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RÉSUMÉ. Nous considérons un modèle de chimiothérapie pour une population de cellules avec ré-

sistance. Nous considérons le cas de deux médicaments le premier avec effet impulsif et le deuxème

avec effet continu. Nous étudions la stabilité des solutions p’eriodiques triviales et l’apparition des

solutions périodiques non-triviales en utilisant la bifurcation de Lyapunov-Schmidt.

ABSTRACT. A chemotherapeutic treatment model for cell population with resistant tumor is consid-

ered. We consider the case of two drugs one with pulsed effect and the other one with continuous

effect. We investigate stability of the trivial periodic solutions and the onset of nontrivial periodic solu-

tions by the mean of Lyapunov-Schmidt bifurcation.
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1. Introduction

Impulsive differential systems are found in the description of phenomena issued from

applied sciences as physics, chemistry, biology and medicine. Recently interesting works

in biomathematics have been published, we can cite those considering impulsive che-

motherapeutic treatment of tumor diseases ([1], [3]-[5], [8], [9]), impulsive pest control

strategies ([6]), impulsive harvesting ([7], [12]), and impulsive vaccination ([10], [11]).

In this paper, we consider a mathematical model for cell population under chemotherapy

treatment by two drugs, one with instantaneous effect and the other with continuous ef-

fect. We study the stability of the tumor eradication and the consequences of the lost of

its stability. In the last case we could have a bifurcation of positive nontrivial solutions

which correspond to the persistence of the tumor.

More specifically, we consider a cell population constituted by three subpopulations ; nor-

mal cells, sensitive tumor cells and resistant tumor cells, with mutation and resistance to

the drug with instantaneous effect. The model is described by the following impulsive

differential equations :

dx1

dt
= r1x1

(

1−
x1

k1
− λ1(x2 + x3)

)

− θ1x1, [1]

dx2

dt
= r2x2

(

1−
x2 + x3

k2
− λ2(x1 + x3)

)

−mx2 − θ2x2, [2]

dx3

dt
= r3x3

(

1−
x2 + x3

k3
− λ3(x1 + x2)

)

+mx2 − θ3x3, [3]

x1(t
+
i ) = T1x1(ti), [4]

x2(t
+
i ) = (T2 −R)x2(ti), [5]

x3(t
+
i ) = T3x3(ti) +Rx2(ti), [6]

where ti+1 − ti = τ > 0, ∀i ∈ N, θ1 < r1, θ2 < r2 +m and θ3 < r3.

The variables and parameters are :

τ : period between two successive drug with instantaneous effect,

xj : normal (resp. sensitive tumor, resistant tumor) cells biomass for j = 1 (resp. 2,3),

rj : growth rates of the normal (resp. sensitive tumor, resistant tumor) cells for j = 1
(resp. 2,3),

kj : carrying capacities of the normal (resp. sensitive tumor, resistant tumor) cells for

j = 1 (resp. 2,3),

λj : competitive parameters of the normal (resp. sensitive tumor, resistant tumor) cells for

j = 1 (resp. 2,3),

Tj : survival fractions of the normal (resp. sensitive tumor, resistant tumor) cells, their va-

lues are completely determined by the quantity of injected drug with instantaneous effect.

θj : elimination rate of normal (resp. sensitive tumor, resistant tumor) cells by the drug

with continuous effect.

R : Fraction of cells mutating due of the dose of the drug with instantaneous effect, which

is less than T2.

m : acquired resistance parameter usually it is very small.

Note that if θi = 0, then we obtain the models studied in [1] and [5].



2. Analysis of the model

In the following, we proceed to analyze our model. To this purpose, we shall use a

fixed point approach.

Let Φ(t,X0) be the solution of the system (1)-(6) for the initial condition X0.

