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RESUME. Dans ce papier, on a prouvé une estimation de stabilité pour le probléme inverse de dé-
termination du champ magnétique dans I'équation des ondes donné sur un domaine non borné a
partir de I'opérateur de Dirichlet-to-Neumann. On a montré un résultat de stabilité pour ce probléme
inverse, dont la démonstration est basée sur la construction de solutions optique géométrique pour
I’équation des ondes avec un potentiel magnétique 1-périodique.

ABSTRACT. We consider the boundary inverse problem of determining the aligned magnetic field
appearing in the magnetic wave equation in a periodic quantum cylindrical waveguide from boundary
observations. The observation is given by the Dirichlet to Neumann map associated to the wave
equation. We prove by means of the geometrical optics solutions of the magnetic wave equation
that the knowledge of the Dirichlet-to-Neumann map determines uniquely the aligned magnetic field
induced by a time independent and 1-periodic magnetic potential. We establish a Holder-type stability
estimate in the inverse problem.

MOTS-CLES : Probléme inverse, I'équation des ondes, 'opérateur de Dirichlet-to-Neumann

KEYWORDS : Inverse problem, Magnetic wave equation, Dirichlet-to-Neumann map

Special issue, LEM2I ARIMA Journal, vol. 23, pp. 19-35 (2016)
Mourad Bellassoued, Nabil Gmati, Mohamed Jaoua, Gilles Lebeau, Editors.



20 ARIMA - volume 23 - 2016

1. Introduction

Let 2 = R x w be an infinite waveguide, where w is a bounded domain of R2, with
C?-boundary dw. Throughout this text we write * = (z1,2') with 2’ = (z2,23) for
every x = (z1,%2,23) € Q. Let A = (a;)1<j<3 € W>°°(Q;R3) be time independent
and 1-periodic magnetic potential with respect to z; i.e.

Az + 1,2") = A(z1,2"), (21,2") € Q=R X w. (1.1)
Given T' > 0, we consider the initial boundary value problem (IBVP) for the wave equa-
o (@ - Au=0 inQ=(0,T)xQ,
bui0y o0 o 2
u=g onY = (0,T) x 99,

where A 4 is the magnetic Laplacian defined by

3
Ap = (0;+ia;)® = A+2iA-V +idiv(A) - |A]".

Jj=1

In this paper, we are interested in determining the magnetic potential A from the know-
ledge of the Dirichlet-to-Neumann (abbreviated to DN in the following) map associated
with A

Aa(g) = (0, +iA V) u, (1.3)

where w is the solution to (1.2) and ¥ = v (z) denotes the unit outward normal to 9 at
z. As was noted in [8], the DN map is invariant under the gauge transformation of the
magnetic potential : Namely, given ¥ € C1(2) such that U\sq = 0, it ensues from the
identities,

e A" = Apive, e VAse™ =Aayvu, (1.4)
that

Ay =Aaivvw.

From this information and from a geometric view point, we may reformulate the basic
inverse problem considered in this article as follows.

Inverse problem for the magnetic wave equation : is it possible to determine the ma-
gnetic field da 4 given by

3
3ai ﬁaj
doy = Z (833j Oz

ij=1

)d:lfj A dI,j,

from the knowledge of the boundary measurements A 4.

The problem inverse of recovering time-independent coefficient for partial differential
equations such as the wave equation have attracted many attention over the recent years.
For example, in [14], Rakesh study the determination of the time-independent scalar po-
tentials in a wave equations, from the DN map. Bellassoued and Benjoud proved in [2]
that the knowledge of the Dirichlet-to-Neumann map for the magnetic wave equation
measured on the boundary determines uniquely the magnetic field. There methods is es-
sential based on the construction of geometric optics solution.
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In this results, the DN map gives on the whole boundary. The uniqueness by a local DN
map is well solved (Belishev [1], Eskin-Ralston [9], Eskin [6], Katchalov, Kurylev, and
Lassas [11]).

