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ABSTRACT. We revisit in this Note the well known Bohr-Sommerfeld quantization rule (BS) for a 1-D
Pseudo-differential self-adjoint Hamiltonian within the algebraic and microlocal framework of Helffer
and Sjostrand; BS holds precisely when the Gram matrix consisting of scalar products of some WKB
solutions with respect to the “f ux norm” is not invertible.

RESUME. Dans le cadre algébrique et microlocal élaboré par Helffer et Sjéstrand, on propose une
ré-écriture de la régle de quantif cation de Bohr-Sommerfeld (BS) pour un opérateur auto-adjoint h-
Pseudo-différentiel 1-D; elle s’exprime par la non-inversibilité de la matrice de Gram d’un couple de
solutions WKB dans une base convenable, pour le produit scalaire associé a la “norme de f ux”.

KEYWORDS : Semi-classical spectral asymptotics, quantization rules.

MOTS-CLES : Analyse spectrale semi-classique, régles de quantif cation.




102 -ARIMA —Volume 23 — 2016

1. Introduction

Let p(x, &; h) be a smooth real classical Hamiltonian BhR; we will assume thap
belongs to the space of symbadi%(m) for some order functiom (for examplemn(z, &) =
(1 + [€1%)M) with

SN (m) = {p € C*(T"R) : Ya € N*, 3C4 > 0, [0°p(w,& h)| < CohNm(z,€)} (1)
This allows to take Weyl quantizatioB = p*“(x, h D,; h) of p

x +
2

P(z,hDy; h)u(z;h) = (27 h) ™! //e% (z—y) np( yﬂ?; h) wy)dydy  (2)
so thatp” (z, h D, ; h) is self-adjoint. We also assume that i is elliptic (in the classical
sense). We call as usugj the principal symbol, ang, the sub-principal symbol; in
case of Schradinger operatB(x, h D,; h) = (h D,)? + V(z), p(x,&h) = po(z,€) =
€2 + V(z). We make the hypothesis of [7], namely:

Fix some compact intervdl = [E_, E,], E_ < E, and assume that there exists a
topological ringA C p, ' (I) suchthab A = A, UA_ with Ay a connected component
of p; 1(E4). Assume also that, has no critical point ind, and A_ is included in the
disk bounded byA, (if this is not the case, we can always chapge —p). We define
the microlocal welllV as the disc bounded by pdr, .

ForE € I, letyg C W be a periodic orbit in the energy surfage(x,¢) = E} (so
thatvg is an embedded Lagrangian manifold).

Let K}Y(E) be the microlocal kernel o — E of order N, i.e. the space of local
solutions ofl P— E)u = O(h"*1) in the distributional sense, microlocalizedgs. This
is a smooth complex vector bundle over(vx). Here we address the problem of finding
the set ofE = E(h) such thatkY (E) contains a global section, i.e. of constructing a
sequence of quasi-modes (QM),, (h), E,(h)) of a given ordetN. As usual we denote
by K (E) the microlocal kernel o? — E mod O(h*°) ; since the distinction between
K} (E)andK),(E) plays no important role here, we shall content to wiitg(E).

Then if E,. < Ey = liminf py(z,£), all eigenvalues of? in I are indeed given

— 00

||
by Bohr-Sommerfeld quantization conditi@BS) Si,(E,,(h)) = 2wnh, where thesemi-

classical actionSy, (F) has the asymptotics
Sh(E) ~ So(E) + hS1(E) + h*Sy(E) + - - -

We determine BS at any accuracy by computing quasi-modes. There are a lot of ways
to derive BS: the method of matching of WKB solutions [3], known also as Liouville-
Green method [15], which has received many improvements (see [21]), the method of
the monodromy operator (see [12] and references therein), the method of quantization
deformation based on Functional Calculus and Trace Formulas [14], [7], [6], [11], [1].
Note that the latter one already assumes BS, it only gives a very convenient way to derive
it. In the real analytic case, BS rule, and also tunneling expansions, can be obtained
using the so-called “exact WKB method” see e.g. [8], [9] whenr= —h2A + V(z) is
Schrddinger operator.

