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ABSTRACT. We propose a model of growing networks based on cliques formations. A clique is

used to illustrate for example co-authorship in co-publication networks, co-occurence of words or

collaboration between actors of the same movie. Our model is iterative and at each step, a clique of

λη existing vertices and (1 − λ)η new vertices is created and added in the network; η is the mean

number of vertices per clique and λ is the proportion of old vertices per clique. The old vertices are

selected according to preferential attachment. We show that the degree distribution of the generated

networks follows the Power Law of parameter 1 + 1/ λ and thus they are ultra small-world networks

with high clustering coefficient and low density. Moreover, the networks generated by the proposed

model match with some real co-publication networks such as CARI, EGC and HepTh.

RÉSUMÉ. Nous proposons un modèle de croissance de graphe basé sur la formation de clique. Une

clique peut par exemple illustrer la collaboration entre auteurs dans un réseau de co-publication, les

relations de co-occurrence des mots dans une phrase ou les relations entre acteurs d’un film. C’est

un modèle itératif qui à chaque étape crée une clique de λη anciens sommets et (1 − λ)η nouveaux

sommets et l’insère dans le graphe. η est le nombre moyen de sommets dans une clique et λ la

proportion moyenne d’anciens sommets dans une clique. La distribution des degrés des réseaux

générés suit la Loi de Puissance de paramètre 1 + 1/λ et par conséquent ce sont des réseaux petit-

mondes qui présentent un coefficient de clustering élevé et une faible densité. En outre, les réseaux

générés par le modèle proposé reproduisent la structure des réseaux de terrains à l’instar des réseaux

de co-publication du CARI, de EGC et de HepTh.
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1. Introduction
In many application contexts, we encounter large graphs with no apparent simple

structure named real networks. Examples are Internet topology, web graphs and social

networks, biological or linguistic networks. A social network is a set of people or groups

of people with some pattern of contacts or interactions between them. It appeared that the

classical random graph model used to represent real-world complex networks does not

capture their main properties [12]. In particular, real networks have a very low density, an

average short distance, a degree distribution that follows the Power Law, a high clustering

coefficient and high transitivity [12, 17]. The transitivity is the probability that if vertex

A is connected to vertex B and the vertex B to the vertex C, then the vertex A will also

be connected to vertex C [16]. An alternative definition of the transitivity is the clustering

coefficient,wich has been given by Watts and Strogatz [6], who proposed to define a local

value of transitivity in each vertex; the clustering coefficient for the whole network is the

average of those local transitivity. Leskovec et al.[13] did two stunning empirical observa-

tions: they reported that real-world networks became denser over the time (super-constant

average degree), and their diameters effectively decreased over time!

Inspired by empirical studies of networked systems such as Internet, social networks,

and biological networks, researchers have in recent years developed a variety of models

to help us understand or predict the behavior of these systems [17]. The classical random

graph reproduces well the low average distance. However almost all other properties of

the random graphs do not match those of real world networks. These random graphs have

a low clustering coefficient and a degree distribution that follows Poisson Low. The model

based on preferential attachment [2, 7] reproduces the Power Law distribution efficiently.

However, the generated network has a low clustering coefficient. Some models such as the

Watts and Strogatz model [6] capture the high clustering coefficient, but not the distribu-

tion in Power Law. Some models, among those described in the state of the art, generate

networks with the following main characteristics : average short distance, low density,

degree in Power Law, High transitivity and high clustering coefficient. We propose in this

paper a new way, both simple and realistic, for reproducing these characteristics.

Real networks such as co-publication networks have short average distances, low den-

sities, Power law distribution and high clustering coefficients. We propose in this paper

a new model of growing networks that reproduce graphs with such characteristics. The

proposed model is based on the formation of small cliques. A clique is used to illustrate

for example co-authorship in a co-publication network, co-coccurence of words or col-

laboration between actors of the same movie. We show that the degree distribution of the

generated networks follow the Power Law of parameter 1+1/ λ; the latter are ultra small-

world networks with a high clustering coefficient and low density. λ is the proportion of

old vertices per clique.

