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ABSTRACT. The standard Monte Carlo estimations of rare events probabilities suffer from too much

computational time. To make estimations faster, kernel-based estimators proved to be more efficient

for binary systems whilst appearing to be more suitable in situations where the Probability Density

Function (pdf) of the samples is unknown. We propose a kernel-based Bit Error Probability (BEP)

estimator for coded M -ary Quadrature Amplitude Modulation (QAM) systems. We defined soft real

bits upon which an Epanechnikov kernel-based estimator is designed. Simulation results showed,

compared to the standard Monte Carlo simulation technique, accurate, reliable and efficient BEP

estimates for 4-QAM and 16-QAM symbols transmissions over the additive white Gaussian noise

channel and over a frequency-selective Rayleigh fading channel.

RÉSUMÉ. Les estimations de probabilités d’événements rares par la méthode classique de Monte

Carlo souffrent de trop de temps de calculs. Des estimateurs à noyau se sont montrés plus efficaces

sur des systèmes binaires en même temps qu’ils paraissent mieux adaptés aux situations où la fonc-

tion de densité de probabilité est inconnue. Nous proposons un estimateur de Probabilité d’Erreur

Bit (PEB) à noyau pour les systèmes M -aires codés de Modulations d’Amplitude en Quadrature

(MAQ). Nous avons défini des bits souples à valeurs réelles à partir desquels un estimateur à noyau

d’Epanechnikov est conçu. Les simulations ont montré, par rapport à la méthode Monte Carlo, des

estimées de PEB précises, fiables et efficaces pour des transmissions MAQ-4 et MAQ-16 sur canaux

à bruit additif blanc Gaussien et à évanouïssements de Rayleigh sélectif en fréquence.

KEYWORDS : Bit error probability, Bit error rate, Probability density function, Monte Carlo method,

Kernel estimator.
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1. Introduction

In digital communications, the Bit Error Probability (BEP) is usually used for the per-
formance characterisation of a communication system. It is generally determined in the
form of an estimate commonly called Bit Error Rate (BER). Several approaches of the
BEP estimation have been studied. A few attempts to analytically estimate the BEP were
reported in [1] and [2]. However, simulation-based techniques of the BEP estimation have
been the most investigated, surely because of the increasing complexity, of the contempo-
rary and emerging digital communication systems, that renders impossible the derivation
of a closed-form solution of the BEP estimate. A simulation-based technique of the BEP
estimation that does not depend on the complexity of the digital communication system is
that technique which proceeds with the errors counting in the received bits sequence and
then determines the BEP estimate, i.e. the BER, as the ratio of the number of the observed
errors over the total number of the transmitted bits. That technique, called the classical (or
standard) Monte Carlo (MC) method, is a universal technique as it does not depend on the
digital communication system. For this reason, it is commonly used as the baseline for the
other methods. This universal technique which is moreover straightforward unfortunately
suffers from its high computational cost. Indeed, it is known as computationally the most
costly of the methods [3]. Samples of very large size may be required by this technique
to perform BEP estimates with a given accuracy. This is further obvious when small BER
values have to be computed. To mathematically exhibit this disadvantage of the classical
MC method, one can easily be provided with a lower bound of the sample size Nmc in
function of the BEP pe and the normalised error ε of the estimate p̂e: Nmc > 1/ε2pe (see
e.g.: [4]). The normalised error ε is defined as the ratio of the standard deviation of p̂e
over pe. Therefore, to estimate a BEP pe = 10−4, the classical MC method with standard
deviation smaller than 0.1pe, should at least be run with a total number of transmitted data
equal to 106.

To overcome the problem of the classical MC method efficiency, a class of simulation-
based techniques, referred to as variance-reducing techniques, have been developed dur-
ing the 1970s with the goal to reduce the sample size. These variance-reducing techniques
have been discussed in details in [3]. More specifically, they include the importance
sampling (also called modified Monte-Carlo) technique [5], the extreme-value theory
method [6], the tail extrapolation method [7] and the quasi-analytical estimation tech-
nique [3]. The importance sampling method has been the most successfull and the most
investigated of these variance-reducing techniques. Some recent investigations on this
technique dealt with very low BER performance estimation for coded modulations. For
instance, Cavus et al. [8] developed an approach that combines the importance sampling
technique with trapping sets. Their approach allowed a successful simulation of the per-
formance of Low Density Parity Check (LDPC) codes over an Additive White Gaussian
Noise (AWGN) channel at BERs smaller than 10−6.

More recently, new simulation-based techniques of the BEP estimation have been de-
veloped [4], [9]. They rely on non-parametric Probability Density Function (pdf) estima-
tions. Soft observations are used to estimate the pdf that is generally assumed unknown.
Very few of the non-parametric estimation techniques are based on Gaussian mixture
models [9]. Gaussian mixture models rely on the assumption that the pdf of the received
observations is a mixture of Gaussians. The parameters of each Gaussian, i.e. the mean,
the variance and the a priori probabilities, together with the number of Gaussians are es-
timated by simulation. The expression of the BEP estimate is then derived as a function
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of the estimated parameters. On the contrary, the non-parametric kernel-based estimation
techniques have been more investigated. They rely on kernel density estimators [10]. The
estimation solely relies on the observed samples and there is no need to estimate the num-
ber of Gaussian components as for the Gaussian mixture. Several kernel-based BEP esti-
mators built around the Gaussian kernel function have shown to reach good performance
on the uncoded binary-input Gaussian channel. This is the case of the kernel-based BEP
estimator for soft BERs computation [4], where the estimator performance was analysed
for Code Division Multiple Access (CDMA) schemes. Efficient and accurate BEP esti-
mates were reported. This is also the case with the study reported in [12]. A kernel-based
estimator for soft BERs computation demonstrated that kernel-based estimators of the
BEP can perform well in an unsupervised manner, i.e. without requiring the transmitted
data to be known. Always based on the Gaussian kernel function, a maximum likelihood-
based smoothing parameter optimisation was studied [13] for the kernel estimators of
BEP. Illustrations of the effectiveness of the maximum likelihood-based smoothing pa-
rameter selection were made for binary coded transmission schemes involving Turbo and
LDPC codes over CDMA systems. For the first time, a work addressing the issue of
efficient kernel-based BEP estimation for M -ary transmissions schemes was reported
in [14]. This paper extends the work in [14] by thoroughly studying the kernel-based
BEP estimation for coded M -ary Quadrature Amplitude Modulations (QAM) transmis-
sions schemes. In the proposed estimator, the samples used for the estimation are soft bits
that are sampled from the output of the soft error-correcting code decoder. Beyond the
AWGN channels, frequency-selective Rayleigh fading channels are targeted. Under this
framework, the issue of kernel-based efficient BEP estimation becomes more challenging
with respect to the previous contexts presented above. Firstly, shifting from binary real
constellations to M -ary complex constellations involves the estimation of complex pdfs.
Secondly, when frequency-selective Rayleigh fading channels are considered, the pdf of
the soft observations to be estimated loses its Gaussian nature and finding an appropriate
smoothing parameter for the kernel is not straightforward.

