
Regular Bohr-Sommerfeld quantization rules
for a h-pseudo-differential operator

The method of positive commutators

Abdelwaheb Ifa* — Michel Rouleux**

* Université de Tunis El-Manar, Département des mathématiques
2092 Manar II
TUNISIA
abdelwaheb.ifa@fsm.rnu.tn

** Aix Marseille Univ, Univ Toulon, CNRS, CPT
FRANCE
rouleux@univ-tln.fr

ABSTRACT. We revisit in this Note the well known Bohr-Sommerfeld quantization rule (BS) for a 1-D
Pseudo-differential self-adjoint Hamiltonian within the algebraic and microlocal framework of Helffer
and Sjöstrand; BS holds precisely when the Gram matrix consisting of scalar products of some WKB
solutions with respect to the “f ux norm” is not invertible.

RÉSUMÉ. Dans le cadre algébrique et microlocal élaboré par Helffer et Sjöstrand, on propose une
ré-écriture de la règle de quantif cation de Bohr-Sommerfeld (BS) pour un opérateur auto-adjoint h-
Pseudo-différentiel 1-D; elle s’exprime par la non-inversibilité de la matrice de Gram d’un couple de
solutions WKB dans une base convenable, pour le produit scalaire associé à la “norme de f ux”.
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1. Introduction

Let p(x, ξ;h) be a smooth real classical Hamiltonian onT ∗
R; we will assume thatp

belongs to the space of symbolsS0(m) for some order functionm (for examplem(x, ξ) =
(1 + |ξ|2)M ) with

SN (m) = {p ∈ C∞(T ∗
R) : ∀α ∈ N

2, ∃Cα > 0, |∂αp(x, ξ;h)| ≤ Cαh
Nm(x, ξ)} (1)

This allows to take Weyl quantizationP = pw(x, hDx;h) of p

P (x, hDx;h)u(x;h) = (2π h)−1

∫ ∫
e

i
h
(x−y) η p

(x+ y

2
, η;h

)
u(y) dy dη (2)

so thatpw(x, hDx;h) is self-adjoint. We also assume thatp+ i is elliptic (in the classical
sense). We call as usualp0 the principal symbol, andp1 the sub-principal symbol; in
case of Schrödinger operatorP (x, hDx;h) = (hDx)

2 + V (x), p(x, ξ;h) = p0(x, ξ) =
ξ2 + V (x). We make the hypothesis of [7], namely:

Fix some compact intervalI = [E−, E+], E− < E+ and assume that there exists a
topological ringA ⊂ p−1

0 (I) such that∂A = A+∪A− with A± a connected component
of p−1

0 (E±). Assume also thatp0 has no critical point inA, andA− is included in the
disk bounded byA+ (if this is not the case, we can always changep to −p). We define
the microlocal wellW as the disc bounded by parA+.

ForE ∈ I, let γE ⊂ W be a periodic orbit in the energy surface{p0(x, ξ) = E} (so
thatγE is an embedded Lagrangian manifold).

Let KN
h (E) be the microlocal kernel ofP − E of orderN , i.e. the space of local

solutions of(P−E)u = O(hN+1) in the distributional sense, microlocalized onγE . This
is a smooth complex vector bundle overπx(γE). Here we address the problem of finding
the set ofE = E(h) such thatKN

h (E) contains a global section, i.e. of constructing a
sequence of quasi-modes (QM)(un(h), En(h)) of a given orderN . As usual we denote
by Kh(E) the microlocal kernel ofP − E modO(h∞) ; since the distinction between
KN
h (E) andKh(E) plays no important role here, we shall content to writeKh(E).

Then if E+ < E0 = lim inf
|x,ξ|→∞

p0(x, ξ), all eigenvalues ofP in I are indeed given

by Bohr-Sommerfeld quantization condition(BS) Sh(En(h)) = 2πnh, where thesemi-
classical actionSh(E) has the asymptotics

Sh(E) ∼ S0(E) + hS1(E) + h2S2(E) + · · ·

We determine BS at any accuracy by computing quasi-modes. There are a lot of ways
to derive BS: the method of matching of WKB solutions [3], known also as Liouville-
Green method [15], which has received many improvements (see [21]), the method of
the monodromy operator (see [12] and references therein), the method of quantization
deformation based on Functional Calculus and Trace Formulas [14], [7], [6], [11], [1].
Note that the latter one already assumes BS, it only gives a very convenient way to derive
it. In the real analytic case, BS rule, and also tunneling expansions, can be obtained
using the so-called “exact WKB method” see e.g. [8], [9] whenP = −h2∆ + V (x) is
Schrödinger operator.

