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RÉSUMÉ.

ABSTRACT. In this paper we proved the existance and uniqness of strong generalized solution of
mixed problems wih integral condition for singular parabolic equaions depending on a theorem proved
in [1] in which a priori estimaion of the solution for such problems was derived.
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1. Introduction

Mixed problems with nonlocal boundary conditions or with nonlocal initial conditions
were studied in Bouziani [3], Byszewski et al [4] and [5], Gasymov [7], Ionkin [8]-[9],
Lazhar [11], and Said-Nadia [12]. The results and the method used here are a further
elaboration of those in [2]. We should mention here that the presence of integral term in
the boundary condition can greatly complicate the application of standard functional and
numerical techniques. This work can be considered as a continuation of the results in [6]
and [13].

In [1] the author considered the following mixed problem in the rectangleQ = (0, l)×
(0, T )

Lu =
∂u

∂t
− 1

xm
∂

∂x
(xm

∂u

∂x
) = f(x, t), m > 0, (1)

lu = u(x, 0)ϕ(x), |u(0, t)| <∞,
l∫∫
α

xmu(x, t)dx = 0, α > 0. (2)

and he proved the following theorem
Theorem 1 : For any function u ∈ E such that x

m
2
∂u
∂t ∈ L2(Q) and x−

m
2
∂
∂xx

m∂u
∂x

∈ L2(Q), the following inequality holds

‖u‖2E ≤ c ‖F‖
2
F , (3)

where c = 2
(
l + exp( T

2α2 )
)
.

2. The Main Result

we consider the operator L = (L, l) with the following domain

D(L) =

{
u ∈ E : x

m
2
∂u

∂t
∈ L2(Q), x

m
2
∂

∂x
(xm

∂u

∂x
) ∈ L2(Q)

}
,

acting from E into F by the rule Lu = (Lu, u(x, 0)).
In a standard way its proved [10] that the operator is closable which we denote by L

with the domain D(L).
Definition : The solution of the equation Lu = F is called strong generalized solution

of the problem (1)-(2). In other words, the function u is called strong generalized solution
of the problem (1)-(2) if there exist a sequence of functions un ∈ D(L), such that the
‖un − u‖E → 0 and ‖Lun −F‖F → 0 at n→∞.

Theorem 2 : Strong generalized solution of the problem (1)-(2) exist and unique for
any F = (f, ϕ) ∈ F.

Proof. For the sequence un ∈ D(L) the following inequality holds

‖un‖2E ≤ 2

(
l + exp

(
T

2α2

))
‖Lun‖2F , (4)
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which implies from theorem 1. Passing in (4) to the limit at n→∞, we get the following
inequality

‖un‖2E ≤ 2

(
l + exp

(
T

2α2

))∥∥Lun∥∥2F , u ∈ D(L). (5)

From (5) implies that strong generalized solution of problem (1)-(2) is unique, the range
R(L) of the operator L is closed in F and R(L) = R(L). Therefore for the proof of
existence of strong generalized solution of (1)-(2) we need to prove that the range R(L)
of the operator L is dense in F.

Since the range of the operator L is dense in a space with the norm

(
l∫∫
0

xn
(
ϕ

′
)2
dx+ m

l−α

l∫∫
α

xm−1ϕ2dx)
1
2 , its sufficient to show that the equality

∫∫
Q

xmLuvdxdt = 0,∀u ∈ D0(L) = {u ∈ D(L) : u(x, 0) = 0} , xm
2 v ∈ L2(Q), (6)

imply the equality v = 0.
We set in (6) xmv =Mh, where Mh = xmh at 0 ≤ x ≤ α and

Mh =
l − x
l − α

xmh(x, t) +
1

l − α

x∫∫
α

ξmh(ξ, t)dξ, (7)

at α ≤ x ≤ l. This holds if the function h(x, t) = v(x, t) at 0 ≤ x ≤ α and

h(x, t) = v(x, t)− 1

(l − α)xm

l∫∫
α

ξmv(ξ, t)dξ,

at α ≤ x ≤ l. It is not hard to see that the function h satisfy the third condition from (2),
that is

l∫∫
α

xmh(x, t)dx = 0. (8)

So for any function u ∈ D0(L) and given function h we get the equality∫∫
Q

∂u

∂t
Mhdxdt =

∫∫
Q

1

xm
∂

∂x
(xm

∂u

∂x
)Mhdxdt. (9)

We set in (9) u =
∫∫ t

0
w(x, r)dr where w is any function such that x

m
2 w ∈ L2(Q),

1

x
m
2

∂

∂x
(xm

∂w

∂x
) ∈ L2(Q),

l∫∫
α

xmw(x, t)dx = 0,

∣∣∣∣ ∂∂xw(0, t)
∣∣∣∣ <∞.