The remainder of this paper is organised as follows: in Section 2 a theoretical formu-
lation of the BEP followed by MC-based and kernel-based approaches to estimate it are
described; in Section 3 a description of the different features of the proposed kernel-based
BEP estimator is provided; in Section 4 the simulation framework and analysis parameters
are presented and simulation results are discussed. Section 5 concludes the paper.

2. The bit error rate, an estimate of the bit error probability

2.1. The bit error probability

In order to theoretically formulate the BEP, let us consider a coded digital communi-
cation system that operates with Quadrature Amplitude Modulation (QAM) schemes. At
the transmitter-end, a signal containing coded M -QAM waveforms is transmitted over a
noisy channel. M is the QAM constellation size. The transmitted signal corresponds to
a bit sequence (bj)1≤j≤N . At the receiver-end, more precisely at the output of the chan-
nel decoder, we assume being provided with independent and identically distributed soft
real bits (Xj)1≤j≤N such that the hard decision consists of a bit b̂j = 0 (resp. b̂j = 1)
when Xj < 0 (resp. Xj > 0). Let X denote the univariate real random variable that
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describes the soft bits (Xj)1≤j≤N and let f (0)
X (x) (resp. f (1)

X (x)) be the conditional pdf
of Xj conditional to bj = 0 (resp. bj = 1). The BEP can be stated as:

pe = Pr[X > 0, bj = 0] + Pr[X < 0, bj = 1]

= Pr[X > 0 | bj = 0]Pr[bj = 0] + Pr[X < 0 | bj = 1]Pr[bj = 1]

= π0

∫ +∞

0

f
(0)
X (x) dx+ π1

∫ 0

−∞

f
(1)
X (x) dx, (1)

where π0 = Pr[bj = 0] and π1 = Pr[bj = 1] are the a priori probabilities of the bits
values “0” and “1” respectively. The BER is an estimate of the BEP and can be computed
based on simulations. Several simulation-based approaches of the BER computation exist.

2.2. The Monte Carlo methods of BEP estimation

We denote by Monte Carlo methods, the classical MC method and the modified
Monte-Carlo simulation technique also called importance sampling. To introduce the
classical MC method of BEP estimation, let us consider that the transmitted bits sequence
(bj)1≤j≤N are all binary “0” valued. Consequently, Eq. (1) of the BEP can be written as

pe =

∫ +∞

0

f
(0)
X (x) dx, (2)

=

∫ +∞

−∞

f
(0)
X (x)I(x > 0) dx, (3)

= E [I(X > 0)| bj = 0, 1 ≤ j ≤ N ]. (4)

where E[.] is the mathematical expectation operator and I is such as,

I(x) =

{

1, x ≥ 0
0, x < 0.

A natural and straightforward estimator p̂e of pe is therefore given by the method of
moments as

p̂e =
1

N

N
∑

j=1

I(X
(0)
j > 0), (5)

where X
(0)
j , 1 ≤ j ≤ N , are the realisations of the random variable X conditioned to

bj = 0, 1 ≤ j ≤ N . Using Eq. (5), the BEP estimate, i.e. the BER can be computed
as the number of errors over the total number of observations: this way of calculating the
BER defines the classical MC method.

As about the modified Monte-Carlo simulation technique, it has been introduced by
Shanmugam et al. based on the following principle [5]: if the regions of the receiver
input (i.e. the channel output) which contribute to an important event that is of interest
are known, then the input distribution is biased (i.e. modified) in such a way that more
samples are taken from the important regions. In this technique, the statistical properties
of the receiver input are assumed to be known and the BEP to be estimated is given by

pe =

∫ ∞

−∞

h(x)f
(0)
X (x) dx, (6)
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where h(x) is equal to 1 if x is greater than the hard decision threshold and 0 otherwise,

thus generalising Eq. (3). A modified pdf f (0)∗
X (x) can be used to change the distribution

of the input samples, yielding:

pe =

∫ ∞

−∞

h∗(x)f
(0)∗
X (x) dx, (7)

where h∗(x) = B(x)h(x) and B(x) = f
(0)
X (x)/f

(0)∗
X (x). The BER is finally computed

as the BEP estimate p̂e given by

p̂e =
1

N

N
∑

j=1

h∗(xj), (8)

where x1, . . . , xN are the output sequence corresponding to the input sequence obtained
by the modified distribution.

2.3. The kernel method of BEP estimation

In the kernel-based BEP estimation technique, the marginal conditional pdfs f (0)
X (x)

and f
(1)
X (x) are estimated as follows:























f̂
(0)
X (x) = 1

n0

n0
∑

j=1

1
h0
K

(

x−Xj

h0

)

f̂
(1)
X (x) = 1

n1

n1
∑

j=1

1
h1
K

(

x−Xj

h1

)

,

(9)

where K is any even regular pdf with zero mean and unit variance called the kernel, n0

(resp. n1) is the cardinality of the subset of the soft observations among X1, . . . , XN

which are likely to be decoded into a binary “0” (resp. “1”) bit value and h0 (resp.
h1) is a parameter called smoothing parameter (or bandwidth) that depends on the soft
observations X1, . . . , Xn0 (resp. X1, . . . , Xn1 ). Let us notice that the sample size N is
such as n0 +n1 = N . Then, the estimate p̂e of the BEP pe of Eq. (1) can be expressed as
follows,

p̂e = π̂0

∫ +∞

0

f̂
(0)
X (x) dx+ π̂1

∫ 0

−∞

f̂
(1)
X (x) dx. (10)

where π̂0 and π̂1 are the estimates of π0 and π1 respectively. To compute Eq. (10), the
prior determination of the kernel K and the smoothing parameters h0 and h1 is necessary.