We define the mappings F1, F2, F3 : R3 → R by

F1(x1, x2, x3) = r1x1

(

1− x1

k1
− λ1(x2 + x3)

)

− θ1x1,

F2(x1, x2, x3) = r2x2

(

1− x2+x3

k2
− λ2(x1 + x3)

)

−mx2 − θ2x2,

F3(x1, x2, x3) = r3x3

(

1− x2+x3

k3
− λ3(x1 + x2)

)

+mx2 − θ3x3,

and Θ1, Θ2, Θ3 : R3 → R by

Θ1(x1, x2, x3) = T1x1,

Θ2(x1, x2, x3) = (T2 −R)x2,

Θ3(x1, x2, x3) = T3x3 +Rx2.

Let Θ := (Θ1,Θ2,Θ3) and Ψ : R+ ×R
3 → R

3 be the operator defined by

Ψ(τ,X0) = Θ(Φ(τ,X0)), [7]

and denote by DXΨ the derivative of Ψ with respect to X . Then ξ = Φ(., X0) is a

τ -periodic solution of (1)-(6) if and only if

Ψ(τ,X0) = X0, [8]

i.e. X0 is a fixed point of Ψ(τ, .), and it is exponentially stable if and only if the spectral

radius ρ(DXΨ(τ, .)) is strictly less than 1 ([2]). A fixed point X0 of Ψ(τ, .) is the initial

state of (1)-(6) which gives a τ -periodic solution ξ verifying ξ(0) = X0.

We reduce the problem of finding a periodic solution of (1)-(6) to a fixed point problem.

Here, ξ is a periodic solution of period τ for (1)-(6) if and only if X0 is a fixed point

for (8). Consequently, to establish the existence of nontrivial periodic solutions of (1)-(6),

one needs to prove the existence of nontrivial fixed points of Ψ(τ, .).
REMARQUE. —

The problem (1),(4), obtained by taking x2 = 0 and x3 = 0, has a τ0-periodic solution

x(t, x0) = xs(t), where

xs(t) = k1
r1 − θ1

r1

(T1 − exp(−(r1 − θ1)τ0)) exp((r1 − θ1)t)

exp((r1 − θ1)t)(T1 − exp(−(r1 − θ1)τ0)) + (1− T1)
, 0 < t ≤ τ0,

[9]

with x0 = k1
r1−θ1
r1

(T1−exp(−(r1−θ1)τ0))
1−exp(−(r1−θ1)τ0)

.

We denote by ζ = (xs, 0, 0) which is a solution of (1)-(6), we call it trivial solution.

2.1. Stability of ζ

In the case without tumor we have x2 = x3 = 0, then (1)-(6) is reduced to (1),(4)

which has a unique non-trivial positive periodic solution xs given by (9). It is defined and

stable for T1 > exp(−(r1 − θ1)τ0). That is

τ0 >
1

r1 − θ1
ln

(

1

T1

)

. [10]



To determine the stability of the trivial solution ζ = (xs, 0, 0) in the three dimensional

space, we must calculate DXΨ(τ0, X0) where X0 = (x0, 0, 0). We have

DXΨ(τ0, X0) = DXΘ(Φ(τ0, X0))
∂Φ
∂X

(τ0, X0)

=







T1
∂Φ1(τ0,X0)

∂x1
T1

∂Φ1(τ0,X0)
∂x2

T1
∂Φ1(τ0,X0)

∂x3

0 (T2 −R))∂Φ2(τ0,X0)
∂x2

0

0 R
∂Φ2(τ0,X0)

∂x2
+ T3

∂Φ3(τ0,X0)
∂x2

T3
∂Φ3(τ0,X0)

∂x3






.

The solution ζ is exponentially stable if and only if the spectral radius is less than one,

that is
∣

∣

∣

∣

Tj

∂Φj

∂xj

(τ0, X0)

∣

∣

∣

∣

< 1, for j = 1, 2, 3.