Here we present another way to construct quasi-modes of order 2, based on [18], [13].
We stress that our method in the present scalar case, when carried to second order, is a bit
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more intricated than [14], [7] and its refinements [11]; it is most useful for matrix valued
operators with double characteristics such as Bogoliubov-de Gennes Hamiltonian ([10],
[4], [5]), or Born-Oppenheimer type Hamiltonians ([2], [16]).

2. The microlocal Wronskian

Thebest algebraic and microlocal framework for computing 1-D quantization rules in
the self-adjoint case, cast in the fundamental works [18], [13], is based on Fredholm the-
ory, and the classical "positive commutator method" using conservation of some quantity
called a "quantum flux".

Bohr-Sommerfeld quantization rules result in constructing quasi-modes by WKB ap-
proximation along a closed Lagrangian manifoldΛE ⊂ {p0 = E}, i.e. a periodic orbit of
Hamilton vector fieldHp with energyE. This can be done locally according to the rank
of the projectionΛE → Rx.

Thus the setKh(E) of asymptotic solutions to(P − E)u = 0 alongΛE can be con-
sidered as a bundle overR with a compact base, corresponding to the "classically allowed
region" at energyE. The sequence of eigenvaluesE = En(h) is determined by the con-
dition that the resulting quasi-mode, gluing together asymptotic solutions from different
coordinates patches alongΛE , be single-valued, i.e.Kh(E) have trivial holonomy.

AssumingΛE is smoothly embedded inT ∗
R

2, it can be always be parametrized by a
non degenerate phase function. Of particular interest are the critical points of the phase
functions, or focal points which are responsible for the change in Maslov index. Recall
thata(E) = (xE , ξE) ∈ ΛE is a focal point ifΛE "turns vertical" ata(E), i.e. Ta(E)ΛE
is no longer transverse to the fibersx = Const. in T ∗

R.

In any case, however,ΛE can be parametrized locally either by a phaseS = S(x)
(spatial representation) or a phaseS = S̃(ξ) (Fourier representation). Choose an orienta-
tion onΛE and fora ∈ ΛE (not necessarily a focal point), denote byρ = ±1 its oriented
segments neara. Let χa ∈ C∞

0 (R2) be a smooth cut-off equal to 1 neara, andωaρ a
small neighborhood ofsupp[P, χa]∩ΛE nearρ. Hereχa holds forχa(x, hDx) as in (2),
and we shall equally writeP (x, hDx) (spatial representation) orP (−hDξ, ξ) (Fourier
representation).

Definition 2.1. LetP be self-adjoint, andua, va ∈ Kh(E) be supported onΛE . We call

Wa
ρ (u

a, va) =
( i
h
[P, χa]ρu

a|va
)

(3)

the microlocal Wronskienof (ua, va) in ωaρ . Here
i

h
[P, χa]ρ denotes the part of the

commutateur supported microlocally onωaρ .

To understand that terminology, letP = −h2 ∆ + V , xE = 0, and changeχ to
Heaviside unit step functionχ(x), depending onx alone. Then in distributional sense,

we have
i

h
[P, χ] = −i h δ′ + 2 δ hDx, whereδ denotes the Dirac measure at 0, andδ′ its

derivative, so that
( i
h
[P, χ]u|u

)
= −i h

(
u′(0)u(0)−u(0)u′(0)

)
is the usual Wronskien

of (u, u).
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Proposition 2.1. Letua, va ∈ Kh(E) as above, and denote bŷu theh-Fourier (unitary)
transform ofu. Then

( i
h
[P, χa]ua|va

)
=

( i
h
[P, χa]ûa|v̂a

)
= 0 (4)

( i
h
[P, χa]+u

a|va
)
= −

( i
h
[P, χa]−u

a|va
)

(5)

(all equalities being understood modO(h∞), respO(hN+1) when consideringua, va ∈
KN
h (E)). Moreover,Wa

ρ (u
a, va) doesn’t depend modO(h∞) (respO(hN+1)) of the

choice ofχa as above.

Proof. Sinceua, va ∈ Kh(E) are distributions inL2, the first equality (4) follows from
Plancherel formula and the regularity of microlocal solutions inL2, p + i being elliptic.
If a is not a focal point,ua, va are smooth WKB solutions neara, so we can expand the

commutator inW =
( i
h
[P, χa]ua|va

)
and use thatP is self-adjoint to show thatW =

O(h∞). If a is a focal point,ua, va are smooth WKB solutions in Fourier representation,
so againW = O(h∞). Then (5) follows from Definition 2.1.