The choice of the kernel function K is related to the density function under estima-
tion. As an example, for the estimation of a power limited process, the kernel should
have a finite variance. Also, whenever the observed samples are distributed over a large
scale, distributions with an infinite support (e.g., Gaussian distribution) should be chosen.
However, distributions such as Epanechnikov, Uniform or Quartic that have finite support
should be selected to model the kernel function when the observed samples are bounded.
Once the kernel function K is selected, then comes the selection of the smoothing param-
eters h0 and h1.

The design of the smoothing parameters is indeed a major issue since it is crucial to the
performance of the estimator, especially in terms of accuracy. It has been demonstrated
in [15] that if the smoothing parameter h → 0 (i.e., either h0 → 0 or h1 → 0) when the
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sample size N → ∞ (which means that the quantities n0 → ∞ and n1 → ∞), then the
estimator is asymptotically unbiased. The methods for optimally selecting the smoothing
parameter are all based on the minimisation of the estimation error. A common way of
measuring the estimation error is the Mean Integrated Squared Error (MISE), a function
of the smoothing parameter h, given by [16],

MISE(h) =

∫

E

[

f̂X(x)− fX(x)
]2

dx. (11)

Under standard technical assumptions (see e.g. [17]), the MISE is asymptotically (i.e.,
as the sample size N → ∞) approximated by the Asymptotic Mean Integrated Squared
Error (AMISE),

AMISE(h) = n−1
ζ h−1

∫

K2(x) dx+ h4

∫

f
′′

X(x)2 dx

(∫

x2K(x)/2 dx

)2

, (12)

where f
′′

X(x) is the second derivative of the pdf fX(x), (nζ)ζ∈{0,1} is for designating
either n0 or n1, and K is as mentioned above the kernel or more precisely the kernel
function. The quantities n0 and n1, already defined above, have to be also seen as the
amounts of the soft observations that are used to estimate the marginal conditional pdfs

f
(0)
X (x) and f

(1)
X (x) respectively. The minimisation of (12) with respect to h gives the

AMISE-based optimal smoothing parameters as follows,

h∗
ζ =

[

∫

K2(x) dx
∫

f
′′

X(x)2 dx
(∫

x2K(x) dx
)2

]1/5

n
−1/5
ζ . (13)

Clearly, the constraint in Eq. (13) is the prior knowledge of the second derivative
f

′′

X(x) of the targeted distribution fX(x) which is of course unknown and searched for. A
multitude of techniques [18] that provide a way to bypass this constraint include plug-in
methods [19], cross-validation techniques [20], [21] and variable kernel density estima-
tion methods [22], [23]. Unfortunately, none of these techniques has yet been considered
as the best in every situation [18]; hence the difficulty to find a universal optimal smooth-
ing parameter. In practice, a convenient technique is to replace the unknown pdf fX by
a reference distribution with mean and variance matching those of the data. In the liter-
ature, the Gaussian distribution is a popular choice for the kernel function so that many
designs regarding the choice of the optimal smoothing parameter are available. By se-
lecting a Gaussian kernel function K and using a Gaussian reference distribution (i.e. the
unknown pdf fX is assumed Gaussian), the AMISE-based optimal smoothing parameters
have been derived from Eq. (13) as follows [24],

h∗
ζ = (4/3)

1/5
σ̂n

−1/5
ζ , (14)

where σ̂ is the estimated standard deviation obtained through the soft observations
X1, . . . , Xn. The expression of Eq. (14) is indeed an estimate of the AMISE-based opti-
mal smoothing parameter and is called the rule-of-thumb bandwidth.

A practical problem with the rule-of-thumb bandwidth is its sensitivity to outliers
[28]. A single outlier may cause a too large estimate of σ and hence implies a too large
bandwidth. It is noted in [25] that the standard variance estimator is not appropriate for
the non-Gaussian densities. So, a more robust estimator is obtained from the interquartile
range which is a measure that indicates the range over which the 50% most centered
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samples are spread. Let Qk
Z denote the k-th quartile of the random variable Z, defined

by Pr
(

Z < Qk
Z

)

= k
4 for k ∈ {1, 2, 3}. Let also RZ denote the interquartile range of

the random variable Z as RZ = Q3
Z − Q1

Z . Still keeping the assumption that the true
pdf fX is Gaussian, we have X ∼ N (µ, σ2) and W = (X − µ)/σ ∼ N (0, 1). Hence
asymptotically [28],

RX = Q3
X −Q1

X ,

= (µ− σQ3
W )− (µ− σQ1

W ),

= σ(0.67− (−0.67)),

= 1.34σ,

(15)

Thus σ can be estimated by σ̂ = RX/1.34. By plugging σ̂ = RX/1.34 into Eq. (14), we
obtain the following version of the rule-of-thumb bandwidth,

h∗
ζ = 0.79RXn

−1/5
ζ . (16)

By combining Eq. (14) and Eq. (16), a more robust estimate of σ is min(σ̂, RX/1.34)
[26], [17] and hence the following robust version of the rule-of-thumb optimal bandwidth
is:

h∗
ζ = (4/3)

1/5
min (σ̂, RX/1.34)n

−1/5
ζ . (17)

3. The proposed kernel-based BEP estimator

Let us consider a digital communication system with multi-carrier transmissions of
M -ary QAM waveforms over frequency-selective Rayleigh fading channels. Such a com-
munication system model involves inter-symbol and inter-carrier interferences and sub-
sequently complex receiver schemes are required. Nowadays, advanced receivers char-
acterise the contemporary and emerging wireless communication systems. As the nature
of the pdf of the soft observations depends not only on the type of the receiver but also
on the channel model, it is very difficult to find the exact parametric model that describes
the received distribution. In these conditions, a method as the modified Monte-Carlo that
assumes the pdf of the received soft bits to be known cannot be applied. However, the
kernel approach is well justified. So, the objective of this work is to compute soft coded
BERs of M -ary QAM transmissions schemes using the kernel approach of the BEP es-
timation. The digital communication system under consideration also includes a channel
codec (encoder/decoder). The soft coded BER is the BER that is computed from soft bits
taken at the output of the channel decoder. The soft bits are the soft outputs of the channel
decoder that normally serve for the hard decision making. We assume that the channel
decoder operates with soft inputs in the form of LLR values and can deliver soft outputs
in the form of LLR values. As M -QAM waveforms of alphabet {s1, . . . , sM} are trans-
mitted, the channel outputs are M -ary waveforms (soft symbols). To provide the channel
decoder with appropiate inputs, a symbol-to-bit soft demapping (see 3.1) has to be done
in order to convert the channel outputs which are soft symbols into soft bits in the form
of LLR values. In addition, suited soft bits in the form of real values have to be given at
the input of the BEP estimator. In 3.2, we define these soft real bits and establish in 3.3
the key equation for the BEP estimate computation.
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3.1. The symbol-to-bit soft demapping