Using the variational equation associated to the system (1)-(6)

d

dt
(DXΦ(t,X0)) = DXF (Φ(t,X0))(DXΦ(t,X0)), [11]

with the initial condition DXΦ(0, X0) = IdR3 we obtain
∂Φ1(τ0,X0)

∂x1
= T−2

1 e−(r1−θ1)τ0 ,

∂Φ2(τ0,X0)
∂x2

= T
−r2λ2K1

r1
1 e

(r2−θ2−m−(r1−θ1)
r2λ2K1

r1
)τ0 ,

∂Φ3(τ0,X0)
∂x3

= T
−r3λ3K1

r1
1 e

(r3−θ3−(r1−θ1)
r3λ3K1

r1
)τ0 ,

∂Φ3(τ0,X0)
∂x2

= me
(r3−θ3−(r1−θ1)

r3λ3K1
r1

)τ0 (1−e−(r1−θ1)τ0 )
r2λ2K1

r1

T

r3λ3K1
r1

1 (1−e−(r1−θ1)τ0 )
r3λ3K1

r1

∫ τ0

0 e(r2−θ2−(r3−θ3)−m)uI
(r3λ3−r2λ2)

K1
r1 (u)du,

∂Φ1(τ0,X0)
∂x3

= − (r1−θ1)λ1K1(T1−e−(r1−θ1)τ0 )e−(r1−θ1)τ0

T 2
1 (1−e−(r1−θ1)τ0 )

2−
r3λ3K1

r1

∫ τ0

0 e(r3−θ3)uI
1−

r3λ3K1
r1 (u)du,

∂Φ1(τ0,X0)
∂x2

= − (r1−θ1)λ1K1(T1−e−(r1−θ1)τ0 )e−(r1−θ1)τ0

T 2
1 (1−e−(r1−θ1)τ0 )

2−
r2λ2K1

r1

{

∫ τ0

0 e(r2−θ2−m)uI
1−

r2λ2K1
r1 (u)du

+ m
∫ τ0

0 e(r3−θ3)uI
1−

r3λ3K1
r1 (u)(

∫ u

0 e(r2−θ2−(r3−3)−m)pI
(r3λ3−r2λ2)

K1
r1 (p)dp)du

}

for 0 < t ≤ τ0 where I(t) = (T1 − e−(r1−θ1)τ0)e(r1−θ1)t + (1− T1) (Fore more details,

see [5]).

In view of the fact that λ2K1 < 1 and λ3K1 < 1 (see [8]), we have

T2 < T
r2λ2K1

r1
1 +R [12]

and

T3 < T
r3λ3K1

r1
1 . [13]

ζ is exponentially stable as an equilibrium for the full system (1)-(6) if and only if

ln( 1
T1
)

r1 − θ1
< τ0 < min









ln

(

T
r2λ2K1

r1
1 (T2 −R)−1

)

r2 − θ2 −m− (r1 − θ1)
r2λ2K1

r1

,

ln

(

T
r3λ3K1

r1
1 T−1

3

)

r3 − θ3 − (r1 − θ1)
r3λ3K1

r1









.

[14]

REMARQUE. —

The trivial periodic solution (xs, 0, 0) represents the healthy equilibrium. So, our aim is

to obtain its stability, this corresponds to the eradication of the tumor.

We have the following result.



Theorem 2.1 If (12)-(14) are satisfied, then ζ is exponentially stable.

If conditions (12), (13) are satisfied and

T2 > T

r2λ2K1
r1

−
r3λ3K1

r1

r2−θ2−m−(r1−θ1)
r2λ2K1

r1

r3−θ3−(r1−θ1)
r3λ3K1

r1
1 T

r2−θ2−m−(r1−θ1)
r2λ2K1

r1

r3−θ3−(r1−θ1)
r3λ3K1

r1
3 + R, [15]

we havemin









ln

(

T

r2λ2K1
r1

1 (T2−R)−1

)

r2−θ2−m−(r1−θ1)
r2λ2K1

r1

,

ln

(

T

r3λ3K1
r1

1 T
−1
3

)

r3−θ3−(r1−θ1)
r3λ3K1

r1









=

ln

(

T

r2λ2K1
r1

1 (T2−R)−1

)

r2−θ2−m−(r1−θ1)
r2λ2K1

r1

.