Here we present another way to construct quasi-modes of order 2, based on [18], [13].
We stress that our method in the present scalar case, when carried to second order, is a bit
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more intricated than [14], [7] and its refinements [11]; it is most useful for matrix valued
operators with double characteristics such as Bogoliubov-de Gennes Hamiltonian ([10],
[4], [5]), or Born-Oppenheimer type Hamiltonians ([2], [16]).

2. The microlocal Wronskian

Thebest algebraic and microlocal framework for computing 1-D quantization rules in
the self-adjoint case, cast in the fundamental works [18], [13], is based on Fredholm the-
ory, and the classical "positive commutator method" using conservation of some quantity
called a "quantum flux".

Bohr-Sommerfeld quantization rules result in constructing quasi-modes by WKB ap-
proximation along a closed Lagrangian manifalg C {p, = E}, i.e. a periodic orbit of
Hamilton vector fieldd, with energyE. This can be done locally according to the rank
of the projectiomAg — R,.

Thus the sef}, (E) of asymptotic solutions t¢P — E') u = 0 alongA g can be con-
sidered as a bundle ovRrwith a compact base, corresponding to the "classically allowed
region" at energy~. The sequence of eigenvaluBs= E,, (h) is determined by the con-
dition that the resulting quasi-mode, gluing together asymptotic solutions from different
coordinates patches along;, be single-valued, i.ef<;, (F) have trivial holonomy.

AssumingA g is smoothly embedded ii*R?2, it can be always be parametrized by a
non degenerate phase function. Of particular interest are the critical points of the phase
functions, or focal points which are responsible for the change in Maslov index. Recall
thata(E) = (vg,{e) € Ag is afocal point ifAg "turns vertical” atu(E), i.e. Ty (g)Ap
is no longer transverse to the fibars= Const. in T*R.

In any case, howeve\p can be parametrized locally either by a ph&se- S(x)
(spatial representation) or a phase- S(g) (Fourier representation). Choose an orienta-
tion onAg and fora € Ag (not necessarily a focal point), denote by +1 its oriented
segments neat. Let x* € C§°(R?) be a smooth cut-off equal to 1 nearandw? a
small neighborhood ofupp[P, x*] N Ag nearp. Herex® holds fory®(x, hD,) asin (2),
and we shall equally writé®(z, hD,) (spatial representation) d?(—hDy,¢) (Fourier
representation).

Definition 2.1. Let P be self-adjoint, andi*, v* € K, (F) be supported o . We call

i

Wy (u,v%) = (h

[P, x ] pu|v?) ©)
the microlocal Wronskierof (u®,v?) in wj. Here % [P, x“], denotes the part of the
commutateur supported microlocally ar§.

To understand that terminology, & = —h?A + V, 2 = 0, and changey to
Heaviside unit step functiog(z), depending o alone. Then in distributional sense,

we have% [P, x] = —ihd" + 28 hD,, whered denotes the Dirac measure at 0, ahds

derivative, so tha(% [P, X]ulu) = —ih (u/(0) u(0) —u(0) u/(0)) is the usual Wronskien
of (u, ).
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Proposition 2.1. Letu®, v* € K (E) as above, and denote ythe h-Fourier (unitary)
transform ofu. Then

( IPAu?) = (G [Pl = 0 @
(% [P, x4 uv?) = *(% [P, x*]—uv®) ©)

(all equalities being understood ma@@(h>°), respO(h¥+1) when considering®, v® €
K}Y(E)). Moreover, W4 (u®, v®) doesn't depend mod(h>) (resp O(hN*1)) of the
choice ofy* as above.

Proof. Sinceu?,v® € K;(E) are distributions in2, the first equality (4) follows from
Plancherel formula and the regularity of microlocal solution&#np + i being elliptic.