At the transmitter-end, before the modulation, bunches of k coded bits are grouped b =
(b1, . . . , bk), k = log2(M), and mapped onto constellation points s ∈ χ = {s1, . . . , sM}
for transmission. Note that the transmitted bits are uniformly distributed, and thus so are
the transmitted symbols. At the receiver-end, the soft bit for each coded bit is calculated
based on the received signal r. At the i-th sample period, the observed symbol is ri and
the symbol-to-bit soft demapping [27] results in the computation of k soft bits in the form
of LLR (Lj)1≤j≤k. The j-th soft bit Lj is then given by

Lj = log

(

Pr[bj = 1|ri]
Pr[bj = 0|ri]

)

, (18)

and can be rewritten as

Lj = log









∑

s∈χ
(1)
j

Pr[s|ri]
∑

s∈χ
(0)
j

Pr[s|ri]









, (19)

where χ
(0)
j (resp. χ

(1)
j ) denotes the signal subset of χ with the j-th bit equal to “0”

(resp. “1”). Using Bayes’ rule and since the symbols s1, . . . , sM are uniformly distributed
(Pr[s = si] = 1/M, ∀i ∈ {1, · · · ,M}), we get

Lj = log









∑

s∈χ
(1)
j

p[ri|s]
∑

s∈χ
(0)
j

p[ri|s]









. (20)

For a fading channel, ri = gis+ ηi, where s ∈ χ, ηi a complex-valued realisation of the
AWGN η ∼ N (0, σ2) and gi, a complex-valued element of the channel matrix (a vector)
g. Thus, p[ri|s] ∼ N (gis, σ

2) and the conventional Max-Log-MAP demapper allows Lj ,
1 ≤ j ≤ k, of Eq. (20) to be derived in function of ri, gi and s as follows:

Lj ≈ − 1

σ2

[

min
s∈χ

(1)
j

|ri − gis|2 − min
s∈χ

(0)
j

|ri − gis|2
]

. (21)

Let us remark that in the case of the AWGN channel, ri = s + ηi and therefore gi is a
scalar always equal to 1.

3.2. The proposed kernel-based estimator inputs

The outputs of the channel decoder are soft bits in the form of LLR values Lj . How-
ever, we define the inputs of the kernel-based estimator to be soft bits (Xj)1≤j≤N in the
form of soft real values +1 or −1. The soft bit Xj is given by:

Xj = Pr[bj = 1|ri]− Pr[bj = 0|ri]. (22)

From Eq. (18) and Pr[bj = 1|ri] + Pr[bj = 0|ri] = 1, we derive the expressions of
Pr[bj = 1|ri] and Pr[bj = 0|ri] in function of the soft LLR values Lj as follows:







Pr[bj = 1|ri] = eLj/
(

1 + eLj

)

Pr[bj = 0|ri] = 1/
(

1 + eLj

)

. (23)
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From Eq. (23) and Eq. (22), we derive the expression of the soft bit Xj as a function of
the channel decoder output Lj :

Xj =
1− e−Lj

1 + e−Lj
. (24)

The soft bits (Xj)1≤j≤N are used by the proposed kernel-based estimator to derive the
coded M -QAM BER values. Otherwise, if needed, soft symbol error probabilities can be
estimated using soft M -ary symbols. The definition of the soft M -ary symbols is given
in Appendix A.

3.3. The proposed kernel-based estimator equation

As defined in Eq. (24), the soft bits (Xj)1≤j≤N are bounded with values in the in-
terval [−1, +1]. So, the selection of the popular Gaussian kernel function cannot be
strongly justified against the selection of finite support kernel functions. Among the
multiple finite support distributions that are candidates for the kernel function selec-
tion, the Epanechnikov distribution is the simplest one in a computational point of view.
For these reasons, we select the Epanechnikov distribution as the kernel function, i.e.,
K(x) = 3

4

(

1− x2
)

I(|x| ≤ 1). Then it can be checked that the kernel estimator with
bandwith h will be restricted to interval [−1−h, 1+h]. Since optimally chosen h remains
much smaller than 1 for large samples, we can consider that numerically the support con-
straint for the distribution of X is satisfied when using the Epanechnikov kernel. There-
fore, we need to find the corresponding smoothing parameter h∗

Epa that approximates well
the AMISE-based optimal smoothing parameter of Eq. (13). According to the related
literature on bandwidth selection based on the Gaussian kernel, the robust rule-of-thumb
optimal smoothing parameter of Eq. (17) is the best approximation of the AMISE-based
optimal smoothing parameter. We then determine h∗

Epa based on the concept of canonical
bandwidths as follows [28],

h∗
Epa =

δEpa

δGau
h∗
ζ , (25)

where h∗
ζ is the robust optimal smoothing of Eq. (17), δGau ≈ (1/4)

1/10
= 0.7764 is the

canonical bandwidth of the Gaussian kernel and δEpa ≈ 151/5 = 1.7188 is the canon-
ical bandwidth of the Epanechnikov kernel. Let us notice that in Eq. (25), we represent
through h∗

Epa two smoothing parameters insofar as h∗
ζ is for either h∗

0 or h∗
1. The canonical

bandwidths are closely related to the rescaling of a kernel function called the canonical
kernel [29]. The principle of the canonical kernel is to uncouple the problems of choosing
h and K and the idea for separating these choices is to find the canonical bandwidths
so that the AMISE will be asymptotically equal for different kernels (for instance, the
Gaussian and the Epanechnikov kernels).