That is, the tumor eradication solution ζ is stable for

ln( 1
T1
)

r1 − θ1
< τ0 <

ln

(

T
r2λ2K1

r1
1 (T2 −R)−1

)

r2 − θ2 −m− (r1 − θ1)
r2λ2K1

r1

. [16]

If conditions (12), (13) are satisfied and

T2 < T

r2λ2K1
r1

−
r3λ3K1

r1

r2−θ2−m−(r1−θ1)
r2λ2K1

r1

r3−θ3−(r1−θ1)
r3λ3K1

r1
1 T

r2−θ2−m−(r1−θ1)
r2λ2K1

r1

r3−θ3−(r1−θ1)
r3λ3K1

r1
3 + R, [17]

we havemin









ln

(

T

r2λ2K1
r1

1 (T2−R)−1

)

r2−θ2−m−(r1−θ1)
r2λ2K1

r1

,

ln

(

T

r3λ3K1
r1

1 T
−1
3

)

r3−θ3−(r1−θ1)
r3λ3K1

r1









=

ln

(

T

r3λ3K1
r1

1 T
−1
3

)

r3−θ3−(r1−θ1)
r3λ3K1

r1

.

That is, we have stability of ζ for

ln( 1
T1
)

r1 − θ1
< τ0 <

ln

(

T
r3λ3K1

r1
1 T−1

3

)

r3 − θ3 − (r1 − θ1)
r3λ3K1

r1

. [18]

REMARQUE. —

From Theorem 2.1, we deduce that we have stability of the trivial equilibrium if the treat-

ment amplitudes and period between two successive administrations of the treatment sa-

tisfy (12)-(14), in this case we have eradication of the tumor.

2.2. Bifurcation analysis

We use Lyapunov Schmidt bifurcation to find nontrivial periodic solution of the model

(1)-(6). A necessary condition for the bifurcation of nontrivial periodic solutions near ζ is

det(DXM(0, (0, 0, 0))) = 0.

To find a nontrivial periodic solution of period τ with initial data X0 = (x0, 0, 0), we

need to solve the fixed point problem

X = Ψ(τ,X). [19]

Let τ̄ and X̄ such that τ = τ0 + τ̄ and X = X0 + X̄ . The equation (19) is equivalent to

M(τ̄ , X̄) = 0, [20]



where

M(τ̄ , X̄) =
(

M1(τ̄ , X̄),M2(τ̄ , X̄),M3(τ̄ , X̄)
)

= X0 + X̄ −Ψ(τ0 + τ̄ , X0 + X̄).

If (τ̄ , X̄) is a zero of M , then (X0+ X̄) is a fixed point of Ψ(τ0+ τ̄ , .). Since ζ is a trivial

τ0-periodic solution (1)-(6), then it is associated to the trivial fixed point X0 of Ψ(τ0, .).
Let

DXM(0, (0, 0, 0)) =





a′0 b′0 c′0
0 e′0 0
0 h′

0 i′0



 . [21]

It follows that (see [5] for details) :

a′0 = T−1
1 (T1 − e−(r1−θ1)τ0),

b′0 = (r1−θ1)λ1K1(T1−e−(r1−θ1)τ0 )e−(r1−θ1)τ0

T1(1−e−(r1−θ1)τ0 )
2−

r2λ2K1
r1

{

∫ τ0

0 e(r2−θ2−m)uI
1−

r2λ2K1
r1 (u)du

+ m
∫ τ0

0
e(r3−θ3)uI

1−
r3λ3K1

r1 (u)(
∫ u

0
e(r2−θ2−(r3−3)−m)pI

(r3λ3−r2λ2)
K1
r1 (p)dp)du

}

,

c′0 = (r1−θ1)λ1K1(T1−e−(r1−θ1)τ0 )e−(r1−θ1)τ0

T1(1−e−(r1−θ1)τ0 )
2−

r3λ3K1
r1

∫ τ0

0 e(r3−θ3)uI
1−

r3λ3K1
r1 (u)du,

e′0 = 1− (T2 −R)T
−r2λ2K1

r1
1 e

(r2−θ2−m−(r1−θ1)
r2λ2K1

r1
)τ0 ,

h′

0 = −RT
−r2λ2K1

r1
1 e

(r2−θ2−m−(r1−θ1)
r2λ2K1

r1
)τ0

−T3
me

(r3−θ3−(r1−θ1)
r3λ3K1

r1
)τ0 (1−e−(r1−θ1)τ0 )

r2λ2K1
r1

T

r3λ3K1
r1

1 (1−e−(r1−θ1)τ0 )
r3λ3K1

r1

∫ τ0

0 e(r2−θ2−(r3−θ3)−m)uI
(r3λ3−r2λ2)

K1
r1 (u)du

and

i′0 = 1− T3T
−r3λ3K1

r1
1 e

(r3−θ3−(r1−θ1)
r3λ3K1

r1
)τ0 .