The remainder of the paper is organized as follows: in Section 2 we present a brief

state of the art on networks generation models. In section 3 we present collaboration

networks and their generation models. In Section 4 we present a brief analysis of networks

that are used in this paper to validate our model. In Section 5 we present our model and

an analysis of its properties. Section 6 provides a validation of the model on real datasets.

The article ends with a conclusion.
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2. Networks generation models
Many real world networks exhibit the small world property, i.e. the short average

distance [6, 8] . This concept stems from the famous experience made by Milgram [28].

In particular, if the average distance d ≈ ln lnn we say that, the networks are ultra small-

world networks [23]. Another property of many real world networks is the presence of

high average clustering coefficient i.e. if a vertex i is connected to vertices j and k, there

is a high probability of vertices j and k being connected.

Numerous models of random graphs have been proposed to explain the dynamics

of real world networks. The random graph model developed by Rapoport [3, 1, 4] and

independently by Erdos and Rényi [18, 19] can be considered as the most basic model of

complex networks. The networks generated by these models have a degree distribution

that follows the Poisson law, the small world property and has a small average clustering

coefficient. The most popular model of random networks that reproduces short average

distance and high clustering coefficient was developed by Watts and Strogatz [6].

Barabási and Albert [2] showed that the degree distribution of many real systems is

characterized by a degree distribution that follows a Power Law. More specifically, the

degree distribution has been found for large k, P (k) ≈ k−λ. Those networks are called

scale-free networks. The Barabási-Albert network model is based on two basic rules:

growth and preferential attachment which mean that the probability of a new vertex to be

connected to an existing vertex j is proportional to the degree kj of j.

Price [7] was the first to introduce preferential attachment. Many variants of Barabàsi

model were proposed [29, 20, 21, 9, 10]. Dorogovtsev et al. [29] and Krapivsky and

Redner [20, 21] studied the model of preferential attachement in which the probability of

attachment to a vertex of degree k is proportional to k + k0. They established that under

these conditions, the degree distribution follows a Power Law of parameter

λ = 3 +
k0
m

Bianconi and Barabási [9] and Ergun and Rodgers [10] proposed an extension of Barabási

and Albert’s model in which for a new vertex i, the model assigns a coefficient ηi follow-

ing a distribution ρ(n) which represents its attractiveness i.e, its ability to build new rela-

tionships. An edge is formed with a vertex with a probability proportional to the product

ηiki. Depending on the shape of the distribution ρ(n) the model has two driving scheme

[10]. If the size of the distribution ρ is finite, then the network shows a distribution of

degrees with Power Law, as in the original Barabási-Albert’s model. However, if the dis-

tribution has an infinite size, then the vertex which as highest attraction ability attracts

most of the relationship in the graph.

Jean-Loup Guillaume and Matthieu Latapy proposed a bipartite random network model

[12] to generate real world networks. They have showed that all complex networks can

be considered as a bipartite graph with specific characteristics [11] and that their main

properties can be considered as consequences of the underlying bipartite structure. This

model consists in sampling a random bipartite graph with prescribed (top and bottom)

degree distributions as follows (see Figure 1):

1) generate both top and bottom vertices and assign to each vertex a degree drawn

from the given distributions,

2) create for each vertex as many connection points as its degree,

3) link top and bottom connection points randomly,
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Figure 1. Illustration of Jean-Loup Guillaume and Matthieu Latapy model

4) the desired network is obtained by projecting the bi-partite graph on top or bot-

tom.

This model has the merit to reproduce graphs with degree distribution in Power Law, low

average distance and a high average clustering coefficient. However, its randomness can

be considered as a limit since it is not related to the evolution of real world networks.

Copying is another mechanism that can be observed in real-world networks. The basic

idea of copying comes from the fact that a new web page is often made by copying an old

one. A kind of copying model was proposed in Kumar et al. [25] to explain the emergence

of the Power Law in the web graphs. These models are parameterized by a copy factor

α ∈ (0, 1) and a constant out-degree d ≥ 1. It is proved in [25] that the copying models

possess a power law degree sequence as

pk ≈ ck−
2−α
1−α where c is a constant

.