Note here that all these results are concerned in a bounded domain. In this article We
consider the inverse problem of determining the magnetic field appearing in the magnetic
wave equation in an infinite cylindrical domain. There are only a small number of ma-
thematical papers dealing with with inverse boundary problems in an unbounded domain.
In [13], Li and Uhlmann proved that the knowledge of DN map determines uniquely the
scalar potential in an infinite slab. In [5] Choulli , Kian, and Socoorsi proved a logarith-
mic stability in the determination of the time-dependent scalar potential in a 1-periodic
quantum cylindrical waveguide, from the boundary measurements of the solution to the
dynamic Schrédinger equation. See also the refs. ([10], [12] and [13]).

1.1. Notations
Throughout this text we denote by

Q=(0,1)xw, Q=(0,T)xQ, L= (0,T) x (0,1) x dw. (1.5)
3 1/2
Further, we denote by |y| := (Zi:l yf) the Euclidian norm of y = (y1,%2,v3) € R?
and we write
B (xg,7) = {x = (z1,12,23) € R® |z — x| <7}, forallr > 0.

We note H? (£2) the p-th order Sobolev space on (2 for every p € N, where H" () stands
for L2 (Q2) . Finally, we put

D, =inf{R€R": wC Bz}, R) for some x|, € R?}.
We may now define the trace operator 7 by
Tw = wyy, forw e C5° ([0,7] x R,C™ (©)).

Recall that since w is a bounded domain of R? with C?-boundary, we can extend 7 to
a bounded operator from H? (0,T; H? (2)) into L? ((0,T) x R, H*/2? (9w)). Then the
space Xo = 7H? (0,T; H* (2)) endowed with the norm

| w || xo= inf{||W | m2(0,7,m2(0)); W € H? (0,T; H? () such thattW = w},

is Hilbertian. Moreover, the linear operator A 4 defined by (1.3), is bounded from X to
L?(%).

1.2. Main results

In this subsection we state the main results of this article. Ours first result can be stated
as follows.

Theorem 1.1 We consider two potentials A;, i = 1,2 in W3>(£; R®) obey the condi-
tions || Ailyys.c(qy < M, i =1,2, For M > 0 be fixed. Assume moreover that

Ay = Ay on (0,1) x 0w, (1.6)
8]‘141 = 8jA2 on (O, 1) X 8w7 j =1,2,3. (1.7)



22 ARIMA - volume 23 - 2016

Then there exist a constant C' > 0 and p € (0, 1), such that
8&2 8a3

81‘3 63:2
where C depends onT', w and M.

< Cf[Aa, = Aa "
H=(Q)

Theorem 1.1 follows from a result we shall make precise below, which is related to the
following IBVP with quasi-periodic boundary conditions,

(02 — A )u=0 inQ,

u(0,-) =0 in {27

Oru(0,) =0 in Q~7 (1.8)
u=nh on Y,

u('a la ) = eiOu(" Oa ) on (OaT) X w,

Oz, u(-,1,-) = €0, u(-,0,-) on (0,T) x w,

where 6 is arbitrarily fixed in [0, 27). To this purpose, for any subspace R = (0, 1) x R?
or R3, we take

H}(R) = {uc H'(R); u(1,-) = ¢®u(0,-) and 9,, u(1,-) = €9,,u(0, ) in R?},
and
HZ(R) = {u € HX(R); u(1,-) = €u(0,-) and d,,u(1,-) = €d,,u(0, ) in R?}.
We denote by 7 the linear bounded operator from H?2 (0, T; H? (Q)) into
L2 ((0,T) x (0,1), H3/? (8w)), such that
Tw = ws, for w € Cg° ([0, 7] x (0,1),C™ (W)) .

Then the space Xg=7 <H 2 (07 T;H} (Q) )) endowed with the norm

|wlg,= inf{||W||H2(O,T;H2(Q)); W e H? (O,T;H2 (Q)) such that 7TW = w},
is Hilbertian. The operator
Ang:he Xg— (8, +iA-v)ue L2 (2) (1.9)

where w is the solution to (1.8), is bounded. The following result essentially claims that
Theorem 1.1 remains valid upon substituting A4, ¢ for A;, j = 1,2, for 0 arbitrary in
[0, 27).

Theorem 1.2 Let Ay and As obey the conditions of Theorem 1.1 for M > 0. Then we
may find a constant C' > 0 depending only T, M and w, such that the estimate
‘ 8(12 8a3

< ClAnyo — A
w5 O < CliRazo = Ao

H-1(®)

",

holds for every 0 € [0, 27).