We can find a linear combination ofWa
±, (dependingona) which defines a sesquilin-

ear form onKh(E), so that this Hermitean form makes ofKh(E) a metric bundle, en-
dowed with the gauge groupU(1). This linear combinaison is prescribed as the construc-
tion of Maslov index : namely we takeWa(ua, ua) = Wa

+(u
a, ua) −Wa

−(u
a, ua) > 0

whenthe critical pointa of πΛE
is traversed in the−ξ direction to the right of the fiber

(or equivalentlyWa(ua, ua) = −Wa
+(u

a, ua) + Wa
−(u

a, ua) > whena is traversed in
the+ξ direction to the left of the fiber). Otherwise, just exchange the signs. WhenγE is
a convex curve, there are only 2 focal points. In general there may be many focal points
a, but each jump of Maslov index is compensated at the next focal point which is tra-
versed to the other side of the fiber (co-cycle property). Maslov index is computed mod
4. Our method consists in constructing Gram matrix of a generating system ofKh(E) in
a suitable dual basis; its determinant vanishes precisely at the eigenvaluesE(h).

3. QM and BS in the case of a Schrödinger operator

As a warm-up, we derive the well known BS quantization rule using microlocal Wron-
skians in case of a potential well, i.e.γE is convex. Consider the spectrum of Schrödinger
operatorP (x, hDx) = (hDx)

2 + V (x) near the energy levelE0 < lim inf
|x|→∞

V (x), when

{V ≤ E} = [x′E , xE ] andx′E , xE are simple turning points,V (x′E) = V (xE) = E,
V ′(x′E) < 0, V ′(xE) > 0. It is convenient to start the construction from the focal points
a or a′. We seta′ = x′E , a = xE , identifying the focal pointa = aE = (xE , 0) with its
projectionxE . We know that microlocal solutionsu of (P − E)u = 0 neara are of the
form

ua(x;h) =
C√
2

(
ei

π
4 (E−V (x))−

1
4 e

i
h
S(a,x)+e−i

π
4 (E−V (x))−

1
4 e−

i
h
S(a,x)+O(h)

)

(6)
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whereC ∈ C, S(y, x) =
∫ x
y
ξ+(t) dt, andξ+(t) is the positive root ofξ2 + V (t) = E.

In the same way, the microlocal solutions of(P − E)u = 0 neara′ have the form, with
C ′ ∈ C

ua
′

(x;h) =
C ′

√
2

(
e−i

π
4 (E−V (x))−

1
4 e

i
h
S(a′,x)+ei

π
4 (E−V (x))−

1
4 e−

i
h
S(a′,x)+O(h)

)

(7)
These expressions result in computing by the method of stationary phase the oscillatory
integral that gives the solution of(P (−hDξ, ξ) − E) û = 0 in Fourier representation.
The change of phase factore±i

π
4 accountsfor Maslov index. For the sake of simplicity,

we omit henceforthO(h) terms, but the computations below extend to all order inh
(practically, at least forN = 2), thus giving the asymptotics of BS. This will be elaborated
in the next Section.

The semi-classical distributionsua, ua
′

span the microlocal kernelKh of P − E in
(x, ξ) ∈]a′, a[×R ; they are normalized using microlocal Wronskians as follows.

Let χa ∈ C∞
0 (R2) as in the Introduction be a smooth cut-off equal to 1 neara.

Without loss of generality, we can takeχa(x, ξ) = χa1(x)χ2(ξ), so thatχ2 ≡ 1 on small
neighborhoodsωa±, of supp( ih [P, χ

a]) ∩ {ξ2 + V = E} in ±ξ > 0. We defineχa
′

similarly. By (6) and (7) we have, modO(h):

i

h
[P, χa]ua =

√
2C (χa1)

′(x)
(
ei

π
4 (E − V )

1
4 e

i
h
S(a,x) − e−i

π
4 (E − V )

1
4 e−

i
h
S(a,x)

)

i

h
[P, χa

′

]ua
′

=
√
2C ′ (χa

′

1 )′(x)
(
e−i

π
4 (E−V )

1
4 e

i
h
S(a′,x)−ei π

4 (E−V )
1
4 e−

i
h
S(a′,x)

)

Let

F a±(x;h) =
i

h
[P, χa]± u

a(x, h) = ±
√
2C (χa1)

′(x) e±i
π
4 (E − V )

1
4 e±

i
h
S(a,x)

sothat:

(ua|F a+ − F a−) = |C|2
(
ei

π
4 (E − V )−

1
4 e

i
h
S(a,x)|(χa1)′(x) ei

π
4 (E − V )

1
4 e

i
h
S(a,x)

)

+ |C|2
(
e−i

π
4 (E − V )−

1
4 e−

i
h
S(a,x)|(χa1)′(x) e−i

π
4 (E − V )

1
4 e−

i
h
S(a,x)

)