From the stability of the solution xs in the one dimensional space we have a′0 > 0, it

follows that e′0i
′

0 = 0 is necessary for the bifurcation.

Equality

τ0 =

ln

(

T
r2λ2K1

r1

1 (T2 −R)−1

)

r2 − θ2 −m− (r1 − θ1)
r2λ2K1

r1

, [22]

corresponds to e′0 = 0 and equality

τ0 =

ln

(

T
r3λ3K1

r1
1 T−1

3

)

r3 − θ3 − (r1 − θ1)
r3λ3K1

r1

, [23]

corresponds to i′0 = 0. We have three cases :

1) Case 1 : e′0 = 0 and i′0 6= 0. Suppose that (10)-(13), (15) and

(22) are satisfied. With the above notations, we deduce that M(0, (0, 0, 0)) =
0, dim(ker[DXM(0, (0, 0, 0))]) = 1 with ker[DXM(0, (0, 0, 0))] =

span{

(

c′0h
′

0

a′0i
′

0

−
b′0
a′0

, 1,−
h′0
i′0

)

}. Then equation (20) is equivalent to







M1(τ̄ , αY0 + Z) = 0,
M2(τ̄ , αY0 + Z) = 0,
M3(τ̄ , αY0 + Z) = 0,

[24]



where Y0 =

(

c′0h
′

0

a′0i
′

0

−
b′0
a′0

, 1,−
h′

0

i′0

)

, Z = (z1, 0, z3), X̄ = αY0 + Z and (α, z1, z3) ∈

R
3.

From the first and last equations of (24), we see that

det

(

∂M1(0,(0,0,0))
∂z1

∂M1(0,(0,0,0))
∂z3

∂M3(0,(0,0,0))
∂z1

∂M3(0,(0,0,0))
∂z3

)

= det

(

a′0 c′0
0 i′0

)

= a′0.i
′

0 6= 0.

From the implicit function theorem, we can solve M1(τ̄ , αY0+Z) = 0 and M3(τ̄ , αY0+
Z) = 0 near (0, (0, 0, 0)) with respect to Z as a function of τ̄ and α and find a

unique continuous function Z∗, such that Z∗(τ̄ , α) = (z∗1(τ̄ , α), 0, z
∗

3(τ̄ , α)), Z
∗(0, 0) =

(0, 0, 0),

M1

(

τ̄ ,

((

c′0h
′

0

a′0i
′

0

−
b′0
a′0

)

α+ z∗1(τ̄ , α), α,−
h′

0

i′0
α+ z∗3(τ̄ , α)

))

= 0

and

M3

(

τ̄ ,

((

ć0h́0

á0í0
−

b́0

á0

)

α+ z∗1(τ̄ , α), α,−
h́0

í0
α+ z∗3(τ̄ , α)

))

= 0,

for every (τ̄ , α) small enough.

Moreover, we have
∂Z∗

∂α
(0, 0) = (0, 0, 0) and

∂Z∗

∂τ̄
(0, 0) =

(
(r1 − θ1)

2k1(1− T1)e
−(r1−θ1)τ0

r1(1− e−(r1−θ1)τ0)2
, 0, 0).

Then M(τ̄ , X̄) = 0 if and only if

f2(τ̄ , α) = M2

(

τ̄ ,

((

ć0h́0

á0í0
−

b́0

á0

)

α+ z∗1(τ̄ , α), α,−
h́0

í0
α+ z∗3(τ̄ , α)

))

= 0.

[25]

We now proceed to solve equation (25).