Now, the two key parameters that completely define the proposed kernel-based BEP
estimator are known: the kernel function K(x) = 3

4

(

1− x2
)

I(|x| ≤ 1) and the smooth-
ing parameter as given in Eq. (25). The expressions of the two marginal conditional pdfs

f̂
(0)
X (x) and f̂

(1)
X (x) can be derived from Eq. (9). Then, Eq. (10) of the BEP estimate can

be rewritten as follows,

p̂e = π̂0

∫ +∞

0

1

n0h∗
0

n0
∑

j=1

K

(

x−Xj

h∗
0

)

dx+ π̂1

∫ 0

−∞

1

n1h∗
1

n1
∑

j=1

K

(

x−Xj

h∗
1

)

dx,

(26)
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where h∗
0 (resp. h∗

1), computed based on Eq. (25), is the selected optimal smoothing

parameter which will govern the accuracy of the estimation of f̂ (0)
X (x) (resp. f̂ (1)

X (x)). By
the means of some mathematical transformations that are detailed in Appendix B, Eq. (26)
leads to the following convenient equation that will serve for the BER computation,

p̂e =
π̂0L0

n0
+ π̂1L1

n1
+ 3π̂0

4n0

{

∑

|αj |≤1,
1≤j≤n0

(

2
3 − αj +

α3
j

3

)

}

+ 3π̂1

4n1

{

∑

|βj |≤1,
1≤j≤n1

(

2
3 + βj − β3

j

3

)

}

,

(27)

where αj = −Xj/h
∗
0, βj = −Xj/h

∗
1, L0 (resp. L1) is the cardinality of the subset of

(αj)1≤j≤n0
(resp. (βj)1≤j≤n1

) which are less than −1 (resp. greater than 1).
The optimal smoothing parameters h∗

0 and h∗
1 of Eq. (27) are derived based on Eq. (25)

and Eq. (17) as follows,







h∗
0 = 2.3449min (σ̂, RX/1.34)n

−1/5
0

h∗
1 = 2.3449min (σ̂, RX/1.34)n

−1/5
1

. (28)

Then, the soft coded BERs are computed by simulations using Eq. (27). The simula-
tions have been run for M -ary QAM transmissions over the AWGN channel and over a
frequency-selective Rayleigh fading channel. In the next Section, we deal with the simu-
lation results of the proposed kernel-based BEP estimator.

4. Simulation results

4.1. Channel models and performance analysis tools

The proposed kernel-based BEP estimator has been simulated on a single-carrier M -
ary QAM transmission scheme over the AWGN channel and also on a multi-carrier M -ary
QAM transmission scheme over a frequency-selective Rayleigh fading channel. Gray-
coded 4-QAM and 16-QAM constellations were considered. The frequency-selective
Rayleigh fading channel was ten taps long with a sample period of 12.8µs, a maxi-
mum Doppler shift set to 8Hz and average taps gains given in watts by the vector
[0.0616 0.4813 0.1511 0.0320 0.1323 0.0205 0.0079 0.0778 0.0166 0.0188] [30], [31].
To mitigate inter-symbol and inter-carrier interferences, a cyclic prefix Orthogonal Fre-
quency Division Multiplexing (OFDM) technique was implemented [32]. The length of
the Cyclic Prefix was set to 9 and the number of OFDM sub-carriers set to 128. A 128-
point FFT (Fast Fourier Transform) was performed. The Channel codec was a 4/7-rate
LDPC code with a Gallager-based parity check matrix built to be of rank 15. The number
of iterations while decoding the LDPC code was set to 10 in the simulations involving
the AWGN channel. It was set to 30 in the simulations regarding the frequency-selective
Rayleigh fading channel.

To analyse the performance of the proposed kernel-based estimator for soft coded
BER computation, we used different analysis parameters, namely the absolute bias, the
Confidence Interval (CI), the sample size saving and the CPU time. We defined the ab-
solute bias as |E[p̂e] − pe |. To compute the absolute bias, a certain number of the BEP
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estimates p̂e has to be processed. As the theoretical expression of pe is not available,
a reference value has to be determined too. So, benchmark values have been computed
for each value of the information bit energy to noise power spectral density ratio denoted
Eb/N0. The benchmark values were computed using the classical MC simulations whilst
handling a threshold on the number of observed errors. The threshold depends on the
channel model. In the case of the AWGN channel, at least 100 errors have been observed.
As about the frequency-selective Rayleigh fading channel, a threshold of 1 000 errors was
set. The absolute bias allows the analysis of the estimator accuracy. The smaller it is,
the more accurate is the estimation. Visually, excellent accuracy performance results in
plotted data points of the BEP estimates values which are pointwise consistent with their
corresponding benchmark data points.

The accuracy alone is not sufficient to evaluate with thoroughness the proposed BEP
estimator performance. For instance, a good accuracy result of an estimate can be the fact
of a lucky coincidence while suffering from reliability. The CI is intended to measure how
reliable the estimator is. The smaller the CI is, the more reliable the estimate is. Let l be
the size of a set of the BEP estimates p̂e. The (1−α) CI is the interval I = [ p̂e−ǫ, p̂e+ǫ]
such that the probability of having the true value of pe inside I is equal to (1− α), that is
to say, Pr( p̂e − ǫ ≤ pe ≤ p̂e + ǫ) = 1− α, i.e.,

Pr

( −ǫ

σ̂l/
√
l
≤ T ≤ ǫ

σ̂l/
√
l

)

= 1− α,

where T = (pe− p̂e)/(σ̂l/
√
l) and σ̂2

l is a chi square distribution. Thus ǫ can be estimated
thanks to the reciprocal cumulative density function of T denoted F−1

T (x) for 0 ≤ x ≤ 1
by:

ǫ =
σ̂l√
l
F−1
T (α/2).

Assuming that p̂e follows a Gaussian distribution with mean pe and standard deviation σ,
the random variable T follows a Student’s t-distribution with (l− 1) degrees of freedom.
When s is high, T is well approximated by a Gaussian distribution. However, due to
complexity issues, we only simulated a limited number of BEP estimates (l = 21), which
justifies the use of the Student’s t-distribution with (l − 1) degrees of freedom for T .
Hereafter, a CI for α = 0.05 has been chosen.

The efficiency of the proposed estimator is evaluated thanks to the sample size re-
duction with respect to the classical MC method. If NK is the sample size required by
the proposed estimator to achieve a given performance (of accuracy and reliability) and
Nmc, the sample size required by the classical MC to achieve equal (or almost equal)
performance, then the sample size saving is defined by the ratio Nmc/NK . Therefore,
the greater (than 1) the sample size saving is, more efficient is the proposed estimator.
The sample size saving is closely linked to the computational cost engendered by the
BEP estimate computation. To evaluate this aspect of the estimator efficiency, the CPU
time has been computed by simulation. The CPU time shows to how much is the energy
consumption. It tells us about the inherent computational cost of the estimator.