More recently, Silvio Lattanzi et al. [27] presented a model where two graphs evolve

at the same time. The first one is a simple bipartite graph that represents the affiliation

network and the second one is the social network of actors. The underlying idea behind

this model is that in social networks there are two types of entities (actors and societies)

that are related by affiliation of the former in the latter. The social network among the

actors that results from the bipartite graph is obtained by "folding" the graph, that is,

replacing paths of length two in the bipartite graph among actors by an (undirected) edge.

The central thesis in developing this social network as a folded affiliation network is

that acquaintanceships among people often stem from one or more common or shared

affiliations (living in the same street, working at the same place, being fans of the same

football club, having coauthored a paper together, etc). This model incorporates elements

of preferential attachment and edge copying in fairly natural ways. Silvio Lattanzi et al.

show that when an affiliation network B is generated according this model and its folding

G on n vertices is produced, the resulting graphs satisfy the following properties:

1) B has a power-law distribution, and G has a heavy-tailed degree distribution as

well, and all but o(n) vertices of G have bounded degree;

2) under a mild condition on the ratio of the expected degree of actor nodes and

society nodes in B, the graph G has superlinear number of edges;

3) under the same condition, the effective diameter of G stabilizes to a constant.

3. Collaboration networks
There have been considerable interest in the study of a special class of social networks,

called social collaboration networks [30]. These include movie actor collaboration net-

works and scientist collaboration networks. This kind of networks can be described using

bipartite graphs [30, 22]. One type of nodes can be called ’actor’ such as movie actors or

scientists and the other can be called ’act’ or ’collaboration’ such as movies or scientific
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papers. In these graphs, only undirected edges between different types of vertices are con-

sidered. An edge represents an actor taking part in an act or collaboration. If we consider

only one type of nodes, two edges sharing a common vertex in the bigraph are projected

onto an edge between the two nodes of the same type. Take, for example, a movie actor

collaboration network. Sometimes, we need to consider only the collaboration between

actors. In this situation, an edge between two actor’s shows their collaboration in the same

movie. On the other hand, we can define an edge between two movies, which indicates

that the same common actor takes part in both movies. If we have to consider how many

actors are taking part in a movie, we can define a quantity T , ’act-size’, which stands for

the number of actors in an act; these T nodes form a complete graph in the down-projected

graph consisting of only T nodes. Each node has a degree value T − 1. Of course, two

complete graphs may share one or more edges in the, down-projected graph. It is easy to

verify that such a down-projected network is still a set of complete graphs. We present

in the following paragraphs, a model of collaboration networks that are similar to one

proposed on this paper.

The model of Zhang et al. [22] supposes that there are m0 nodes at t = 0, which

are connected and form some complete graphs representing a number of acts. In each

time step a new node is added. It’s connected to T − 1 old nodes selected according to

a specified rule; a complete graph is formed consisting of these T − 1 old nodes and the

new node. Considering the rule of selecting T −1 old nodes (T is a constant) with a prob-

ability proportional to the act-degree hi of each old node i. This is the ’act-degree linear

preference rule’, which means that, in the case of a network of movie actors, selecting a

movie actor according to how many movies he has acted in. The act-degree distribution

follows a Power Law with the scaling exponent γ equals to

γ =
2T − 1

T − 1
= 2 +

1

T − 1

γ decreases as the act-size, T , increases. It tends with limit 2. Because the degree ki =
hi(T − 1) when considering multiple edges; they obtain the degree distribution (with

multiple edges counted) as P (k) = k−γ . Thus the degree distribution P (k) and the act-

degree distribution P (h) are both exact power functions with the same scaling exponent.

The model proposed in this paper is similar to the one proposed by Zhang et al. [22];

the major difference is that for a new collaboration, they consider only one new vertex

while the model proposed on this paper define a parameter λ that controls the proportion

of new vertices. We can thus consider that our model is a generalization of the model of

Zhang et al.

We can also consider that projected graph dynamics is characterized by the arrival of

new vertices in the networks (authors or actor) and the addition of cliques in the network.

A clique is used to illustrate for example co-authorship in a co-publication network or

collaboration between actors of the same movie. New vertices are working with old one

for collaboration. So we can deduce an average proportion of old vertex per collaboration.

Our objective in this work is to offer and deduce the properties of a model of growing

collaboration networks based on adding some new cliques in a network.