= |C|2
( ∫

(χa1)
′(x) dx+

∫
(χa1)

′(x) dx
)
+O(h) = 2 |C|2 +O(h)

(the mixed terms such as
(
ei

π
4 (E−V )−

1
4 e

i
h
S(a,x)|(χa1)′(x) e−i

π
4 (E−V )

1
4 e−

i
h
S(a,x)

)

areO(h∞) because the phase is non stationary), thusua is normalized modO(h) if we
chooseC = 2−1/2. In the same way, with

F a
′

± (x;h) =
i

h
[P, χa

′

]± u
a′(x, h) = ±

√
2C ′ (χa

′

1 )′(x) e∓i
π
4 (E − V )

1
4 e±

i
h
S(a′,x)

weget

(ua
′ |F a′+ −F a

′

− ) = |C ′|2 (
∫
(χa

′

1 )′(x) dx+

∫
(χa

′

1 )′(x) dx) +O(h) = −2|C ′|2 +O(h)

and we choose againC ′ = C which normalizesua
′

modO(h). Normalization carries to
higher order, as is shown in the next Section.
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Sothere is a natural duality product betweenKh(E) and the span of functionsF a+ −
F a− andF a

′

+ − F a
′

− in L2. As in [18], [13] we can show that this space is microlocally
transverse toIm(P − E) on (x, ξ) ∈]a′, a[×R, and thus identifies with the microlocal
co-kernelK∗

h(E) of P − E; in generaldimKh(E) = dimK∗
h(E) = 2, unlessE is an

eigenvalue, in which casedimKh = dimK∗
h = 1 (showing thatP − E is of index 0

when Fredholm. )

Microlocal solutionsua andua
′

extend as smooth solutions on the whole interval
]a′, a[; we denote them byu1 andu2. Since there are no other focal points betweena
anda′, they are expressed by the same formulae (which makes the analysis particularly
simple) and satisfy :

(u1|F a+ − F a−) = 1, (u2|F a
′

+ − F a
′

− ) = −1

Next we compute (still moduloO(h))

(u1|F a
′

+ − F a
′

− ) =
1

2

(
ei

π
4 (E − V )−

1
4 e

i
h
S(a,x)|(χa′1 )′(x) e−i

π
4 (E − V )

1
4 e

i
h
S(a′,x)

)

+
1

2

(
e−i

π
4 (E − V )−

1
4 e−

i
h
S(a,x)|(χa′1 )′(x) ei

π
4 (E − V )

1
4 e−

i
h
S(a′,x)

)

=
i

2
e−

i
h
S(a′,a)

∫
(χa

′

1 )′(x) dx− i

2
e

i
h
S(a′,a)

∫
(χa

′

1 )′(x) dx

= − sin(S(a′, a)/h)

(taking again into account that the mixed terms areO(h∞)). Similarly (u2|F a+ − F a−) =
sin(S(a′, a)/h). Now we define Gram matrix

G(a,a′)(E) :=

(
(u1|F a+ − F a−) (u2|F a+ − F a−)

(u1|F a
′

+ − F a
′

− ) (u2|F a
′

+ − F a
′

− )

)
(8)

whose determinant−1 + sin2(S(a′, a)/h) = − cos2(S(a′, a)/h) vanishes precisely on
eigenvalues ofP in I, so we recover the well known BS quantization condition

∮
ξ(x) dx = 2

∫ a

a′
(E − V (x))

1
2 dx = 2π h (k +

1

2
) +O(h); k ∈ Z (9)

anddetG(a,a′)(E) is nothing but Jost function which is computed e.g. in [DeDi], [9] by
another method.

4. The general case

By the discussion after Proposition 2.1, it clearly suffices to consider the case when
γE contains only 2 focal points which contribute to Maslov index.

4.1. Well normalized quasi-modes mod O(h2)

Let a = (xE , ξE) be such a focal point. Following a well known procedure we can
trace back to [17], we first seek for asymptotic solutions in Fourier representation neara
of the form û(ξ) = eiψ(ξ)/hb(ξ;h). Here the phaseψ = ψE solves Hamilton-Jacobi
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equationp0(−ψ′(ξ), ξ) = E, and can be normalized byψ(ξE) = 0; the amplitude
b(ξ;h) = b0(ξ) + hb1(ξ) + · · · has to be found recursively together witha(x, ξ;h) =
a0(x, ξ) + ha1(x, ξ) + · · · , such that

hDξ

(
ei(xξ+ψ(ξ))/ha(x, ξ;h)

)
= ei(xξ+ψ(ξ))/hb(ξ;h)

×
(
p0(x, ξ)− E + hp̃1(x, ξ) + h2p̃2(x, ξ) +O(h3)