4.2. Numerical results and discussions

In this Subsection, we analysed through simulation results the performance of the pro-
posed kernel-based estimator with respect to the analysis parameters defined above. Since
the importance sampling method requires (see Eq. (8)) the pdf of the receiver input to be
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known in advance, a fair comparison with our proposed estimator is not possible with-
out resorting to additional techniques. For this reason, we only made comparisons with
respect to the universal classical MC method. Simulations of the proposed kernel-based
estimator for soft coded BERs computation have been performed both in the AWGN
channel and in a frequency-selective Rayleigh fading channel. The Rayleigh fading chan-
nels are more characteristic of the contemporary and emerging digital communication
systems. They are moreover more challenging than the AWGN channels regarding BEP
estimations. For these reasons, we’ll roughly evaluate the performance of the proposed
estimator as far as the AWGN channel is concerned. However, most of the proposed
estimator performance analysis will focus on simulation results involving the frequency-
selective Rayleigh fading channel.

Insights of the proposed estimator performance over the AWGN channel

To analyse the accuracy of the proposed estimator when performing over the AWGN
channel, Figure 1 illustrates the curves of coded BERs in function of Eb/N0. Simulations
with sample sizes NK (see Table 1 and Table 2) in the form of 10p, p ∈ {3, 4, 5, 6}, have
been run to cover coded BER values from 10−1 down to 10−5. The blue dashed curves
in Figure 1 are related to the theoretical uncoded BERs and are given for illustration. The
data points of the proposed estimator are borne by the green curves with diamond mark
at each data point. The curves drawn with red solid lines are for the benchmarks. As
Figure 1 lets see, the green curve with diamond mark at each data point and the red solid
one are combined in a unique curve as well for the pair (of curves) related to 4-QAM as
for that related to 16-QAM. This demonstrated that the proposed estimator achieved very
accurate estimates. To quantify the achieved accuracy, Table 1 (for 4-QAM) and Table 2
(for 16-QAM) report numerical data that show how small are the corresponding absolute
biases compared to the associated benchmarks.

As about the reliability of the proposed estimator, we show in Table 1 and Table 2
the intervals I representing the achieved CIs. Small CIs, each containing its correspond-
ing estimate value, have been observed. In the case of 4-QAM where true coded BERs
values from 1.1 × 10−1 down to 4.4 × 10−6 are estimated, the smallest of the CIs is
[0.94pe, 1.06pe] and the largest one is [0.54pe, 1.46pe]. In the case of 16-QAM, the
smallest of the CIs is [0.97pe, 1.03pe] and the largest of all is [0.73pe, 1.27pe] for true
coded BER values from 1.9× 10−1 down to 1.1× 10−5. These numerical data show that
the proposed estimator is not only accurate but also reliable when performing over the
AWGN channel.

We are now interested in knowing roughly whether or not the proposed estimator
yielded sample size savings with respect to the classical MC simulation technique. Using
simulations, we have been able to note that sample size savings can be obtained from the
proposed estimator. Numerical values of the sample size savings Nmc/NK are given in
the last columns of Table 1 and Table 2.

Performance analysis over a frequency-selective Rayleigh fading channel

Based on the plots in Figure 2, the accuracy of the proposed estimator can be analysed
in both cases of 4-QAM and 16-QAM M -ary symbols transmissions over the frequency-
selective Rayleigh fading channel as specified above in 4.1. The blue dashed curves in
the figure are those of the theoretical uncoded BERs. They are drawn for illustration.
The benchmarks related to both transmission schemes of 4-QAM and 16-QAM are given
by the curves drawn in red solid line. The green curves with diamond mark at each
data point bear the soft coded BER values that describe the performance of the proposed
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Table 1. 4-QAM numerical results (AWGN channel)

Eb/N0 Benchmark Bias I NK Nmc/NK

00 dB 1.1× 10−1 0.03× 10−1 [0.94pe, 1.06pe] 103 1.8
01 dB 6.7× 10−2 0.22× 10−2 [0.90pe, 1.10pe] 103 1.6
02 dB 3.1× 10−2 0.22× 10−2 [0.82pe, 1.18pe] 103 1.9
03 dB 1.2× 10−2 0.11× 10−2 [0.93pe, 1.07pe] 104 2.0
04 dB 3.0× 10−3 0.18× 10−3 [0.81pe, 1.19pe] 104 2.6
05 dB 4.7× 10−4 0.30× 10−4 [0.89pe, 1.11pe] 105 2.5
06 dB 4.9× 10−5 0.38× 10−5 [0.66pe, 1.34pe] 105 2.5
07 dB 4.4× 10−6 0.09× 10−6 [0.54pe, 1.46pe] 106 > 5.0

kernel-based estimator. We can see that the soft coded BER data points are very close to
their corresponding benchmarks. So, we conclude that the accuracy of the kernel-based
estimator is satisfactory. The observed accuracy is the fact of the absolute biases achieved
by the estimator. The associated numerical values are given by the 3rd column of Table 3
and Table 4 regarding the 4-QAM scheme and 16-QAM respectively. We can notice that
they are quite negligible compared to their respective benchmarks.

To evaluate the performance of the proposed estimator in terms of reliability, let us
focus on the 4th columns of Table 3 and Table 4. These columns contain numerical data
of the intervals I that describe the CIs achieved by the proposed estimator. An estimator
is considered to be acceptable if the estimated value of pe lies in an interval which is
smaller than Imax = [0, 3pe] with a probability of 0.95 [5]. In this paper, we considered
Imax = [0.50pe, 1.50pe] as the largest acceptable interval of the CI. From BER values
in the neighbourhood of 2 × 10−1 down to the lower in the neighbourhood of 3 × 10−4,
smaller than Imax values of the CIs have been observed for reasonable sample sizes NK

(see 5th columns of Table 3 and Table 4). The largest of the observed CIs values is
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Figure 1. Performance of the proposed estimator over the AWGN channel
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Table 2. 16-QAM numerical results (AWGN channel)

Eb/N0 Benchmark Bias I NK Nmc/NK

00 dB 1.9× 10−1 0.03× 10−1 [0.97pe, 1.03pe] 103 2.1
02 dB 1.2× 10−1 0.02× 10−1 [0.95pe, 1.05pe] 103 1.8
04 dB 4.8× 10−2 0.05× 10−2 [0.96pe, 1.04pe] 104 1.6
06 dB 8.8× 10−3 0.26× 10−3 [0.91pe, 1.09pe] 104 1.8
08 dB 6.0× 10−4 0.77× 10−4 [0.89pe, 1.11pe] 105 1.6
10 dB 1.1× 10−5 0.13× 10−5 [0.73pe, 1.27pe] 106 > 3.0

[0.52pe, 1.48pe]. The smallest one is [0.89pe, 1.11pe]. In addition, we checked from
the numerical data and noted that all the data points of the estimates (see in Figure 2 the
green curves with diamond mark at each data point) are associated to soft coded BER
mean values that are inside their corresponding intervals I . This checking combined with
the observed intervals I that are associated to the achieved CIs allow us to conclude that
the proposed estimator is reliable.