If a is not a focal pointy®, v* are smooth WKB solutions near so we can expand the
commutator in\y = (% [P, x“]u®|v*) and use thaP is self-adjoint to show thaty =
O(h*). If ais a focal pointu®, v* are smooth WKB solutions in Fourier representation,
so againV = O(h>). Then (5) follows from Definition 2.1. O

We can find a linear combination 9¢, (dependingn a) which defines a sesquilin-
ear form onK,(E), so that this Hermitean form makes &%, (E) a metric bundle, en-
dowed with the gauge group(1). This linear combinaison is prescribed as the construc-
tion of Maslov index : namely we take/*(u®, u®) = W (u®, u®) — W* (u®,u®) > 0
whenthe critical pointa of my ,, is traversed in the-¢ direction to the right of the fiber
(or equivalentyV* (u, u®) = —W$ (u®,u®) + W (u®,u®) > whena is traversed in
the +¢ direction to the left of the fiber). Otherwise, just exchange the signs. Whes
a convex curve, there are only 2 focal points. In general there may be many focal points
a, but each jump of Maslov index is compensated at the next focal point which is tra-
versed to the other side of the fiber (co-cycle property). Maslov index is computed mod
4. Our method consists in constructing Gram matrix of a generating syst&fm(d@) in
a suitable dual basis; its determinant vanishes precisely at the eigeniiues

3. QM and BS in the case of a Schroédinger operator

As a warm-up, we derive the well known BS quantization rule using microlocal Wron-
skians in case of a potential well, i-gg is convex. Consider the spectrum of Schrédinger
operatorP(z, hD,) = (hD,)* + V(z) near the energy level, < l‘im inf V(z), when

| =00
{V < E} = [2%g,zg] andz’y, z g are simple turning points/ (z;) = V(zg) = E,
V(%) < 0,V'(zg) > 0. Itis convenient to start the construction from the focal points
aora. We seta’ = 2’5, a = zp, identifying the focal pointt = ag = (x g, 0) with its
projectionz . We know that microlocal solutions of (P — E)u = 0 nearq are of the
form

u(z3h) = —= (T (E-V(z)) 1 ek 5@ Lot F (E-V(2)) 1 e # 5@ L O(h))

(6)

Sl
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whereC € C, S(y,x f £, (t)dt, and&, (t) is the positive root of? + V (¢) = E.

In the same way, the m|crolocal solutions(df — E)u = 0 neara’ have the form, with
C'eC

\%( TR (B-V(2)) "1 eh S pel T (B-V(2)) 75 e 7S 010(h))
@)

These expressions result in computing by the method of stationary phase the oscillatory
integral that gives the solution ¢P(—hD¢, &) — E)u = 0 in Fourier representation.

The change of phase factef’ # accountfor Maslov index. For the sake of simplicity,

we omit henceforthO(h) terms, but the computations below extend to all ordeh in
(practically, at least fol = 2), thus giving the asymptotics of BS. This will be elaborated

in the next Section.

u (w;h) =

The semi-classical distributions’, u®' span the microlocal kerndt;, of P — E' in
(x,€) €la’,a[xR ; they are normalized using microlocal Wronskians as follows.

Let x* € C$°(R?) as in the Introduction be a smooth cut-off equal to 1 near
Without loss of generality, we can také€(z, ) = x§(z) x2(&), so thatys = 1 on small
neighborhoodso?, of supp(%[P, x%]) N {&2 + V = E} in £¢ > 0. We definex®
similarly. By (6) and (7) we have, ma@(h):

i

E[R X ut = V20 (x§) (z) (e 5 (B - V)i en San) _g=ig

h
FIP 0 = VEC! () (@) (7 F (B-V)t eh S0 el F (Boy) ek S(0)
Let
Fi(a;h) = %[P, XJe ut (@ h) = £V2C () (2) e T (B = V)1 et hSen)
sothat:

(UG‘F_?: - Ff) = |C|2 (ei% (E _ V)*% 6% S(a,m)‘(x?)/(x)e z (E V)% i S(a, z))
+|C? (@71' T(E-V)" Tet S(a,z)|(lez)/(x) e iE (B - V)% e~ % S(a,x))
— 108 ( [y @de+ [0 @) as) + 00 =210 + 0
(the mixed terms such 48" T (V)1 ¢ 50| (xq)' () e ' T (E-V)d ¢~ £ 5()

areO(h*°) because the phase is non stationary), thftuss normalized modD(h) if we
chooseC' = 2~1/2, In the same way, with