)

p0 being the principal symbol ofP , p̃1 its sub-principal symbol for the standard (Feyn-
man) quantization, etc. . . . Defineλ(x, ξ) by p0(x, ξ) − E = λ(x, ξ)(x + ψ′(ξ)), we get
first

λ(−ψ′(ξ), ξ) = α(ξ) = ∂xp0(−ψ′(ξ), ξ)

This yieldsa0(x, ξ) = λ(x, ξ)b0(ξ) and solving a first order ODEL(ξ,Dξ)b0 = 0, with
L(ξ,Dξ) = α(ξ)Dξ +

(
1
2iα

′(ξ)− p1(ψ
′(ξ), ξ)

)
weget

b0(ξ) = C0|α(ξ)|−1/2ei
∫ p1

α

with an arbitrary constantC0, we take independent ofE. This gives in turna1(x, ξ) =
λ(x, ξ)b1(ξ) + λ0(x, ξ), with

λ0(x, ξ) =
b0(ξ)p̃1 + i∂a0∂ξ

x+ ∂ξψ

andb1(ξ) solution ofL(ξ,Dξ)b1 = p̃2b0 + i∂ξλ0|x=−ψ′(ξ). We eventually get

b0(ξ) + hb1(ξ) = (C0 + hC1 + hD1(ξ))|α(ξ)|−1/2ei
∫ p1

α

wherewe have set

D1(ξ) = α(ξE)

∫ ξ

ξE

(
ip̃2b0 − ∂ξλ0|x=−ψ′(ξ′)

)
|α(ξ′)|−1/2e−i

∫ p1
α dξ′ (10)

The integration constantsC0, C1, · · · will be determined by normalizing the microlocal
Wronskians as follows.

We computeWa
ρ (u

a, ua) in Fourier representation, witĥu(ξ;h) = eiψ(ξ)/hb(ξ;h).
Recallχa ∈ C∞

0 (R2),χa ≡ 1 nearaE ; without loss of generality, we can takeχa(x, ξ) =
χ1(x)χ2(ξ), so thatχ2 ≡ 1 on small neighborhoodsωa±, of supp ih [P, χ

a] ∩ γE in
±(ξ − ξE) > 0. Thus we need only consider the variations ofχ1. Weyl symbol of
i
h [P, χ

a] is given byc(x, ξ;h) =
(
∂ξp0(x, ξ) + h∂ξp1(x, ξ)

)
χ′
1(x) +O(h2), so

i

h
[P, χa]û(ξ) = (2πh)−1

∫ ∫
ei
(
−(ξ−η)y+ψ(η)

)
/hc(y,

ξ + η

2
;h)(b0 + hb1)(η) dy dη

Evaluating by stationary phase, we findih [P, χ
a]û(ξ) = eiψ(ξ)/hd(ξ;h), whered(ξ;h) =

d0 + hd1 +O(h2) with d0 = c0b0 andd1 a function ofc0, c1, b0, b1 we have determined
so far. It follows

( i
h
[P, χa]+û|û

)
=

∫ ∞

ξE

d0(ξ)b0(ξ) dξ +O(h)
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Theleading term is simply
∫ ∞

ξE

|b0|2c0 dξ = |C0|2sgn(α(ξE))
∫ ∞

ξE

χ′
1(−ψ′(ξ))ψ′′(ξ) dξ = |C0|2sgn(α(ξE)) (11)

soua is normalized modO(h), providedα(ξE) > 0, when2|C0|2 = 1; we takeC0 =
1/
√
2 as in Schrödinger case. Next step in normalization involves the termD1(ξ) defined

in (10); integrating by parts, we can removeχ1(ξ) and its second derivative, so to end up
with a simple integral like (11). The computation being rather lengthy, we only state the
final result:

Lemma 4.1. With the hypotheses above, the microlocal Wronskian near a focal pointaE
is given by

Wa(ua,ua) =
( i
h
([P, χa]+ − [P, χa]−)û

a|ûa
)

= 2 sgn(α(ξE))
(
|C0|2 + h (2Re(C0C1) + |C0|2∂x

( p1
∂xp0

)
(ξE)) +O(h2)

)

The condition thatua be normalized modO(h2) (once we have chosenC0 to be real),
is then

C1(E) = −1

2
C0 ∂x

( p1
∂xp0

)
(ξE)

sothat nowWa(ua, ua) = 2sgn(α(ξE))C
2
0

(
1 + O(h2)

)
. This procedure carries to any

order, we say then thatua is well-normalized. It can be formalized by considering{aE} as
a Poincaré section, and Poisson operator the operator that assigns to the initial condition
C0 on{aE}, in a unique way, the well-normalized (forward) solutionua to (P −E)ua =
0; see next Section.

