R2) =

∫
|(ξ′,k)|≤R

⟨(ξ′, k)⟩−2
∣∣∣b̂ (ξ′, k)∣∣∣2 dξ′dµ (k)

+

∫
|(ξ′,k)|>R

⟨(ξ′, k)⟩−2
∣∣∣b̂ (ξ′, k)∣∣∣2 dξ′dµ (k)

≤ C

((
λ2 ∥ΛA1,θ − ΛA2,θ∥

2
+

1

λ2

)
R13 +

1

R2

)
.
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Choosing
λ2 = R15, (3.26)

we obtain, that

∥σ23∥H−1((0,1)×R2) ≤ C

(
Rℓ ∥ΛA1,θ − ΛA2,θ∥+

1

R

)
. (3.27)

for some positive constant ℓ. The arguments above are valid for λ ≥ λ0. In light of (3.26)
we need to take λ sufficiently large. So there exists a γ ≥ 0 such that if ∥ΛA1,θ − ΛA2,θ∥ ≤
γ and R = ∥ΛA1,θ − ΛA2,θ∥

−1/(ℓ+1)
, we have λ > λ0 and by (3.27) we obtain

∥σ23∥H−1((0,1)×R2) ≤ C ∥ΛA1,θ − ΛA2,θ∥
µ
,

where µ = 1/ (ℓ+ 1) . Now if ∥ΛA1 − ΛA2∥ ≥ γ, it holds true that

∥σ23∥H−1((0,1)×R2) ≤
2M

γ1/(k+1)
γ1/(k+1) ≤ 2M

γµ
∥ΛA1,θ − ΛA2,θ∥

µ
. (3.28)

Thus it follows from (3.27) and (3.28) that,

∥σ23∥H−1((0,1)×R2) ≤ C ∥ΛA1,θ − ΛA2,θ∥
µ
.

This ends the proof of Theorem 1.2.

4. The Floquet decomposition
The idea here is to pass from the boundary operator ΛA, thanks to the partial Floquet-

Bloch-Gelfand (abbreviated to FBG in the following) Transform, to the family of opera-
tors {ΛA,θ, θ ∈ (0, 2π)}. To that end, we start by recalling the definition of the partial
FBG transform.
Let f ∈ C∞

0 (R× Y ), where Y denotes a C2 open subset or submanifold of Rn, n ∈ N∗.
We define the partial FBG transform U by

f̃θ(x1, y) = (Uf)θ(t, x) =
+∞∑

k=−∞

e−ikθf(x1 + k, y), (x1, y) ∈ R× Y, θ ∈ [0, 2π).

(4.1)
Then

f̃θ(x1 + 1, y) = eiθf̃θ(x1, y), (x1, y) ∈ R× Y, θ ∈ [0, 2π), (4.2)

and (
U ∂

mf

∂zm

)
θ

=
∂mf̃θ
∂zm

, m ∈ N∗, θ ∈ [0, 2π), (4.3)

We turn now to studying the problem (1.2). We will show that we can decompose the
Cauchy problem (1.2) into a IBVP with quasi-periodic boundary conditions of the form
(1.8).

Stability for the aligned magnetic field by the Dirichlet-to-Neumann map for the wave equation in a periodic quantum waveguide  33



Proposition 4.1 Let A ∈ W 3,∞(0, T ;W 2,∞(Ω)) fulfill (1.1) and let g ∈ X0. Then u

is solution to (1.2) if and only if each ũθ = (Uu)θ ∈ Žθ = L2
(
0, T ;H1

θ

(
Ω̃
))

∩

H1
(
0, T ;L2

(
Ω̃
))

, θ ∈ [0, 2π), is solution to the following IBVP
(∂2t −∆A)v = 0 in Q̃,
v(0, ·) = 0 in Ω̃,

∂tv(0, ·) = 0 in Ω̃,

v = g̃θ on Σ̃.

(4.4)

Armed with Proposition 4.1, we may now decompose ΛA in terms of the fibered boundary
operators ΛA,θ, θ ∈ [0, 2π).

Proposition 4.2 Let A be the same as in Proposition 4.1. Then we have :

UΛAU−1 =

∫ ⊕

(0,2π)

ΛA,θ
dθ

2π
.

Proof 4.1 For every θ ∈ [0, 2π), we know that the IBVP (4.4) admits a unique solution
sθ(g̃θ). Further, it holds true that ΛV,θ = τ̃1 ◦ sθ, where we recall that τ̌1 is the linear
bounded operator fromL2((0, T )×(0, 1), H2(Ω̃))∩H1(0, T ;L2(Ω̃)) into X̌1 = L2(Σ̃)×
L2(Ω̃), obeying

τ̃1w = (∂ν + iA · ν)w|Σ̃ for w ∈ C∞
0 ((0, T )× (0, 1), C∞(ω)).
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