It is clear that Theorem 1.1 yields uniqueness in the identification of the aligned magnetic
field from the knowledge of the DN map.
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2. Geometric optics solutions

In this section we define geometric optics solutions for the magnetic wave equation in
(0,T) x Q with quasi-periodic boundary conditions. These functions are essential tools in
the proof of Theorems 1.1 and 1.2. The main difficulty here is the quasi-periodic boundary
conditions. We shall adapt the method suggested by Bellassoued and Ben joud in [2], for
building geometric optics solutions to the magnetic wave equation in a bounded domain,
to the framework of periodic media.

Letv = (t,x) € C* ([O,T] ;L2 (Q)) ne ([O,T] s H! (Q)) be a given solution of the
following magnetic wave equation :

(0} —Aa)v=0 in Q,

o(T,.)=0 in Q,

ow(T,.)=0 i.n Q, @1
v=nh in X,

v(,,1,.) = e?v(.,0,.) in (0,7) X w,

Oz,v(., 1,.) = €0, v(.,0,.) in (0,7) x w.

Letu = u(t,z) € C! ([O, T);L? (Q)) nc ([O7 T);H' (Q)) satisfy the conditions

w(0,) = 8u(0,.) =0inQ, u=0in3, 2.2)
and
w(.,1,.) —e%u(.,0,.) =dpu(.,1,.) —e?d,u(.,0,.)=0,in (0,T) x w.

Then, from the Green formula, we have

/ (0fu — Aqu) vdzdt = / w(0?v — A gv)dzdt — / (0y +1iA - v) uvdo,dt
Q

Q b
= —X (0y + 1A - v) uvdoydt.
>
(2.3)
2.1. Geometric optics solutions in periodic media
For all » > 0, we take o > 0, such that
T>T-—40> Do and € C B(zo, (T/2) — 20),
and let ¢ € C5° (R?) such that
supp ¢o C D, 2.4)
where T T
’)DQB<O,2) \B(O,QQQ). (2.5)

Now, for &' € S, 6 fixed in [0,27) and ¢y € HZ ((0,1) x R?), we may introduce the
following subspace of H? ((0,1) x R?) ,

Hp o (D) = {6 =godo € H> ((0,1) x R?); ' - Vo € H? ((0,1) x R?)}
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where
¢o € H? (R?) satisfies (2.4)

endowed with the natural norm :
Nt (8) = 19l 2 ((0,1)xm2) + 16" - Var Bl mr2((0,1) xR2)-
It is apparent from (2.4) and (2.5) that, for all ¢ € 7 ., (Dr)
supppNw =10, (suppo+Tk)Nw=10, V&' €S (2.6)
Next, for all t € Rand ¢ € Hj ., (Dg), we put
D (t,z) = ¢ (x1,2' +tk'), teR, (x1,2') € R3, 2.7
then it is clear that the function @ is solution to the transport equation
(0 — K V) ®(t,x) =0, (t,2) € R xR (2.8)

Having seen this, we define

t
b(t,x) = exp <’L/ k' - A (21,2 + sK") ds) . (2.9)
0
where

, _ (ag,a3) (z), ifzeQ,
A'l) = { 0, if not.

It is easy to see that
(0 — K -V —ik' - A)b(t,x) =0, forall (t,z)€ R x R3, (2.10)
Let us now prove the following lemma.

Lemma 2.1 Assume that A € W3 ( ) satisfies (1.1). Pick ® (resp. b) as in (2.7)
(resp. (2.9)). Then for all § € [0, 27r) d \ > 0, one can construct a solution u €

¢t (101112 (8)) € (10717 (8)) 10 the equarion

(07 —Aa)u=0, (t,2)€Q, (2.11)

of the form
w(t,z) = @ (t,z)b(t,z) =+ +) Ly (8 1),

where the correction term 1y satisfies ¥ (0,.) = ¥ (T,.) = 0in Q, 1y = 0 on Q
together with the quasi-periodic boundary conditions

Ua (51, — ey (,0,.) = 0y ¥r (1, 1,.) = €0, 02 (1,0,.) =0 in (0,T) x w
Moreover, the following estimate