4. Datasets
The datasets used in this paper are co-authorship networks and producers network

from Internet Movie Database. We have:
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1) CARI co-citation network [26] (CARI) collected from all the articles of the

proceedings of CARI’92 to CARI’10 (except that of CARI’00). This dataset contains 646
articles and 1070 authors.

2) EGC co-citation network (EGC) obtained from all the articles published in con-

ference EGC 1 since 2001. The dataset contains 1921 papers and 2741 authors.

3) High energy physics theory co-citation network [13] (HepTh). It is obtained

from the e-print arXiv and covers all the co-citations content on papers meta information

obtained from the project site of Stanford Network Analysis Project (SNAP) 2. The data

covers papers in the period from January 1992 to April 2003. This dataset contains 29554
and 11913 authors.

4) Producers network from Internet Movie Database(IMDB) : in these socials net-

works, two producers are connected if they have produced a movie together. We used

movies produced between 1990 and 1999. It consist of 181692 movies, 69241 producers

and 278446 edges. Graphs of IMDB are widely studied for many reasons: they are very

large, well representative of social networks, evolving with each new movie produced,

and easily available through the Internet Movie Database.

Since we analyse the growth of the collaboration networks, data of a year in the dataset

is added to data of the previous years in such a way that, a vertex of the current network is

a researcher (resp. producer) who has published (resp. produced) at least one paper (resp.

one movie) during the current or previous years. A link between two vertices means that

the associated researchers (resp. associated producers) co-authored (resp. co-produced)

at least one paper (resp. one movie) during the current year or previous years. If a paper

(resp. movie) is co-authored (co-produced) by k authors (resp. producers) this generates

a clique of k vertices. The edges are not weighted in the networks.

We observed that the papers in the datasets have a mean of 2.38, 2.41 and 1.68 authors

per paper, respectively for CARI, EGC and HepTh. In these datasets respectively, there

is a proportion of 0.3, 0.4 and 0.7 old authors per paper. This implies that at each new

edition of the CARI and EGC, the publications involve more authors who have not yet

published in the conference than authors who have already published. On the contrary,

HepTh publications involve more authors who have already published in this field. The

movie graph has mean of 3.5 producers and average proportion of 0.71 old producers.

This implies that in IMDB, movies involve more producers who have already produced

movies (see Figure 2).

We studied the dynamic behavior of new vertices and its impact on new edges in

networks (see the left part of Figure 9). We note that on the networks of CARI and EGC,

new edges and new vertices have the same variation on several points. This leads us to

understand that the new edges are mainly generated by the arrival of new vertices that

add relationships with both old and new authors. The low proportion of older authors per

paper can help to explain this. However, the variation of new authors and new edges are

opposed in the HepTh network; while the number of incoming vertices of the network

gradually decrease, the number of new edges grows. This implies that new edges are

formed mainly between old vertices and their number is not so much linked to the arrival

of new vertices.

1. http://editions-rnti.fr/files/EGC_articles_20150204.txt.zip
2. http://snap.stanford.edu/data/cit-HepTh-abstracts.tar.gz
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CARI HEPTH

EGC Producers

Figure 2. Timegraphs of proportion of old authors by collaboration (λ).

We find that all networks consist of a larger proportion of connected components of

size < 6. These components are always complete sub-graphs and are obtained from iso-

lated publications or movies. The components of size > 6 are formed following the fusion

of a small complete components (see Figure 3). The main component have respectively

13%, 34% and 50.7% of number of vertices on CARI, EGC, and HepTh. In producers

networks, the largest component contains 27% of the vertices in 1990 (this network con-

tains only movies produced in 1990); it grows rapidly and contains 71% of the vertices in

1999 (this network consists of movies produced between 1990 and 1999).