The next task consists in extending the solutions away fromaE in the spatial repre-
sentation. First we expandua(x) = (2πh)−1/2

∫
eiψ(ξ)/h b(ξ;h) dξ neara by stationary

phase, selecting the 2 critical pointsξρ(x) = ξ±(x), that correspond to the phase func-
tionsϕρ(x) = xξρ(x) + ψ(ξρ(x)). So we have

ua(x;h) = ua+(x;h) + ua−(x;h)

=
1√
2

∑

±

(
∂ξ p0

(
x, ξ±(x)

)

i

)− 1
2

e
i
h
S±(xE ,x;h)

(
1 +O(h)

)
(12)

where

S±(xE , x;h) = ϕ±(xE , x) + h

∫ ξ±(x)

ξE

p1
(
− ψ′(ζ), ζ

)

α(ζ)
dζ +

√
2h2 Im

(
D1(ξ±(x))

)

(13)

andϕ±(xE , x) = xE ξE +

∫ x

xE

ξ±(y) dy. Then we use standard WKB theory with

Ansatzuaρ(x) = aρ(x;h)e
iϕρ(x)/h. Letβ0(x) = ∂ξ p0

(
x, ϕ′(x)

)
= −α

(
ξ(x)

)

ξ′(x)
, β1(x) =

∂ξ p1
(
x, ϕ′(x)

)
. Omitting the indexρ, we find the usual half-density

a0(x) = C̃0 |β0(x)|−
1
2 exp

(
− i

∫
p1
(
x, ϕ′(x)

)

β0(x)
dx

)

A R I M A Journal 



Regular Bohr-Sommerfeld quantization rules for a h-pseudo-differential operator 109

with a new constant̃C0 ∈ R ; the next term is

a1(x) =
(
C̃1 + D̃1(x)

)
|β0(x)|−

1
2 exp

(
− i

∫
p1
(
x, ϕ′(x)

)

β0(x)
dx

)

andD̃1(x) a complex function with

Re
(
D̃1(x)

)
= − C̃0

2

β1(x)

β0(x)
+ Const.

and

Im
(
D̃1(x)

)
= C̃0

( ∫ β1(x)

β2
0(x)

p1
(
x, ϕ′(x)

)
dx−

∫
p2
(
x, ϕ′(x)

)

β0(x)
dx

)
(14)

4.2. The homology class of the generalized action

Here we identify the various terms in (10) and (14). First onγE we haveψ(ξ) =∫
−x dξ +Const., andϕ(x) =

∫
ξ dx+Const.. By Hamilton equations

ξ̇(t) = −∂xp0
(
x(t), ξ(t)

)
, ẋ(t) = ∂ξp0

(
x(t), ξ(t)

)

so onγE we have
∫
p1
α
dξ = −

∫
p1
∂ξp0

dx = −
∫

γE

p1 dt. The formp1 dt is called

the subprincipal 1-form. Next we considerD1(ξ) as the integral overγE of the 1-form,
defined neara in Fourier representation as

Ω1 = T1 dξ = sgn(α(ξ))
(
i p̃2 b0 − ∂ξλ0

)
|α|−1/2 e−i

∫ p1
α dξ

UsingWKB constructions,Ω1 can also be extended in the spatial representation. Since
γE is Lagrangian,Ω1 is a closed form that we are going to compute modulo exact forms.
Using integration by parts, the integral ofΩ1(ξ) in Fourier representation simplifies to

√
2Re

(
D1(ξ)

)
= −1

2

[
∂x

( p1
∂xp0

)
(−ψ′(ζ), ζ)

]ξ
ξE

(15)

√
2 Im

(
D1(ξ)

)
=

∫ ξ

ξE

T1(ζ) dζ +
[ψ′′

6α

∂3p0
∂x3

+
α′

4α2

∂2p0
∂x2

]ξ
ξE

(16)

T1(ζ) =
1

α

(
p2 −

1

8

∂4p0
∂x2∂ζ2

+
ψ′′

12

∂4p0
∂x3∂ζ

+
(ψ′′)2

24

∂4p0
∂x4

)
+

1

8

(α′)2

α3

∂2p0
∂x2

+
1

6
ψ′′ α

′

α2

∂3p0
∂x3

− p1
α2

(
∂xp1 −

p1
2α

∂2p0
∂x2

)
(17)

Eq. (15) already shows thatRe(Ω1) is exact. We can carry the integration inx-variable
between the focal pointsaE anda′E , and inξ-variable again neara′E . Now letΩ(x, ξ) =
f(x, ξ) dx+ g(x, ξ) dξ, wheref(x, ξ), g(x, ξ) are any smooth functions onA. By Stokes
formula ∫