)\||¢AHL2( )+ HV%HLz( 5) < CNy (¢), (2.12)

holds for some constant C > 0 depending only on Q, T and [ Allyys.o0 (-



Stability for the aligned magnetic field by the Dirichlet-to-Neumann map for the wave equation in a periodic quantum waveguide 25

Proof 2.1 To prove our Lemma, it would be enough to show that if 1 solves

(07 — Aa) b =

— (8t2 — AA) ((b (21,2 +t&") b (t,x) ei/\(xl'”/‘”)) in Q,

¥x (0,.) =0 in Q,

Aihx (0,.) =0 in Q, (2.13)
Py =0, on %,

w)\ (., 1, ) = eiﬂw}\ (.,0, ) in (O,T) X W,

(9301’(/))\ (.71,.) :eieawl’lb)\ (.,O,.) in (O,T) X w.

Then the estimate (2.12) holds. We set

B(t@) == (07 = Aa) (6 (1,0’ + )b () X)) 0 (1,2) € (0,) x
2.14)
Thus, we have

k(tz) = —eMEF ) (922 AL) (@ (t2)b(tx))
—2iAe M=) (9, — KV (@ (1))
—2iNe M) (9, — KV —in - A (b(L, ).

Since ® (t,x) = ¢ (z1,2' +tr') and b(t,x) are the respective solutions of (2.8) and
(2.10) we deduce that

k(t,x) = —eX &40 (02 - A L) (@ (t,2) b (t 7)) = e kg (¢, 2)
where kg satisfies
kol 2 () + 19ekoll L2 () < CNw (9) -
Since the coefficient A does not depend on t, the function

w (t,x) :/Otw(s,x)ds,

solves the mixed hyperbolic problem (2.13) with the right side

t 1 [t o,
ki (t,x) = / k(s,z)ds = —/ ko (s, ) Os (eu(;‘C " +S)) ds.
0 iA Jo
Integrating by part with respect to s, we conclude that
c
kil 2 () < Nw (0),
and it follows from the energy estimate for w that
C
19125y = 10vwll 2(g) < N (9)
Since Hk||L2(Q) < CN, (¢) we obtain

[Veal(g) < CNie (6).

which completes the proof.

remark 1 We have a similar result by replacing the condition (0,.) = 0in Q by
’L/})\ (T, ) =0in Q.
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3. Stability estimate

3.1. Preliminary estimate

Let us introduce
A=Ay — Ay,

where the function A;, j = 1,2, is as in Theorem (1.1). Recall that since A; — A =0
on 92, we can extend A = (ay,az,a3) to H' (R?) and we set

t
b(t,z) = (bobr) (t,2) = exp (z/ K A (21,2 + sK') ds> ,
0
where A’ = (a1, az) .
The main purpose of this subsection is the following technical result.

Lemma 3.1 Let 0 € [0,27) be fixed. For j = 1,2, let ¢; € H;H, (DR). Then for any
k' € SY, there exists a constant C = C (M, w) > 0 such that,

L (01,62) <. (Maso — Aagall 45 ) M @) N (02). G

where

T 1
T (1, 02) = /0 /0 /]1{{2 kA (2) (¢201) (1, 2"+ t6") b (t, z) dadt|.

Proof 3.1 Lemma 2.1 guarantees the existence of geometric optics solution
uy € C! ([O,T] L2 (Q)) nce ([O,T] s Hy (Q)) to the equation (07 — Aa,) u in Q,
with the form

ug (t, 1) = ¢o (1,2 + t6") ba (¢, x) NGRS + o (t, ), (3.2)

where 1y , satisfies

Pax (0,.) =0 in Q,
022 (0,.) =0 in €2,
oy =10 4 on 'y, (3.3)
wg,)\ (.,1,.) :eww;,\ (.,0,.) n (O,T) X W,
8301'(/}2,)\ (., 1, ) = 6108$1w27A (.,07 ) in (O,T) X W,
and
A ||¢2,>\||L2(Q) + ||V1/JQ,>\||L2(Q) < CNy (¢2). (3.4
We denote by u1, the solution of
(0} —Aua))ur =0 in Q,
w1 (0,.) = Opuy (0,.) =0 in 2,
up = up = fx2 on %, (3.5)
up (1, 1,.) = e®uy (.,0,.) in Q,