Figure 3. Example of a component of size > 6

The main component is formed by the small highly connected components links be-

tween them through a small number (1, 2 or 3) of authors. The main component of CARI

has a high transitivity, a high clustering coefficient, a high average distance and a degree

distribution which follows the Power Law. The main component of EGC and HepTh are
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small-world networks. They have a high transitivity, a high clustering coefficient, a low

average distance and a degree distribution which follows the Power Law as shown in the

following table. This structure is the same as those found by Newman [14, 15] for the

same type of network. The main component of the producers network has a clustering

coefficient of 0.72, transitivity equals 0.3, a density of 0.00021, and an average distance

of 6.1. Also, the degree distribution of the main component follows the Power Low. It is

a small-world network.

n m l CC T d̄ δ

CARI 140 269 6.38 0.77 0.52 3.8 0.02

EGC 957 1842 7.76 0.77 0.25 3.85 0.004

HepTh 6063 12073 7.50 0.5 0.2 3.98 0.00065

Producers 49340 254118 6.1 0.72 0.3 10.30 0.0002

Table 1. Properties of the main component : total number of vertices n; total number of

edges m ; mean degree d ; mean distance l ;clustering coefficient CC; Transitivity T ;

density δ.

Based on the above observations above, we can assume that the dynamics of the struc-

tural properties of the studied network are based on three processes that can explain the

observed properties: collaboration between old and new vertices, the creation of clique

between the vertices and preferential attachment.

– The collaboration between old and new vertices generates the growth of the network

and the creation of components.

– The high clustering coefficient can be explained by the explicit process of creation

of cliques that include the creation of triangles in the graph.

– The degree distribution in Power Law of the datasets supposes that the collabora-

tions between vertices are done according preferential attachment.

We propose to use these elements to produce a generic model of growing collaboration

networks. Each collaboration is started by defining its participants. A collaboration con-

tains a variable number of participants, we will assume to have a distribution of numbers

of participants per collaboration i.e the distribution of the size of cliques in a network.

To define the participants in a collaboration, we will choose between participants already

present in the network and new participants. We use a proportion of old vertices by col-

laboration to create a new vertex or select an old ones. To reproduce the preferential

attachment we suppose that the probability for an old vertex to participate in a collabora-

tion is proportional to its degree.

5. The proposed model

5.1. Description

We propose a growth model for the collaborative network from random collaborations.

It is an iterative model that simulates at each step a collaboration and create relationships

in networks. At each step, the model begins by defining the number of vertices, then se-

lects or creates the vertices involved in a collaboration, and finally creates the relationships

between these vertices. The selection of old vertices is made according to preferential at-
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tachment. The model parameters are listed in Table 2 and the algorithm of generation of

the random collaborations is given by Algorithm 1.

Designation Description

Na Number of collaborations to generate

P
The distribution of the number of vertices per collaboration

Pi = probability to have i actors in a collaboration

λ Proportion of old vertices by collaboration

Table 2. Parameters of the model.

for t = 1 to Na do

n← nb_vertices(P );
for i = 1 to n do

Select old vertex with probability λ using preferential attachment or create

a new vertex with probability 1− λ
end

Create a clique between the n vertices

end

Algorithm 1: Collaboration Model (CM)

Using randomness for the selection of an old vertex offers several advantages: it al-

lows to generate collaborations consisting only of vertices present in the network, collab-

orations that consist of old and new vertices and collaborations that consist only of new

vertices. In the latter case it promotes the creation of new components in the network.

It also allows to manage the existence of many components in the generated network as

observed on real world networks.

We can consider our model as the dynamic version of the model of Jean-Loup Guil-

laume et al. [12]. The distribution of the number of actors by collaboration represents the

fixed distribution of the top part of the bipartite graph. We deduce the formal properties

as the consequence of network dynamics while Jean-Loup Guillaume et al. deduce the

properties of the random model as the consequence of fixed distributions on input of the

random model and do not address the formalization of the dynamics of the graph.

We give several properties of the genereted networks which depend on the mathe-

matical expectation of distribution P (η =
∑

iP (x = i)) and the proportion of the old

vertices involved in a collaboration. Specifically, we show that the degree distribution

follows a Power Law with parameter γ = 1 + 1
λ

and therefore, the average distance is

always logarithmic to the number of vertices.

The properties we will study in the following section are the average properties. We

assume that at each step, the number of vertices in a collaboration is equals to η =
∑

iP (x = i) i.e. the mathematical expectation of distribution P (see Figure 4).