Fe (a;h) = E[ X u (2, h) = +V2C" (X8 ) (x) e¥ T (B — V)1 et i Saho)
we get
(W |FE = ) =[O ([ 0V @) do+ [ (') (@) dn) + O(h) = ~21C" + O(h)

and we choose agaifi’ = C which normalizes.* mod O(h). Normalization carries to
higher order, as is shown in the next Section.
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Sothere is a natural duality product betwekh (£) and the span of functions{ —
F“ and Fﬁ' — F* in L2. As in [18], [13] we can show that this space is microlocally
transverse tdm(P — F) on (z,€) €]d’,a[xR, and thus identifies with the microlocal
co-kernelK;(E) of P — E; in generaldim K, (E) = dim K (E) = 2, unlessE is an
eigenvalue, in which caséim K;, = dim K; = 1 (showing thatP — E is of index 0
when Fredholm. )

Microlocal solutionsu® andu® extend as smooth solutions on the whole interval
Ja’, a[; we denote them by, andus. Since there are no other focal points between
anda’, they are expressed by the same formulae (which makes the analysis particularly
simple) and satisfy :

(ui|F¢ —F4) =1, (ug|F? —F¥)=—1
Next we compute (still modul®(h))

i

(i |Fy = F) = = (7% (B = V)~hed SO0 (x8') () e ¥ (B — V) ef 52

N | =

™

5 (TR E V) e I Y () ¢ F (B - V)R emhSe)

LN

v _iga.a a’ i a’,a a’
= sk [ Y@y 5o [ody i

2
= —sin(S(a’,a)/h)

(taking again into account that the mixed terms@@°°)). Similarly (uz|F§ — F?) =
sin(S(a’, a)/h). Now we define Gram matrix

/ F¢—F*)  (ug]F¢ —F)
G(a’a ) E = ( (u” +/ ’ +/ ’ 8
(E) (n|F¢ —F) (ug|F¢ — F*) ®
whose determinant1 + sin®(S(a’,a)/h) = — cos?(S(a’, a)/h) vanishes precisely on

eigenvalues of in I, so we recover the well known BS quantization condition

7(5@;)@::2/(E—V(x))%dxzzwh(k+%)+0(h); keZ (9

anddet G(»*)(E) is nothing but Jost function which is computed e.g. in [DeDi], [9] by
another method.

4. The general case

By the discussion after Proposition 2.1, it clearly suffices to consider the case when
~g contains only 2 focal points which contribute to Maslov index.

4.1. Well normalized quasi-modes mod O(h?)

Leta = (zg,&p) be such a focal point. Following a well known procedure we can
trace back to [17], we first seek for asymptotic solutions in Fourier representation near
of the forma(¢) = e/ p(¢; h). Here the phase = 1 solves Hamilton-Jacobi
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equationpy(—'(£),£) = FE, and can be normalized by(¢g) = 0; the amplitude
b(&h) = bo(&) + hbi(€ ) - has to be found recursively together withe, ; h) =
ao(z, &) + hay(z,€) + - such that

hD§ (61 (z€+4(8)) (.’E & h)) _ ei(acf-i‘l/)(f))/hb(g; h)
% (po(x,€) = E + hpa (2,€) + h%Pa(,€) + O(h?))

po being the principal symbol aP, p; its sub-principal symbol for the standard (Feyn-
man) quantization, etc. ... Defingz, &) by po(x, &) — E = X(z,&)(x + ¥'(£)), we get
first

A=), €) = (&) = 0zpo(=¢'(£),€)

Az, ) ( ) and solving a first order ODE (¢, D¢ )by = 0, with
(%0/(&) — pr(¥'(£),€)) weget

This yieldsag(z, ) =
L(&,D¢) = (&) D¢ +

bo(€) = Cola(©)] /21

with an arbitrary constartty, we take independent df. This gives in turma, (z,§) =
Mz, )b (&) + Ao(w, ), with

bo(&)p1 + Zaao

)‘O(xag) l‘+8§’¢

andby (§) solution of L(&, D¢ )by = pabg + 10 Aol z=—y (¢)- We eventually get

bo(€) + hb1(€) = (Co + hCy + hDy(€))|a(€)| "/ 26 [ &

wherewe have set

5 - P1
Dy(6) = a(€x) /5 (iB2bo — D holarprien) [0 V2 B ag (10)

Theintegration constant§y, C1, - - - will be determined by normalizing the microlocal
Wronskians as follows.