O, ur (1, 1,.) = €90, uy (.,0,.) in €.
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Further, as w1 — us Z we get from (3.5) and (3.2) that v = u; — us €

e (0122 (8)] e (0,715 (5)) veies

(32 — A1) u = 2tA - Vug + Vug in Q,
u(0,.) = 0u(0,.) =0 in Q,
u=0 on i,
u(.,1,.)=e"u(.,0,.) in €,
O u(.,1,.)= eleazlu(.,o,.) in €,

where we have set
V:Zle(A) — (A2 'A2 —A1 Al)

Next letv € C* ([O,T] L? ( )) ne ([ T);H; (Q)) be a solution of the wave equa-
tion (8t2 — AAI) v =0, in Q, having the form

v(t,x) = ¢1 (w1, 2 +t&') by (£, 2) iA@' +t) | 1 (8, x), (3.6)
where 1y _y satisfies
Pia(T,.) =0 in €,
P1a=0 on Y,
: : 3.7
Y1 (s1, )—ezewn\( 0,.) in (0,T) x @-7)
azldjl,)\ ( ) =e' 8I1w1 A ( ) in (OvT) X
and
A ||1/J1,>\||L2(Q) + ||V1/J1,>\||L2(Q) < CNy (61). (3.8)
Set L R
gx (t, ) = ¢1 (1, 2" +t6") by (¢, 2) PG H), (t,x) €,
In light of (2.3) , we deduce from (3.5), the following orthogonality identity
/ 2tA - Vugvdxdt + / V (z) ugvdxdt = —/~ (Aay 0 — ANay o) (fr) grdodt
Q Q P
= —((Aao —Nas0) (fx) . 9)-
(3.9
On the other hand by (3.2) and (3.6) we have
[ 2iA - Vusurdzdt = —/ 25"+ A" (z) (¢26,) (z1, 3" + tr') (bob1) (¢, 2) dadt
Q Q
+I)\7
(3.10)
where
Iy = / 2iA -V (®q (t,x) b (t,2)) D1 (¢, ) by (¢, ) dwdt
Q

2A -V (B (t,2) by (t,2)) MW HG | (¢, 2) dwdt
Q

+ [ 204 Vi (8.2) By (1,2) By (1) A0

+ [ 2iA- Vo (t,2) 1 (t,2) dudt

DA () by (1) B (£, x) By N ) dadt,

_|_
e\@\ai\ S—
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Using (3.4) and (3.8), we obtain that
IZA| < CNyw (¢2) N (1) - (3.11)
From this and (3.9)-(3.10), it follows that

A ‘ /@ KA (2) (60) (21,2 + t7) (baBr) (¢, ) dacdt‘

< C(’[ Vusvdzdt| + / (AAhg — AA%@) (f,\)gAdcrdt‘
Q 31
+ N (d2) N (91)). (3.12)
Moreover, by (3.2), (3.4), (3.6) and (3.8), one gets

’/ V(x) ude:Edt‘ < CNyr (¢2) N (1) - (3.13)

o)

By a trace inequality, we have

St = Aaa) (70| = [((B = D) ()02
b

< (Aave = Aaz0) (Pl 2 s) 9all L2 ()
< lAare = Aaz ol 1A%, 951l L2 ()
< ON|Aa o — Aayoll

N (91) N (62) - (3.14)
From (3.12)-(3.13) and (3.14), we derive for X sufficiently large

/OT /01 /R KA (2) (626,) (1,2 + te') b(t,x) dwdt

1
<’ ()\ ||AA1,9 — AA279|| + )\> Nf{,/ (¢1)NH/ ((252) . (3.15)

This completes the proof of the lemma.

3.2. X-ray transform estimate

The X-ray transform is an integral transform, defined by integrating over lines. More
precisely, if & € S! and f is a function defined on R?, then the X-ray transform of f in
the direction &’ is the function P f defined by

(Pf) (k' 2) = /Rf (x1,2" + sk')ds, © = (x1,2") € R, (3.16)

It is easy to see that (Pf) (w’, ) does not change if =’ is moved in the direction w’.
. 7L .