As far as the efficiency of the proposed estimator is concerned, we provided compar-
isons to the classical MC method in terms of the sample size saving given by Nmc/NK .
In the last columns of Table 3 and Table 4, sample size savings that characterised the ob-
served accuracy (the absolute biases) and reliability (the CIs) of the proposed estimator
are reported. To derive the sample size saving, the sample size Nmc is that required by
the classical MC estimator to achieve almost equal accuracy and reliability. However, the
values of Nmc that are preceded by the greater-than symbol (see the last rows in Table 3
and in Table 4) are smaller than the sample sizes which are truly required to meet almost
equivalent reliability and accuracy as the proposed estimator. The right values are not
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Figure 2. Performance of the proposed estimator over Rayleigh channel
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Table 3. 4-QAM numerical results (Rayleigh channel)

Eb/N0 Benchmark Bias I NK Nmc/NK

00 dB 1.86× 10−1 0.12× 10−1 [0.88pe, 1.12pe] 2.0× 103 2.0
04 dB 8.86× 10−2 0.24× 10−2 [0.77pe, 1.23pe] 5.0× 103 1.2
08 dB 3.08× 10−2 0.04× 10−2 [0.73pe, 1.27pe] 7.0× 103 3.7
12 dB 9.20× 10−3 0.70× 10−3 [0.70pe, 1.30pe] 2.5× 104 3.1
16 dB 2.00× 10−3 0.34× 10−3 [0.55pe, 1.45pe] 6.0× 104 3.3
20 dB 2.64× 10−4 0.68× 10−4 [0.52pe, 1.48pe] 1.6× 105 > 8.1

given because of the computational cost. We determined Nmc by the means of simula-
tions. As we can see throughout the last columns of Table 3 and Table 4, sample size
savings are observed. To illustrate how significant are the observed sample size reduc-
tions, let us consider the row of Eb/N0 = 12 dB in Table 4. The proposed kernel-based
estimator achieved an efficiency described by a sample size of 50 000 against 127 995 for
the classical MC estimator. In the same time, quite equal CIs ([0.81pe, 1.19pe] for the
proposed estimator versus [0.80pe, 1.20pe] for the classical MC estimator) are obtained.
While the true BER is equal to 0.0231, the classical MC method performed the estimation
with an absolute bias of 0.0011 meanwhile the proposed estimator yielded quite equal ab-
solute bias of 0.0012. So for quite equal accuracy and reliability, the proposed estimator
yielded significant sample size reduction. We also observed that for Eb/N0 = 20 dB
(in Table 4), both the proposed estimator and the classical MC method performed with
equal absolute biases: the true BER is 0.0015 and the estimate is 0.0014. However, the
proposed estimator not only performed more efficiently with a sample size saving greater
than 5 but also showed to be more reliable: an achieved CI of [0.67pe, 1.33pe] against
[0.62pe, 1.38pe] for the classical MC estimator.

Let us now exhibit the effect of the sample size reductions according to a computa-
tional efficiency point of view. We noted that the proposed estimator, by enabling sample
size savings, also enabled CPU time savings, i.e., less energy consumption than the clas-
sical MC method. We computed the CPU times on a personal computer with an Intel(R)
Core(TM) i5-6200U CPU 2.30GHz. We noted that the classical MC method and the pro-
posed estimator yielded almost equal CPU time when the samples used for the estimation
are of equal sizes. For instance, at Eb/N0 = 16 dB and for a sample size of 6.0 × 104,
the CPU time equals 13 seconds for the classical MC method against 14 seconds for the

Table 4. 16-QAM numerical results (Rayleigh channel)

Eb/N0 Benchmark Bias I Nk Nmc/NK

00 dB 2.58× 10−1 0.13× 10−1 [0.89pe, 1.11pe] 1.0× 103 3.0
04 dB 1.50× 10−1 0.06× 10−1 [0.86pe, 1.14pe] 2.0× 104 1.0
08 dB 6.28× 10−2 0.26× 10−2 [0.87pe, 1.13pe] 5.0× 104 1.0
12 dB 2.31× 10−2 0.12× 10−2 [0.81pe, 1.19pe] 5.0× 104 2.6
16 dB 7.00× 10−3 1.00× 10−3 [0.73pe, 1.27pe] 5.0× 104 2.0
20 dB 1.50× 10−3 0.08× 10−3 [0.67pe, 1.33pe] 1.0× 105 > 5.1
24 dB 3.42× 10−4 0.36× 10−4 [0.54pe, 1.46pe] 4.1× 105 > 6.3
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Table 5. Asymptotic behaviour of the proposed kernel-based estimator

NK Benchmark Bias I

AWGN channel:
1.0× 103 3.0× 10−3 0.55× 10−3 [0.39pe, 1.61pe]
1.0× 104 3.0× 10−3 0.18× 10−3 [0.81pe, 1.19pe]
1.0× 105 3.0× 10−3 0.00× 10−3 [0.94pe, 1.06pe]

Rayleigh channel:
1.0× 103 8.9× 10−2 0.38× 10−2 [0.76pe, 1.24pe]
1.0× 104 8.9× 10−2 0.24× 10−2 [0.83pe, 1.17pe]
1.0× 105 8.9× 10−2 0.08× 10−2 [0.87pe, 1.13pe]

proposed estimator. However, when the sample size increases it causes the CPU time
to increase too. So, the sample size saving brought by the proposed estimator is benefi-
cial in terms of the power consumption. To illustrate this, the performance achieved at
Eb/N0 = 20 dB (see Table 3) is at the cost of a CPU time of 1 minute for the proposed
estimator while being by far greater than 2 hours for the classical MC method.

Until now, we analysed the performance of the proposed estimator in terms of accu-
racy, reliability and efficiency. Let us end with an asymptotic analysis that can provide a
better understanding of the estimator improvement as the sample size increases. For this
purpose, Table 5 reports numerical data that show how the absolute bias and the CI evolve
as the sample size increases. It appears that, when the sample size increases, the absolute
bias of the estimation decreases and the interval I of the CI becomes smaller.