We computeV? (u®, u®) in Fourier representation, with(¢; h) = e(€)/"p(¢; h).
Recally® € C§° (RQ) @ = 1 nearag; without loss of generality, we can také(z, §) =
x1(z)x2(€), so thatX2 = 1 on small neighborhoods%, of supp% [P, x*] N vg in
j:(g —¢g) > 0. Thus we need only consider the variationsyaf Weyl symbol of
#LP,x“] is given bye(z, & h) = (9gpo(x, &) + hdep: (2,€)) xi(x) + O(h?), s0
%[P, x*Ja( (2rh)~ // (3 n)u+¢(n))/h c(y, £¥; h)(bo + hby ) (1) dy dn
Evaluating by stationary phase, we figfl>, x2]a(¢) = €™/ d(¢; h), whered(&; h) =

do + hdy + O(h?) with dy = cobo andd; a function ofcy, c1, by, b; We have determined
so far. It follows

o0

P11 = [ @@ e+ 0h)
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Theleading term is simply

| Ileode = (CoPsmn(ace)) | xi(-/(€)4€)d = Colsanta(er) (1)
E E

sou® is normalized mod)(h), provideda(¢g) > 0, when2|Cy|? = 1; we takeCy =

1/+/2 as in Schrodinger case. Next step in normalization involves the f&rig) defined

in (10); integrating by parts, we can remayg(¢) and its second derivative, so to end up
with a simple integral like (11). The computation being rather lengthy, we only state the
final result:

Lemma 4.1. With the hypotheses above, the microlocal Wronskian near a focal pgint
is given by

L
h

= 2sgu(a(€e) (1Col? + h (2Re(CoC1) + Col*0: (57 ) (65)) + OU?))

W (u u®) = (+([P,x"]+ — [P x"]-)a"[a)

The condition that:* be normalized mod (h?) (once we have chos&ft, to be real),
is then

C\(E) = f%co az(%go)(f];)

sothat nowW* (u®, u®) = 2sgn(a(ég))C3 (1 + O(h?)). This procedure carries to any
order, we say then that' is well-normalized. It can be formalized by consider{ng; } as

a Poincaré section, and Poisson operator the operator that assigns to the initial condition
Co on{ag}, in aunigue way, the well-normalized (forward) solutighto (P — E)u® =

0; see next Section.

The next task consists in extending the solutions away fignin the spatial repre-
sentation. First we expand (z) = (2rh)~1/2 [ e™(€)/h p(¢; h) d¢ neara by stationary
phase, selecting the 2 critical poirgis(z) = £+ (z), that correspond to the phase func-
tionsy,(z) = z€,(x) + ¥(£,(x)). So we have

u®(z;h) = uf (x;h) + vl (23 h)
1
2

_ L (Oepo(@ 8 @)\t siopai)

where
&+ (x) —
Setwnaim) = patepn) +n [ PO e v (i)
o (13)
andyy(zp,x) = zpée + / ¢+(y)dy. Then we use standard WKB theory with
Ansatzug(z) = a,(z; h)eie(@)/h Let By(x) = D¢ po (z,¢/(x)) = —ag((j))) , Bi(x) =

¢ p1(z, ¢/ (z)). Omitting the indexp, we find the usual half-density

aoz) = Co o))} exp(—z' /Wcﬂx)
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with a new constanf?o € R ; the nextterm is

al(l’) = (a+51(x)) |ﬁo(1‘)|_% exp (—i /Wdl')

and D (x) a complex function with

G Bia)
2 Bo(x)

Re (151 (z)) = + Const.

and

Im(ﬁl(x)) = CN’O ( gégi P1 (x, @’(x)) dx — /])72 (x’ 1 (:r:)) dac) (14)

4.2. The homology class of the generalized action

Here we identify the various terms in (10) and (14). Firsthgnwe havey(§) =
/—33 d¢ + Const., andp(z) = /fd:c + Const.. By Hamilton equations

E(t) = =0upo(2(t), £(1)), &(t) = Depo (1), £(1))

S0 onvyp we have/ b d¢ = — P1 dr = —/ p1dt. The formp, dt is called
(0% 3.5;00 vE

the subprincipal 1-form. Next we considgx (§) as the integral oveyy of the 1-form,
defined neat in Fourier representation as