Therefore we normally restrict 2’ to/~ = {¢ € R?; ¢-w’ = 0}. For j = 1,2, 3, let us

introduce the following notations

3

pj(x) =K oA (z) = Z/@,; Da; (), = €R3. (3.17)

a.’L'j i—2 85(}]‘

and
D (k) = {2’ €Dy, ' - &' > 0}

Then, the X-ray transform stability estimate of the functions p; is as follows
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Lemma 3.2 Let M > 0, and let A;, for j = 1,2, be as in theorem 1.1. Then, there exists
constants C' > 0 and \o > 0 such that for all &' € S* and all ¢ = ¢opoy € Hi',a (D)

satisfying supp (¢o) C D and 9;¢ € Hz/’g (D,), the estimate

1
[ [ @ P Wy (i [ s’ o) ] <
0 R2 R

1
€ (M0~ Al + 5 ) M (0) N 030,
holds for any A > Ao, k € Z and j = 2, 3.
Proof 3.2 For ¢1,¢2 € HZ, 5 (D,), we have

T 1
/ / / KA () (¢201) (1,2 +t6") b (L, x) da'dw dt
o Jo Jre
T
/ / / KAz, 2 = tR) (¢201) (@) b (t, @1, 2" — tr") da'dw dt
o Jo Jre

/01 /]RZ (6201) (2) /OT KA (1,2 — tr)

¢
= exp (z/ K A (x1,2 — sK') ds) dtdx'dzy
0

s _ d to / / /
1/0 o (¢2¢1) (1‘)/0 dtexp( /o kA (x,2" — sk )ds) dtdz,dx

1 T
2/0 /R? (¢2¢1> () lexp (l/o KA (11, —sm)ds) — 11 dr. (3.18)

We choose ¢1 and ¢z such that ¢o (x) = e~ 2k™1¢ (z), ¢1 = 9;¢, j € {2,3} and
integrating by parts, so (3.18) yields

[ Lo woeens soono

//]R emizkman 52 ( (@) 5 [ <z/0 KA (21,0 _Sﬁf)dsﬂdx
= 75/0 /R2 e iZkmT g2 () 87553 (/0 kA (xy,2 — sn’)d5>

T
exp (z/ K A (x1, 2 — sK') ds) dx. (3.19)
0

Since the support of A is contained in R x B (0,T/2 — 29) , we have

T
/ K A (x1,2 — sk')ds = / K - A (x1,2" — sk') ds, (3.20)
0 R

for all x' € DF (k). In fact, for all s > T and ' € Dg it is easy to see that
(x1,2" + sk') & supp (A"), for each x1 € [0, 1]. Therefore we have

T 00
/ kA (Jcl,x’—sw')dSZ/ KA (w1, 2" — k') ds, (z1,27) € [0,1]xDF (+).
0 0 (3.21)
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On the other hand, if s < 0 and ' € D} it holds true that |z’ — si/|? = |2/]P + s —
2sa’ - k' > (T)2—20)° hence A(x1,2’ + sk’) = 0. This and (3.21) entail (3.20).
Further, upon inserting (3.20) into the equation (3.19), we obtain

///F“ A (z) (¢2¢1) (z1, 2" +t6") b (t, ) dadt

—i2kmx 2 / ’ /
== 1o” ( </n-A 1, T — sw ds>
5/ / >axJ (1 )

exp (z/ K A (x1, 2 — sK') ds) dx
R

1
= —1/ / e ZRTTL G2 (1) P (p;) (K, 2) exp <z/ kA (2,2 — sK') ds) dz,
2Jo Jre R

where p; is given by (3.17). From this and Lemma 3.1, we obtain for any A > X¢ that

1
/ e~k [ 62 ()P (p) (K, 2) exp (z/ K A (z1,2 — sk') ds) dz'dzy| <
0 R? R

1
€ (Mo~ Aasll + 5 ) s (@ Ns 030).

The proof'is then complete.