γE

Ω(x, ξ) =

∫ ∫

{p0≤E}

(
∂xg − ∂ξf

)
dx ∧ dξ
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where,following [CdV], we have extendp0 inside the disk bounded byA− so that it
coincides with a harmonic oscillator in a neighborhood of the origin (p0(0) = 0, say).
Making the symplectic change of coordinates(x, ξ) 7→ (t, E):

∫ ∫

{p0≤E}

(
∂xg − ∂ξf

)
dx ∧ dξ =

∫ E

0

∫ T (E′)

0

(
∂xg − ∂ξf

)
dt ∧ dE′ (18)

whereT (E′) is the period of the flow of Hamilton vector fieldHp0 at energyE′ (T (E′)
being a constant near 0). Using these expressions, we recover the well known action
integrals (see e.g. [7]):

Lemma 4.2. LetΓ dt be the restriction toγE of the 1-form

ω0(x, ξ) =

(
∂2p0
∂x2

∂p0
∂ξ

− ∂2p0
∂x ∂ξ

∂p0
∂ x

)
dx+

(
∂2p0
∂x ∂ξ

∂p0
∂ξ

− ∂2p0
∂ξ2

∂ p0
∂x

)
dξ

We haveRe
∮
γE

Ω1 = 0, whereas

Im

∮

γE

Ω1 =
1

48

( d

dE

)2
∫

γE

Γ dt−
∫

γE

p2 dt−
1

2

d

dE

∫

γE

p21 (19)

4.3. BS quantization rule

Recall from (12) the asymptotic solutionua(x;h) neara = aE . In the last term of
(13) we can substitute (16) withT1 as in (17), that is

√
2 Im

(
D1(ξ±(x))

)
=

∫ x

xE

T1(ξ±(y)) ξ
′
±(y) dy

Similarly, the asymptotic solution neara′ = a′E is given by

ua
′

(x;h) = ua
′

+ (x;h) + ua
′

− (x;h)

=
1√
2

∑

±

(
∂ξ p0

(
x, ξ±(x)

)

−i

)− 1
2

e
i
h
S±(x′

E ,x;h)
(
1 +O(h)

)
(20)

where as in (12), using (16) and (17)

S±(x
′
E , x;h) = ϕ±(x

′
E , x)− h

∫ x

x′
E

p1(y, ξ±(y))

∂ξp0(y, ξ±(y))
dy + h2

∫ x

x′
E

T1(ξ±(y)) ξ
′
±(y) dy

(21)
and similarly forS±(xE , x;h). The semi-classical distributionsua, ua

′

are well normal-

ized as in Lemma 4.1. We computeF a± =
i

h
[P, χa]±u

a
±. Still modO(h)

F a±(x;h) = ± 1√
2
e± i π

4

(
± ∂ξp0

(
x, ξ±(x)

)) 1
2

e
i
h
S±(xE ,x;h)

dχa1
dx

(x) (22)

andusing that the mixed terms(ua±|F a∓) areO(h∞), we find (ua|F a+ − F a−) ≡ 1 mod
O(h). In the same way, neara′ we have(ua|F a+−F a−) ≡ −1. The normalized microlocal
solutionsua andua

′

, uniquely extended alongγE , are now calledu1 andu2. They verify

(u1|F a
′

+ − F a
′

− ) =
i

2

(
e

i
h
A−(xE ,x

′
E ;h) − e

i
h
A+(xE ,x

′
E ;h)

)
(23)
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(u2|F a+ − F a−) =
i

2

(
e−

i
h
A−(xE ,x

′
E ;h) − e−

i
h
A+(xE ,x

′
E ;h)

)
(24)

wherethe generalized actions are given by

A±(xE , x
′
E ;h) = S±(xE , x;h)− S±(x

′
E , x;h) = (xE − x′E) ξE+

∫ x′
E

xE

ξ±(y) dy − h

∫ x′
E

xE

p1
(
y, ξ±(y)

)

∂ξp0
(
y, ξ±(y)

) dy + h2
∫ x′

E

xE

T1
(
ξ±(y)

)
ξ′±(y) dy

We have ∫ xE

x′
E

(
ξ+(y)− ξ−(y)

)
dy =

∮

γE

ξ(y) dy

∫ xE

x′
E

(
p1
(
y, ξ+(y)

)

∂ξp0
(
y, ξ+(y)

) − p1
(
y, ξ−(y)

)

∂ξp0
(
y, ξ−(y)

)
)
dy =

∫

γE

p1 dt

∫ xE

x′
E

(
T1

(
ξ+(y)

)
ξ′+(y)− T1

(
ξ−(y)