O = Ty d¢ = sgn(a(€)) (iP2bo — Deo) |af M2 e " 5 dg

Using WKB constructions§2; can also be extended in the spatial representation. Since
~g is Lagrangian{?; is a closed form that we are going to compute modulo exact forms.
Using integration by parts, the integral @f () in Fourier representation simplifies to

_ 71 y4! Y 13
V2Re(D1(9)) = —3 [9: (5 =) (=¥ (0. Ol (15)
13 w// ad / 82
Vamm(Di) = [ mQdc [5G e e GRl, e
1 1 ' ¥ O'pe (WM O'po | 1 (a))? &%y
ne=3 <p2 T 802202 T 12 00%0¢ T 24 0at ) 8 o8 012
1 1" o 83pO D1 P1 82pO
el vl A CoC Ryl v an

Eq. (15) already shows thadte(2,) is exact. We can carry the integrationarvariable
between the focal pointsg anda’,, and iné-variable again neary,. Now letQ(z,§) =

flz, &) dx+g(x, &) dE, wheref (z, ), g(x, ) are any smooth functions ofi. By Stokes
formula

[ a@o-= / /{ (oo dnae
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where,following [CdV], we have extengh, inside the disk bounded byt so that it
coincides with a harmonic oscillator in a neighborhood of the origitQ(p = 0, say).
Making the symplectic change of coordinates¢) — (¢, E):

E (T(E)
// (00g — e 1) dmAdfz/ / (90g — 0cf) dt NdE' (18)
{po<E} o Jo

whereT (E’) is the period of the flow of Hamilton vector fiel,,, at energyE’ (T'(E")
being a constant near 0). Using these expressions, we recover the well known action
integrals (see e.g. [7]):

Lemma 4.2. LetI dt be the restriction toyg of the 1-form
9poy O 3py 0 9?py O 9?poy O
wolz,€) = ( Po OPo Po po) dr + ( Po OPpo Po po) de

0r?2 0¢ 0x0f Ox
We haveRe fw Q, =0, whereas

1 ,d .2 1 d
Imf M =—(— /th—/ pgdt—f—/ P2 (19)
YE 48 (dE> YE YE 2 dE YE !

4.3. BS quantization rule

0x 0§ OE 0&2 Ox

Recall from (12) the asymptotic solutiarf (x; ) neara = ag. In the last term of
(13) we can substitute (16) with; as in (17), that is

Vatn(Di(ex(0)) = [ Til€x0) €t0)dy

TE

Similarly, the asymptotic solution neaf = a’; is given by
u® (3 h) = us (w; h) + u (x; h)

_ % zi: (351’0 (fi_fi(x)) ) 7k St (@ah) (1+0()  (20)

7

where as in (12), using (16) and (17)

Si (2, 2:h) = px(tp,2) —h [ mdy+h2 /I/ETl(ﬁi(y))f’i(y)dy
(21)

Tg
and similarly forSy (zg, z; h). The semi-classical distributions', u are well normal-

ized as in Lemma 4.1. We computt§ = E[P, x“]xus. Still mod O(h)

h
Fé(x;h) =+ Leriz(1g po(z,€4(2)) %e% St (zpaih) %(x) (22)
+ \/§ 3 ’ dr
andusing that the mixed term@§ |F'¢) are O(h>), we find (u*|F{ — F?) = 1 mod
O(h). Inthe same way, neaf we have(u®|F{ — F%) = —1. The normalized microlocal

solutionsu® andu®’, uniquely extended alonggz, are now called:; andu,. They verify

(u1|F_f — Ff,) = % (ei A-(zp.@pih) _ o A+(1E’9E’E;h)> (23)
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(uz‘Fi —F%) = % <eiA($E’I§E?h) e F A+(4EE7IIE§h)) (24)
wherethe generalized actions are given by
A:t($E7x/E; h) - S:I:(an 5 h) - Si(l‘lE,(ﬂ; h) - (‘L'E - :C/E) §et

5 pi(y,€x(y))

o dy — h dy + h? meT " (y)d
/wE £+(y) dy o Oemo(y. €2 (1)) Y+ /wE 1(€x(v)) € (y) dy