3.3. Aligned magnetic field estimation

In this subsection, we estimate the the partial Fourier transform of the aligned ma-
gnetic field, in terms of the DN map. To this end, we denoted by f the partial Fourier
transform of the function f with respect to the variable 2’ € w, i.e

f@,&)=2n)" . flay,a)e ™ € de!, ¢ eR? zy eR.
R

Further, setting 't = {¢ € R?; ¢-w’ = 0}, we recall from the definition (3.16) that

Lemma 33 Let f € L' (R?) and &/ € S. Then (Pf) (v',.) € L! (R x n'L) and

~

(PHW. ) (@) = @0~ [ e <@g (0, ! = Flan,€),

forall ¢ € k'™
Let us now estimate the Fourier transform of the aligned magnetic field 023, where

8ai 8aj L.
- y 4]
(9£Ej (9177

O’ij = = 1,2,3.

More precisely, with the aid of Lemma 3.2 and lemma 3.3 we may establish the following
result.
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Lemma 3.4 Let M > 0, and let A;, for j = 1,2, be as in theorem (1.1). Then, there
exists a constant C' > 0 such that for any \ > \q the following estimate

1
/ esz‘n’:tla_\23 (xl’ é-/) dl‘l
0

1
<C (A 1Aas6 = Aazoll + A) ((k,€))°,  (3:22)

1/2
holds uniformly in k € Z and &' € R?, with ((k,&')) = (1 + k% + |£’|2> and where

093 denotes the partial Fourier transform of oo3 with respect to '.

Proof 3.3 We fix 2z, € k'* N B(0,T/2 — 0). Let h € C5° (R) be supported in (0, 0/4)
and satisfy the condition
/ R% (t)dt = 1.
R

2
_ Z_g _|/|2 r /+ ’
Nz = 5 9 2ol 5 21 = 2o TNk

It is not difficult to check that

Let

B(z,0/2) c®F ().

Let By € C§° (k' N B (2, 0/4)) be nonnegative and for y = (y1,y') € R®, put

o (y) = " exp (—;/ KA (yr,y — sk) dS) ,y=(y1,y) € R,
R

and
Go(y) =h(y & —ny)e 3By — (v - K)K), Y €RE
It is apparent that
supp (d0) € B (2}, 0/2) C F ().

Set

¢ (y) =0 (y) o (v), y = (v1,9') € R’ (3.23)
It is clear that ¢ € Hi,,e (D,) . By performing the change of variable y' = ' + tx' €
k't @ Rk in the following integral, we get upon recalling that £’ € k', that

/01 /R2 e~ 2k g2 () (Ppy) (K, ) exp (z /R K - A (21,2 — sK") ds) dx
/01 /R /d e ke g2 (1) 2!+ tk') (Ppy) (K, 21,2 + tw')

) exp <i/Rw' A (21,2 — sK') ds) dx’ dtdz,
/01 // W (t =) e B () (Ppy) (1,0 e didny
/01 e~ 12kmT1 /,;/J_ e~ "€ 3y (2') (Ppj) (k' 1, ") da'’day .

It follows from this and Lemma 3.2 that

1
/ e*i%’””l/ e~ "€ 8y (z') (Ppj) (k' 1, 2") da'dac,
0 r/L
1
<0 (AMaus = Ansoll + ) A ()N 0500,
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As ¢ is given by (3.23) and Ny (¢) = 19/l r2((0,1)xr2) + 1"+ Var @l g2 (0,1 xR2)r an
elementary calculation gives for any &' € k'*

N () Niw (959) < C{(k,€))°,

where C' > 0 is independent of k and &'.
From the last two inequalities we derive for all £’ € w'* and k € 7 that

1
—i2kmxy —iz’-¢ . / /
/0 e /,iu_ e (Pp;) (K, x) dz dml’ (3.24)
< C(MAare = Aasoll + 3) ((K,€)°.

By Lemma 3.3 we have

1
/ e*iQkﬂ'Ilﬁ} (517156/) dl‘l
0

< (Alao = Aasol + 5 ) (R

In view of the identity &' - w' = 0 we have for j = 2,3,

3

3 3
pi (€)= Z ki&ia; (., &) = Zfﬂ (&ai (,¢) — &Ga; (,¢)) = Z ki0ij (,€).
1=2 1=2

=2

Since v’ € St is arbitrary, we get, for any ¢’ € R? and k € Z that

1
/ 6—22]671'110/_'2\3 (1‘1,5/) d1‘1
0

<C <)\ l1Aa,0 —Aayo

1

- k \\5
+5) (e
proving the result.
Having established Lemma 3.4 we may now terminate the proof of Theorem 1.2.