5. Conclusion

We studied the problem of the universal Monte Carlo (MC) simulation technique
efficiency improvement regarding the Bit Error Probability (BEP) estimation of digital
communication systems. We designed a kernel-based estimator for efficient and reliable
computations of Bit Error Rate (BER) in contemporary and emerging digital commu-
nication systems that rely on coded M -ary Quadrature Amplitude Modulation (QAM)
transmissions schemes. The proposed kernel-based BEP estimator has been designed to
perform with soft real bits that are sampled from soft outputs of the channel decoder. We
completely defined the estimator by selecting a kernel function that follows an Epanech-
nikov distribution with associated smoothing parameters that have been derived based on
the canonical kernel concept. Simulation of the proposed estimator was made and results
were reported regarding coded 4-QAM and 16-QAM single carrier transmissions over the
additive white Gaussian noise channel. Simulation results were also reported for coded
4-QAM and 16-QAM multiple carrier transmissions over a frequency-selective Rayleigh
fading channel. Based on the observed simulation results, the performance of the pro-
posed kernel-based BEP estimator has been analysed in terms of accuracy, reliability,
computational and sample size efficiency. Better performance than the universal classi-
cal MC method has been achieved by the proposed estimator for BEP estimates covering
coded BER values from the neighbourhood of 10−1 down to the vicinity of 10−5.
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Appendix A

Bit-to-symbol soft mapping

In the bit-to-symbol soft mapping, the goal is to map k = log2(M) soft bits onto a sin-
gle complex-valued symbol. The complex-valued symbol is the soft observation that can
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be used, e.g., for coded symbol error rate estimate computation. Let Ẑj be the complex-

valued soft observation to be estimated by the means of bit-to-symbol soft mapping. Ẑj

is expressed as follows:

Ẑj =

M
∑

m=1

sm Pr[sm]. (A.1)

As a bit vector (b1, . . . , bk) is assigned to each sm at the transmitter and since s1, . . . , sM
are independent, we get

Pr[sm] =
k
∏

j=1

Pr[bj,m], (A.2)

where bj,m is the j-th bit in the bit vector (b1, . . . , bk) assigned to sm. Finally, with the

help of Eq. (24), we conclude with the expression of Ẑj as follows:

Ẑj =

M
∑

m=1

sm

k
∏

i=1

ebi,mLi

1 + eLi
. (A.3)

Appendix B

Equation for the bit error rate computation

The BER estimate as given in Eq. (26) is

p̂e = π0

∫ +∞

0

1

n0

n0
∑

j=1

1

h∗
0

K

(

x−Xj

h∗
0

)

dx+ π1

∫ 0

−∞

1

n1

n1
∑

j=1

1

h∗
1

K

(

x−Xj

h∗
1

)

dx,

(B.1)
where n0 (resp. n1) is the cardinality of the subset of the soft observations among
(Xj)1≤j≤N which are likely to be decoded into a binary “0” (resp. “1”) bit value and
h∗
0 (resp. h∗

1) is the selected optimal smoothing parameter which will govern the accu-

racy of the estimation of f̂ (0)
X (x) (resp. f̂ (1)

X (x)). More explicitly, as the kernel function
K(x) = 3

4

(

1− x2
)

I(|x| ≤ 1), we have

p̂e =
π0

n0

∫ +∞

0

n0
∑

j=1

3
4h∗

0

[

1−
(

x−Xj

h∗

0

)2
]

I
(∣

∣

∣

x−Xj

h∗

0

∣

∣

∣
≤ 1

)

dx

+π1

n1

∫ 0

−∞

n1
∑

j=1

3
4h∗

1

[

1−
(

x−Xj

h∗

1

)2
]

I
(∣

∣

∣

x−Xj

h∗

1

∣

∣

∣ ≤ 1
)

dx.

(B.2)

Then, using one of the properties of the integral, we get

p̂e =
π0

n0

n0
∑

j=1

∫ +∞

0
3

4h∗

0

[

1−
(

x−Xj

h∗

0

)2
]

I
(∣

∣

∣

x−Xj

h∗

0

∣

∣

∣ ≤ 1
)

dx

+π1

n1

n1
∑

j=1

∫ 0

−∞
3

4h∗

1

[

1−
(

x−Xj

h∗

1

)2
]

I
(∣

∣

∣

x−Xj

h∗

1

∣

∣

∣
≤ 1

)

dx.

(B.3)
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Now, let u = (x − Xj)/h
∗
0 and v = (x − Xj)/h

∗
1 by the change of variables rule. We

obtain

p̂e =
3π0

4n0

n0
∑

j=1

∫ +∞

−Xj/h∗

0

(

1− u2
)

I (|u| ≤ 1) du

+ 3π1

4n1

n1
∑

j=1

∫ −Xj/h
∗

1

−∞

(

1− v2
)

I (|v| ≤ 1) dv,

(B.4)

and then,

p̂e =
3π0

4n0

n0
∑

j=1

∫

[αj ,+∞[∩ [−1, 1]

(

1− u2
)

du+
3π1

4n1

n1
∑

j=1

∫

]−∞, βj ]∩ [−1, 1]

(

1− v2
)

dv,

(B.5)
where αj = −Xj/h

∗
0 and βj = −Xj/h

∗
1. Depending on the values of αj (resp. βj),

three cases are possible among which one leads to zero; hence we get,

p̂e =
3π0

4n0

{

∑

αj<−1,
1≤j≤n0

[

t− t3

3

]1

−1
+
∑

|αj |≤1,
1≤j≤n0

[

t− t3

3

]1

αj

}

+ 3π1

4n1

{

∑

βj>1,
1≤j≤n1

[

t− t3

3

]1

−1
+

∑

|βj |≤1,
1≤j≤n1

[

t− t3

3

]βj

−1

}

.

(B.6)

Finally, the BER estimate expression is as follows:

p̂e =
π0L0

n0
+ π1L1

n1
+ 3π0

4n0

{

∑

|αj |≤1,
1≤j≤n0

(

2
3 − αj +

α3
j

3

)

}

+ 3π1

4n1

{

∑

|βj |≤1,
1≤j≤n1

(

2
3 + βj − β3

j

3

)

}

,

(B.7)

where L0 (resp. L1) is the cardinality of the subset of α1, . . . , αn0
(resp. β1, . . . , βn1

)
which are less than −1 (resp. greater than 1).

120    ARIMA   -   volume 27   -   2018