)
ξ′−(y)

)
dy = Im

∮

γE

Ω
1

(
ξ(y)

)

On the other hand, Gram matrix as in (8) has determinant

− cos2
(A−(xE , x

′
E ;h)−A+(xE , x

′
E ;h)

2h

)

whichvanishes precisely when BS holds. Summing up, we eventually obtain:

Proposition 4.1. With the notations and hypotheses stated in the Introduction, BS is given
in the intervalI bySh(E) = 2π nh, n ∈ Z, where the semi-classical actionSh(E) ∼
S0(E) + hS1(E) + h2 S2(E) + · · · consists of :

(i) the classical action

S0(E) =

∮

γE

ξ(x) dx =

∫ ∫

{p0≤E}∩W

dξ ∧ dx

(ii) Maslov index and the integral of the sub-principal 1-formp1 dt

S1(E) = −π −
∫

γE

p1
(
x(t), ξ(t)

)
dt

(iii) the second order term

S2(E) =
1

24

d

dE

∫

γE

∆ dt−
∫

γE

p2 dt−
1

2

d

dE

∫

γE

p21 dt

where

∆(x, ξ) =
∂2p0
∂x2

∂2p0
∂ξ2

−
( ∂2p0
∂x ∂ξ

)2

Werecall thatS3(E) = 0. Note that the signs in front of the first and third term of our
formula forS2(E) differ from those in [7].
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5. The discrete spectrum of P in I

Here we recover the fact that BS determines asymptotically all eigenvalues ofP in
I. We adapt the argument of [19]. It is convenient to think of{aE} and{a′E} as zero-
dimensional "Poincaré sections" ofγE . Let Ka(E) be the operator (Poisson operator)
that assigns to its "initial value"C0 ∈ L2({aE}) ≈ R the well normalized solution

u(x;h) =

∫
e

i
h
(x ξ+ψ(ξ)) b(ξ;h) dξ to (P − E)u = 0 near{aE}. By construction, we

have:

±Ka(E)∗
i

h
[P, χa]± Ka(E) = IdaE = 1 (25)

We define objects "connecting"a to a′ alongγE as follows: letT = T (E) > 0 such
that expTHp0(a) = a′. Chooseχaf (f for "forward") be a cut-off function supported
microlocally nearγE , equal to 0 alongexp tHp0(a) for t ≤ ǫ, equal to 1 alongγE for
t ∈ [2 ǫ, T + ǫ], and back to 0 next toa′, e.g. fort ≥ T + 2 ǫ. Let similarly χab (b
for "backward") be a cut-off function supported microlocally nearγE , equal to 1 along
exp tHp0(a) for t ∈ [−ǫ, T − 2 ǫ], and equal to 0 next toa′, e.g. fort ≥ T − ǫ. By (25)
we have

Ka(E)∗
i

h
[P, χa]+ Ka(E) = Ka(E)∗

i

h
[P, χaf ]Ka(E) = 1 (26)

−Ka(E)∗
i

h
[P, χa]− Ka(E) = −Ka(E)∗

i

h
[P, χab ]Ka(E) = 1 (27)

which define a left inverseRa+(E) = Ka(E)∗
i

h
[P, χaf ] to Ka(E) and a right inverse

Ra−(E) = − i

h
[P, χab ]Ka(E) to Ka(E)∗. We define similar objects connectinga′ to

a, T ′ = T ′(E) > 0 such thatexpT ′Hp0(a) = a′ (T = T ′ if p0 is invariant by time

reversal), in particular a left inverseRa
′

+ (E) = Ka′(E)∗
i

h
[P, χa

′

f ]+ to Ka′(E) and a

right inverseRa
′

− (E) = − i

h
[P, χa

′

b ]Ka
′

(E) toKa′(E)∗, with the additional requirement

χab + χa
′

b = 1 (28)

nearγE . Define now the pairR+(E)u = (Ra+(E)u,Ra
′

+ (E)u), u ∈ L2(R) andR−(E)

by R−(E)u− = Ra−(E)ua− + Ra
′

− (E)ua
′

− , u− = (ua−, u
a′

− ) ∈ C
2, we call Grushin

operatorP(z) the operator defined by the linear system

i

h
(P − z)u+R−(z)u− = v, R+(z)u = v+ (29)

From [19], we know that the problem (29) is well posed, and

P(z)−1 =

(
E(z) E+(z)
E−(z) E−+(z)

)

with (P − z)−1 = E(z) − E+(z)E−+(z)
−1E−(z). Actually one can show that the

effective HamiltonianE−+(z) is Gram matrix (8). There follows that the spectrum ofP
in I is precisely the set ofE we have determined by BS quantization rule
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