We have f2(0, 0) = 0.

From the Taylor development of f2 around (τ̄ , α) = (0, 0), we find that
∂f2(0,0)

∂τ̄
= ∂f2(0,0)

∂α
= 0.

Let A2 = ∂2f2(0,0)
∂τ̄2 , B2 = ∂2f2(0,0)

∂τ̄∂α
and C2 = ∂2f2(0,0)

∂α2 . It’s shown that A2 = 0. Further,

for λ2 = 0 we have B2 = −(T2 −R) (r2 − θ2 −m) e(r2−θ2−m)τ0 < 0 and

C2 = (T2 −R)
r2e

(r2−θ2−m)τ0

k2(r2 − θ2 −m)
(e(r2−θ2−m)τ0 − 1)

+(T2 −R)
2r2me(r2−θ2−m)τ0

k2

∫ τ0

0

e(r3−θ3)uI
−r3λ3K1

r1 (u)

(

∫ u

0

e(r2−θ2−(r3−θ3)−m)s

I
−

r3λ3K1
r1 (s)

ds

)

du

+2(T2 −R)

(

−h′

0

i′0

)

{

r2e
(r2−θ2−m)τ0

k2(1− e−(r1−θ1)τ0)
−r3λ3K1

r1

∫ τ0

0

e(r3−θ3)uI
−(r3−θ3)λ3K1

r1 (u)du

}

,

(for more details, see [5]). From conditions cited above, we have i′0 > 0 and h′

0 < 0, then

C2 > 0, therefore B2C2 < 0. Hence

f2(τ̄ , α) = B2τ̄α+ C2
α2

2
+ o

(

|α|2 + |τ̄ |2
)

.



By taking τ̄ = σα, we have f2(σα, α) = α2

2 g2(σ, α) where g2(σ, α) = 2B2σ + C2 +

oα
(

1 + σ2
)

. Moreover ∂g2
∂σ

(σ, 0) = 2B2 < 0 and g2(σ, 0) = 2B2σ + C2. So, for

σ0 = − C2

2B2
we have g2(σ0, 0) = 0 and ∂g2

∂σ
(σ0, 0) 6= 0.

Using the implicit function theorem we find a function σ(α) such that for α small

enough g2(σ(α), α) = 0 and σ(0) = σ0 = − C2

2B2
.

Then, for α near 0 and τ̄ (α) = σ(α)α we have f2(τ̄ (α), α) = 0.

Theorem 2.2 If conditions (10)-(13), (15) and (22) hold, then we have a bifur-

cation of one nontrivial τ(α)-periodic solution of (1)-(6) with initial condition
(

x0 +

(

c′0h
′

0

a′0i
′

0

−
b′0
a′0

)

α+ z∗1(τ̄ (α), α), α,−
h′

0

i′0
α+ z∗3(τ̄ (α), α)

)

and period τ(α) =

τ0 + τ̄ (α) for α(> 0) and λ2 small enough, where τ̄(α) = − C2

2B2
α+ ◦(α) and

z∗1(τ̄ (α), α) = − C2

2B2

(r1−θ1)
2k1(1−T1)e

−(r1−θ1)τ0

r1(1−e−(r1−θ1)τ0 )2
α+ ◦(α).

2) Case 2 : e′0 6= 0 and i′0 = 0. Suppose that (10)-(13), (17) and (23)

are satisfied. We have M(0, (0, 0, 0)) = 0, dim(ker[DXM(0, (0, 0, 0))]) = 1 with

ker[DXM(0, (0, 0, 0))] = span{

(

−c′0
a′0

, 0, 1

)

}. Let Y0 =

(

−c′0
a′0

, 0, 1

)

, Z = (z1, z2, 0),

X̄ = αY0 + Z and (α, z1, z2) ∈ R
3.

From the first and second equations of (24), we have

det

(

∂M1(0,(0,0,0))
∂z1

∂M1(0,(0,0,0))
∂z2

∂M2(0,(0,0,0))
∂z1

∂M2(0,(0,0,0))
∂z2

)

= det

(

a′0 b′0
0 e′0

)

= a′0.e
′

0 6= 0.