We have

/xE (&+(y) —€-(v)) dy =% &(y) dy

’
E YE

/;E ( pi(y.r(y) Pl(%f(y))))dy:/wm dt

o \Oepo(y,&4(y)  Oepo(y,&-(y)

[ (T1 () € () — T (e (n) € <y>) dy — Im

’
E

Q, (¢())

v
On the other hand, Gram matrix as in (8) has determinant

A_(xg,2'g; h) — Ay (zg, o'y; h))
2h

whichvanishes precisely when BS holds. Summing up, we eventually obtain:

— cos® (

Proposition 4.1. With the notations and hypotheses stated in the Introduction, BS is given
in the intervall by S;,(E) = 2w nh, n € Z, where the semi-classical actid,(E) ~
So(E) + h S1(E) + h? So(E) + - - - consists of :

(i) the classical action

So(E) = 7{,; £(2) dz = //{m@}mw dé A dz

(i) Maslov index and the integral of the sub-principal 1-fgpmit
SuE) = ~m~ [ pifale).€0) de
YE

(i) the second order term
1 d ' d
SQ(E):f—/ Adtf/ po dt — —/ p?dt
24 dE YE YE dE YE !
9%po 9*po 9*po

2
or? 0¢2 (ax ag)

DN | =

whee
Az, &) =

Werecall thatS;(E) = 0. Note that the signs in front of the first and third term of our
formula for Sy (E) differ from those in [7].
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5. The discrete spectrum of P in [

Here we recover the fact that BS determines asymptotically all eigenvalusrof
I. We adapt the argument of [19]. It is convenient to thinKef; } and{d/;} as zero-
dimensional "Poincaré sections" ¢f. Let K*(E) be the operator (Poisson operator)
that assigns to its "initial value”, € L?*({ag}) ~ R the well normalized solution

u(x; h) = /eﬁi(“*w“)) b(¢; h) d€ to (P — E)u = 0 near{ay}. By construction, we
have: )
* ? a a

:t]Ca(E) E[va ]:EIC (E):IdaE:1 (25)
We define objects "connecting'to o’ along~g as follows: letT = T(E) > 0 such
thatexp T'Hp, (a) = a’. Choosex} (f for "forward") be a cut-off function supported
microlocally nearyg, equal to 0 alongxp tH,, (a) for ¢ < ¢, equal to 1 alongyg for
t € [2¢,T + ¢], and back to 0 next te’, e.g. fort > T + 2e¢. Let similarly x¢ (b
for "backward") be a cut-off function supported microlocally negr equal to 1 along
exptHy, (a) fort € [—¢, T — 2¢], and equal to 0 next t&/, e.g. fort > T — €. By (25)

we have ]
« L

()" P X]4 K(B) = K2(B)” 1P, x§ () = 1 (26)
KU (B 2P KUE) = —KAE) TIPAGIKN(B) =1 @)

which define a left invers&? (E) = K*(E)* % [P,x}] to K*(E) and a right inverse

R*(E) = —%[P, Xz} K4(E) to K*(E)*. We define similar objects connecting to
a, 7" = T'(E) > 0 such thatexpT'H,,(a) = o' (I' = T" if py is invariant by time

« L ’ o
% [P,x} ]+ to K% (E) and a
)

right inverseR® (E) = ~ [P, x¢'] K% (E) to K (E)*, with the additional requirement

reversal), in particular a left inversﬂi/(E) = K¥(E)

Xg+xg =1 (28)

nearyg. Define now the paiR (E)u = (R%(E)u, Ri (B)u),u € L*(R) andR_(E)
by R_(E)u_ = R*(E)u® + R*(E)u®, u_ = (u*,u®) e C2, we call Grushin
operatorP(z) the operator defined by the linear system

% (P—2)u+R_(2)u_ =v, Ri(z)u=wvy (29)

From [19], we know that the problem (29) is well posed, and

o= (50 20)

with (P — 2)~! = E(2) — E{(2) E_y(2)"' E_(z). Actually one can show that the
effective HamiltonianE'_ , (z) is Gram matrix (8). There follows that the spectrumpof
in [ is precisely the set of we have determined by BS quantization rule
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