5.2. Properties of the generated networks

For simplification in theorical analysis, we will use the mathematical expectation of

distribution P as the number of vertices per collaboration (η =
∑

iP (x = i)) in our

demonstrations.
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EGC HepTh

Figure 4. Distribution P

Let CM be a collaboration model with η =
∑

iPi the mathematical expectation of

distribution P and λ the proportion of old vertices by collaboration. Let t be the current

number of iterations of the CM algorithm , for t >> 1, we can deduce the following:

Proposition 1. The number of vertices nt of the networks is:

nt = t(1− λ)
∑

iPi = t(1 − λ)η. [1]

Proof

At each step we have (1 − λ)
∑

iPi = (1 − λ)η new vertices where (1 − λ) is the

probability to create a new vertex and η the mathematical expectation of distribution P .

So at time t we have created : nt = t(1 − λ)η.

Proposition 2. The number of edges mt in the network is:

t

2
(1− λ)η[(1 − λ)η − 1] + tλ(1 − λ)η2 ≤ mt ≤

t

2
(η − 1)η [2]

Proof

Having selected λη old actors, it is possible that some of them already have relation-

ships. If we neglect this fact, the maximum number of edges created is thus:

1

2
η(η − 1)

In the other side, if all λη old actors already have relationships between them, the number

of edges created is then

1

2
(1− λ)η[(1 − λ)η − 1] + λ(1− λ)η2

Indeed, the number of edges created is obtained by the clique constituted by (1−λ)η new

actors and edges between thoses new actors and old λη actors. So at a given iteration t,
we can consider that the number of edges in the network is framed by:

t

2
(1− λ)η[(1 − λ)η − 1] + tλ(1 − λ)η2 ≤ mt ≤

t

2
(η − 1)η
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Proposition 3. The density of the network is :

(1 + λ)η − 1

nt − 1
≤ δt ≤

(η − 1)

(1 − λ) (nt − 1)
[3]

Proof

By definition :

δt =
2mt

nt(nt − 1)

According to Eq. [1] and Eq.[2 ] we deduce that :

t(1− λ)η[(1 − λ)η − 1] + 2tλ(1− λ)η2

t(1− λ)η (t(1− λ)η − 1)
≤ δt ≤

t(η − 1)η

t(1 − λ)η (t(1− λ)η − 1)

So
(1 + λ)η − 1

nt − 1
≤ δt ≤

(η − 1)

(1 − λ) (nt − 1)

Lemma 1. The average degree d̄ of the network is:

(1 + λ)η − 1 ≤ d̄ ≤
η − 1

1− λ
[4]

Proof

By definition :

δt =
d̄

nt − 1

From Eq. [3] we deduce that : (1 + λ)η − 1 ≤ d̄ ≤ η−1
1−λ

Lemma 2. The clustering coefficient of a vertex of degree k is:

Ck ≥
η − 2

k − 1
[5]

Proof

An actor can have zero or multiple collaborations with other actors. In the case of each

actor collaborates only once with another actor, the structure of the graph that summarizes

the collaborations of the vertices forms a star (see Fig 5). Each collaboration generates an

average increase of the degree of η − 1.
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Figure 5. Star structure generated by collaborations

In the other case where an actor collaborates with the same actors in all his collab-

orations, the structure of the graph that summarizes collaborations is a complete graph.

These two cases are extreme. Let’s call A the first case and B the second.

Let Ek, number of links between the neighbors of a vertex of degree k. Remember

that the clustering coefficient or local density of a vertex is given by:

Ck = 2
Ek

(k − 1)(k − 2)
[6]

The number of collaborations in case A for a vertex of degree k is :

nk =
k

η − 1
[7]

The other η − 1 vertices of each collaboration form a complete graph. It appears that, the

number of edges between the neighbors of the considerated vertex is :

Ek =
1

2
k(η − 2) [8]

In case B we find :

Ek =
1

2
k(k − 1) [9]

Hence,

∀k ≥ η − 1,
η − 2

k − 1
≤ Ck ≤ 1 [10]

Theorem 1. The degree distribution is:

pk ≈

(

k

η − 1

)

−(1+ 1
λ )
≈ k−(1+

1
λ ) [11]