From the implicit function theorem, we can solve M1(τ̄ , αY0+Z) = 0 and M2(τ̄ , αY0+
Z) = 0 near (0, (0, 0, 0)) with respect to Z as a function of τ̄ and α and find a

unique continuous function Z∗, such that Z∗(τ̄ , α) = (z∗1(τ̄ , α), z
∗

2(τ̄ , α), 0), Z
∗(0, 0) =

(0, 0, 0),

M1

(

τ̄ ,

(

−
c′0
a′0

α+ z∗1(τ̄ , α), z
∗

2(τ̄ , α), α

))

= 0

and

M2

(

τ̄ ,

(

−
c′0
a′0

α+ z∗1(τ̄ , α), z
∗

2(τ̄ , α), α

))

= 0,

for every (τ̄ , α) small enough.

Moreover, we have
∂Z∗

∂α
(0, 0) = (0, 0, 0) and

∂Z∗

∂τ̄
(0, 0) =

(
(r1 − θ1)

2k1(1− T1)e
−(r1−θ1)τ0

r1(1− e−(r1−θ1)τ0)2
, 0, 0).

Then M(τ̄ , X̄) = 0 if and only if

f3(τ̄ , α) = M3

(

τ̄ ,

(

−
c′0
a′0

α+ z∗1(τ̄ , α), z
∗

2(τ̄ , α), α

))

= 0. [26]

We now proceed to solve equation (26).

We have f3(0, 0) = 0.

From the Taylor development of f3 around (τ̄ , α) = (0, 0), we find that
∂f3(0,0)

∂τ̄
=

∂f3(0,0)
∂α

= 0.

Let A3 = ∂2f3(0,0)
∂τ̄2 , B3 = ∂2f2(0,0)

∂τ̄∂α
and C3 = ∂2f3(0,0)

∂α2 . It’s shown that A3 = 0.



Further, for λ3 = 0 we have B3 = −(r3 − θ3)T3e
(r3−θ3)τ0 < 0 and C3 =

2r3τ0K
−1
3 T3e

(r3−θ3)τ0 > 0. Hence

f3(τ̄ , α) = B3τ̄α+ C3
α2

2
+ o

(

|α|2 + |τ̄ |2
)

.

Using the same arguments as in the case 1, we have the following results.

Theorem 2.3 If conditions (10)-(13), (17) and (23) hold, then we have a bifur-

cation of one nontrivial τ(α)-periodic solution of (1)-(6) with initial condition
(

x0 +

(

−ć0

á0

)

α+ z∗1(τ̄ (α), α), 0, α

)

and period τ(α) = τ0 + τ̄ (α) for α(> 0) and

λ3 small enough, where z∗1(τ̄ (α), α) = − C3

2B3

(r1−θ1)
2k1(1−T1)e

−(r1−θ1)τ0

r1(1−e−(r1−θ1)τ0 )2
α + ◦(α) and

τ̄ (α) = − C3

2B3
α+ ◦(α).

3) Case 3 : e′0 = 0 = i′0.

(i) If h′

0 6= 0, then A2 = B2 = C2 = 0, which is an undetermined case, to study it we

need to determine the higher derivatives of f2.

(ii) If h′

0 = 0, then dimker(E) = 2, in this case the approach above can not be applied.

REMARQUE. —

From Theorems 2.2 and 2.3, we deduce that the lost of stability for some values of the

treatment amplitudes and the period between two successive administration of the treat-

ment we have the onset of the tumor.

3. Conclusion

In this work we have considered a model of chemotherapy treatment by two drugs

for population with normal cells, sensitive tumor cells and resistant tumor cells, one with

instantaneous effect and the other with continuous effect. We have studied the stability of

the trivial solution corresponding to the eradication of the tumor, and we find necessary

conditions to have eradication of the tumor. Otherwise, we lose stability and bifurcation of

nontrivial periodic solutions will appear, it corresponds to the persistence of the tumor. We

have treated two cases, for the third one we need an other approach. It will be interesting

to consider the resistance with respect to the drug with continuous effect.
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