3.4. Proof of the Theorem 1.2

For simplicity, we use the following notation

1
B (e k) = (653 (€) , dn) L2 or) = / eI (11 €Y dan,
0

where ¢y, (1) = e~ 2kmz1 for all k € Z. Then, by the Parseval-Plancherel theorem, we
find that

ozl = 2 [ ] a 525)
- /R<(g',k)>*2 ‘E(é’,k)’gdf’du(k),

3

where p =}, 0. Using (3.22) we get

~ 2
ol sonman = [ (@07 [oiem| agdn o

~ 2
+ (2 B¢ k)| de'dp (k)
I(& k) I>R

1 1
C <<A2 [Aa,0 — Ay ol + AQ) RY + R2> )

IN
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Choosing
A2 = RY, (3.26)

we obtain, that
) 1
lo2sll ir-1(0,1)xr2) < C | B 1Aay,0 — Aasoll + R (3.27)

for some positive constant £. The arguments above are valid for A > Ag. In light of (3.26)
we need to take A sufficiently large. So there exists ay > O such thatif |[Aa, g — Aa, 0| <

vand R = ||A4, 0 — AA2’9||71/(”1) , we have A > )¢ and by (3.27) we obtain
||U23||H*1((071)><R2) <C ||AA1,9 - AA2,9||H )

where p =1/ (¢ +1). Now if ||A4, — Aa,|| > 7, it holds true that

2M
||O—23||H*1((0,1)><]R2) < m

2M
,yl/(k?+1) S W ||AA1,9 _ A‘AQ,GH# . (328)
Thus it follows from (3.27) and (3.28) that,

o2l ir-1((0,1)xm2) < C'l[Aar0 — Aayl”

This ends the proof of Theorem 1.2.

4. The Floquet decomposition

The idea here is to pass from the boundary operator A 4, thanks to the partial Floquet-
Bloch-Gelfand (abbreviated to FBG in the following) Transform, to the family of opera-
tors {A 4,9, 0 € (0,2m)}. To that end, we start by recalling the definition of the partial
FBG transform.

Let f € C§°(R x Y), where Y denotes a C? open subset or submanifold of R", n € N*.
We define the partial FBG transform I/ by

fo(m1,y) = US)o(t, ) = Jio e * f(z1 4+ k,y), (21,y) €R XY, 0 € [0,2n).
e @.1)
Then
foler +1,y) = e fo(z1,y), (z1,y) €R XY, 6 € [0,2m), 4.2)
and ]
(u‘?;f)e: é;:{f, m e N*, § € [0,2n), (4.3)

We turn now to studying the problem (1.2). We will show that we can decompose the
Cauchy problem (1.2) into a IBVP with quasi-periodic boundary conditions of the form
(1.8).
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Proposition 4.1 Let A € W (0, T; W2>(Q)) fulfill (1.1) and let g € Xg. Then u
is solution to (1.2) if and only if each iy = (Uu)g € Zy = L? (O,T; H} (fl)) N
ot (0, T:L? <Q)), 0 € [0, 2m), is solution to the following IBVP
(02 — A )v=0 in Q,
v(0,-) =0 in €,

O (0,-) =0 in 2,
v = gg onX.

(4.4)

Armed with Proposition 4.1, we may now decompose A 4 in terms of the fibered boundary
operators A4 g, 0 € [0,2m).

Proposition 4.2 Let A be the same as in Proposition 4.1. Then we have :
@ do
UAAU*:/ AAvgf.
(0,27) 2m

Proof 4.1 For every 0 € [0,27), we know that the IBVP (4.4) admits a unique solution
59(go). Further, it holds true that Ayg = 71 o sg, where we recall that 7y is the linear
bounded operator from L2 ((0,T)x (0,1), H2(Q))NH' (0, T; L*(Q2)) into X, = L?*(X)x
L2(Q), obeying

fiw = (Oy +iA - v)wg forw € C5°((0,T) x (0,1),C* @)).
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