Proof

Consider that there is no vertex of degree 0 generated by the CM algorithm. At the

step t, the probability to choose an old vertex of degree k to participate in the collaboration

using preferential attachment, according to [5, 2, 7] is :

k
∑

xpx
pk,t [12]
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where pk,t is the density of vertices of degree k at step t.
It follows that, the mean number of vertices of degree k at step t that gain an edge

when the algorithm creates a new collaboration is :

λη
k

∑

xpx
pk,t

Let nt be the number of vertices after t step of the CM algorithm; ntpk,t, the number

of vertices of degree k at step t will decrease by λη k
∑

xpx

pk,t. Since this number of

vertices will be choosen for the new collaboration, their degree will increase from k to

k+η−1. At the same time some existing vertices will establish new links and their degree

will increase to k for some of them. These last vertices are those of degree k − η + 1 at

step t. i.e λη k−η+1
∑

xpx

pk−η+1,t vertices.

Let us remember that when we expressed the number of edges in Eq. [2], we have

neglected the existence of an edge between two old vertices at each step. Therefore, every

vertex selected and/or created generates η− 1 relationships. As a consequence the degree

of each vertex is a multiple of η − 1.

When a new collaboration is added in the network, at step t, since the number of new

vertices is (1− λ)η, the variation of the number of vertices of degree k is then :

(n+ (1− λ)η)pk,t+1 − ntpk,t =
λη

∑

xpx
[(k − η + 1)pk−η+1,t − kpk,t] [13]

Looking for a stationary state pk,t+1 = pk,t = pk as

(1− λ)pk =
λ

∑

xpx
[(k − η + 1)pk−η+1 − kpk] ∀ k > η − 1 [14]

in this state, the variation of the number of vertices of degree η − 1 is :

(1− λ)pη−1 = (1 − λ)− λ(η−1)
∑

xpx

pη−1

⇔

[

(1− λ) + λ(η−1)
∑

xpx

]

pη−1 = (1 − λ)

⇔

[

(1 − λ) + λ(η−1)

d̄

]

pη−1 = (1 − λ)

[15]

By neglecting the possible existence of multiple collaboration between actors for sim-

plification purpose, we have:

⇔

[

(1 − λ) + λ(η−1)
(η−1)
(1−λ)

]

pη−1 = (1− λ)(using Lemma 1)

⇔ [(1− λ) + λ(1 − λ)] pη−1 = (1− λ)

⇔ pη−1 = 1
1+λ

[16]

From Eq. [14] we deduce

pk = k−η+1
k+ 1

λ
(η−1)

pk−η+1 [17]
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Since the degree of each vertex is a multiple of η − 1, it follows that:

pk =
( k
η−1−1)...1

( k
η−1+

1
λ
)...(2+ 1

λ
)
. 1
1+λ

=
Γ( k

η−1 )Γ(1+
1
λ)

Γ( k
η−1+1+ 1

λ )

= B
(

k
η−1 , 1 +

1
λ

)

[18]

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) is Legendre’s beta-function, which goes asymptotically as

a−b for large a and fixed b, and hence

pk ≈

(

k

η − 1

)

−(1+ 1
λ )

Corrolary 1. The networks generated by this model are small-world networks.

Proof

Cohen and Havlin [23] showed that scale free networks with parameter 2 < γ < 3
have a much smaller diameter d ≈ ln lnn for networks with n vertices. For γ = 3,

d ≈ lnn/ ln lnn while for γ > 3, d ≈ lnn. The networks generated by our model have

parameter γ = 1 + 1
λ

for the degree distribution, so γ > 2. Thus we can deduce that the

diameter of the networks is:

d ≈ lnn [19]

In particular, if λ ≥ 1/2 the proposed algorithm generates ultra-small world networks

and

d ≈ ln lnn [20]

6. Simulations
To generate the networks, we extracted parameters from different datasets. We also

extracted the number of collaborations at each edition and generated the networks accord-

ingly.

From simulations and in accordance with the theorical results, we find that the pro-

posed algorithm reproduces perfectly the observed distributions degrees (see Figure 6).