Then we get the equality∫∫
Q

wMhdxdt =

∫∫
Q

1

xm
∂

∂x
(xm

∂w

∂x
)Mgdxdt, (10)
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where g(x, t) =
∫∫ T
t
h(x, τ)dτ. The left side of (10) show that the map

L2(Q) 3 xm
2 w →

∫∫
Q

1

xm
∂

∂x
(xm

∂w

∂x
)Mgdxdt ∈ R

is linear continuos functional. Consequently

x
m
2
∂

∂x

Mg

xm
∈ L2(Q),

1

x
m
2

∂

∂x
(xm

∂

∂x
(
Mg

xm
)) ∈ L2(Q),

and by virtue of (5)

x
m
2
∂

∂x
g ∈ L2(Q),

1

x
m
2

∂

∂x
(xm

∂

∂x
g) ∈ L2(Q),

∣∣∣∣∂g(0, t)∂x

∣∣∣∣ <∞. (11)

Integrating by parts the right hand side of (10) and taking into account (7) and (8), we
get ∫∫

Q

wMhdxdt = −
∫∫
Q

xm
∂w

∂x

∂

∂x

Mg

xm
dxdt. (12)

On the basis of (11) we set in (12)

w(x, t) =

t∫∫
0

ec(τ−T )g(x, τ)dτ. (13)

Then ∫∫
Q

ec(t−T )gMgdxdt = −
∫∫
Q

ec(τ−t)xm
∂w

∂x

∂2

∂x∂t
(
Mw

xm
)dxdt. (14)

By analogy of formula (12) in [1] we get

∫∫
Q

ec(t−T )gMgdxdt =

∫
Q

ec(t−T )ψ(x) |g|2 dxdt

+

T∫
0

l∫
α

mec(t−T )

2(l − α)xm+1

∣∣∣∣∣∣
x∫
α

ξmg(ξ, t)dξ

∣∣∣∣∣∣
2

dxdt. (15)

Further
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∫
Q

ec(T−t)xm
∂w

∂x

∂2

∂t∂x

Mw

xm
dxdt =

∫
Q

ec(T−t)xmψ(x)
∂w

∂x

∂2w

∂t∂x
dxdt

−
T∫

0

l∫
α

ec(T−t)m

(l − α)x
∂w

∂x

x∫
α

ξm
∂w

∂t
dξdxdt

=
1

2

l∫
0

xmψ(x)

∣∣∣∣∣∣
T∫

0

ec(t−T )g(x, t)dt

∣∣∣∣∣∣
2

dx

+
c

2

∫
Q

ec(T−t)xmψ(x) |w(x, t)|2 dxdt

−
T∫

0

l∫
α

ec(T−t)m

(l − α)x2
w

x∫
α

ξm
∂w

∂t
dξdxdt

+
1

2

l∫
α

xm−1m

(l − α)

∣∣∣∣∣∣
T∫

0

ec(t−T )g(x, t)dt

∣∣∣∣∣∣ dx
+

cm

2

T∫
0

l∫
α

ec(T−t)xm−1

(l − α)
w2dxdt, (16)

where ψ(x) =
{

1, 0 ≤ x ≤ α,
l−x
l−α , α ≤ x ≤ l.

By analogy of (18) in [1] we get

T∫
0

l∫
α

ec(T−t)w

(l − α)x2

x∫
α

ξm
∂w

∂t
dξdxdt ≤ 1

2

T∫
0

l∫
0

ec(T−t)

(l − α)xm+1

∣∣∣∣∣∣
x∫
α

ξm
∂w

∂t
dξ

∣∣∣∣∣∣
2

dxdt

+
1

2α2

T∫
0

l∫
α

ec(T−t)xm−1

(l − α)
w2dxdt. (17)
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From (14) and by virtue of (13),(15)-(17) implies the following inequality

∫
Q

ec(t−T )ψ(x) |g|2 dxdt+ 1

2

l∫
0

xmψ(x)

∣∣∣∣∣∣
T∫

0

ec(t−T )g(x, t)dt

∣∣∣∣∣∣
2

dx

+
c

2

∫
Q

ec(T−t)xmψ(x) |w(x, t)|2 dxdt+ m

2

l∫
α

xm−1

(l − α)

∣∣∣∣∣∣
T∫

0

ec(t−T )g(x, t)dt

∣∣∣∣∣∣ dx
+
m

2
(c− 1

α2
)

T∫
0

l∫
α

ec(T−t)xm−1

(l − α)
w2(x, t)dxdt ≤ 0. (18)

We set in (13) c ≥ 1
α2 . Then from (18) implies that g ≡ 0. Since xmv = M ∂g

∂t then
v ≡ 0, and theorem 2 is proved.
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