This is the result of the preferential attachment rule used for the selection of older vertices

in collaborations.
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CARI EGC

HepTh Producers

Figure 6. The degree distribution of real world networks and generated networks

The simulated networks have very high clustering coefficients and high transitivities

(see Figure 7). This is due to the creation of complete graphs for each collaboration. We

also compared the distribution of the clustering coefficient and the correlation of degree

and clustering coefficient (see Figure 8) of generated networks and real networks. Based

on this, we are therefore able to say that our model reproduces the distribution of cluster-

ing coefficient and the correlation observed in practice between the degree of a node and

its clustering coefficient.

The variation of the new vertices and edges in the generated network is the same as

that of real networks (see Figure 9). As explained in section 3, it is the consequence of the

values of the proportions of old vertices per collaboration. For small values of λ (CARI

and EGC) new edges and new vertices vary in the same direction because, the edges

are mainly created by the addition of news vertices. For large values of λ (HepTH and

Producers), the number of new edges does not depend on the number of news vertices.

In fact, the edges are created mainly by the old vertices which are predominantly present

in collaborations. The results would certainly be better if the values of λ follows those

obtained on the real networks (see Figure 4).
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CARI EGC

HepTh Producers

Figure 7. Clustering Coefficent and Transitivity of real world networks and generated net-

works

CARI EGC

HepTh Producers

Figure 8. Corelation Degre / Clustering Coefficent of real world networks and generated

networks
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CARI CM model of CARI

EGC CM model of EGC

Hepth CM model of Hepth

Producers CM model of Producers

Figure 9. Timegraphs of the numbers of new vertices and new edges: at the left the

timegraphs for reals networks and at right the timegraph for the genereted networks
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The generated networks consist of larger proportions of connected components of

size < 6 as real networks (see Figure 10). The main difference resides on the number

of large component (size > 6). This difference can be explained by the nature of the

analyzed networks. Indeed in the networks of co-publication (or production) links are

created between the vertices belonging to the same discipline or the same research area;

this decelerates fusion of components in the networks. The fusion of the components is

facilitated by researchers involved in several disciplines or more domains. Contrariwise,

this constraint is not implemented in our model. This explains the rapid growth of the

giant component, reducing all a large component into a giant component and rapidly

increasing the proportion of vertices in this giant component.

Furthermore, the networks have similar densities than those observed for the different

datasets (see Table 3).

n m l CC T d̄ δ

CARI 1070 1349 5.27 0.86 0.54 2.52 0.002

CM model of CARI 1102 1395 6.71 0.78 0.42 2.53 0.002

EGC 2741 3723 7.7 0.86 0.37 2.71 0.001

CM model of EGC 2866 4411 5.65 0.74 0.25 3.07 0, 002

HepTh 11913 15509 7.50 0.59 0.23 2.6 0.00021

CM model of HepTh 14868 25275 4.41 0.43 0.05 3.4 0.00022

Producers 69241 278446 5.7 0.76 0.31 8.04 0.00011

CM model of Producers 193684 1098364 5.1 0.62 0.07 11.34 0.000585

Table 3. Comparison between global properties of real networks and the generated net-

work : total number of vertices n; total number of edges m ; mean degree d ; mean

distance l ;clustering coefficient CC; Transitivity T ; density δ.
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(a) CARI

(b) Producers

Figure 10. Distribution and proportion of vertices in the connected components.
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7. Conclusion
We have presented in this paper a collaborative model of growing graphs. It is an

iterative model that simulates at each step a collaboration and creates relationships in

networks. The collaboration involves several old and new vertices. The model is set by the

distribution of the number of vertices and the proportion of old vertices by collaboration.

We conducted a theorical analysis of the model and the result of simulations were

compared with four reals datasets. The parameters for the simulations were extracted

from those datasets. It appears that the generated networks have the distributions that

follow Power Law, have a low average distance, a high clustering coefficient, a high

transitivity and a low density. Therefore, we can say that the proposed model reproduces

random networks with characteristics similar to some real-world networks.

However, after analyzing these basic properties, the future prospect of this work may

be to study more complex properties. For example one can analyze the structure and

dynamics of communities in these graphs related to other models on one hand, and on the

other hand to the real-world networks. Indeed, the high clustering coefficient and high

transitivity in these graphs suggest the existence of many communities.
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