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RÉSUMÉ. Le but de ce travail est de considérer une formulation hybride de la coque de Naghdi avec
une surface moyenne G1 du modèle déjà introduit par H. Le Dret dans [1] et de prouver sa bonne pos-
ture. Ici, le déplacement et la rotation de la normale à la surface moyenne sont donnés respectivement
en une base cartésienne et une base locale covariante ou contravariante. Cette nouvelle version nous
permet, en particulier, d’approximer la solution par des éléments finis conformes avec moins degrés
de liberté. Des tests numériques sont donnés pour illustrer l’eficacité de notre approche.

ABSTRACT. The purpose of this present work is to consider an hybrid formulation of Naghdi’s shell
with G1-midsurface of the model already introduced by H. Le Dret in [1] and prove its well-posedness.
Here, the displacement and the rotation of the normal to the midsurface are respectively given in
Cartesian and local covariant or contravariant basis. This new version enables us, in particular, to
approximate by conforming finite elements the solution with less degrees of freedom. Numerical tests
are given to illustrate the efficiency of our approach.
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1. Introduction
The shells and their assemblies are part of a wide variety of elastic structures with big

interest for contemporary engineering. Mathematical modeling and numerical analysis of
elastic body of three-dimensional problems fail, because of the small thickness parameter
relatively small setting [3]. Therefore, it is natural to think about replacing the three-
dimensional models by bi-dimensional models posed on the middle surface of the shell
for reasons of cost calculation [4]. Following the work of [5, 6, 7, 8], there has been a
renewed interest in this subject for the calculation of shells with C1-midsurface, called
shells with little regularity, admitting discontinuities of curvatures.

Among shell models with little regularity developed, we find the Naghdi model with
G1-midsurface introduced in [1]. It is a model which takes into account membrane and
flexion deformations as well as the effects of transverse shears for homogeneous and
isotropic shells with curvatures discontinuities.

These models are often more described via several charts whose surfaces are made
up of contiguous patches and the joins between them are called C1 conditions or more
generally G1 conditions.

In [15], one can find some examples ofG1 surfaces. For example, to represent a sphere
or a torus from a bilipschitzian mapping ϕ from some domain ω in the hyperplane R2, we
replace ω by a domain with contiguous facets. Each facet will lie in an R2-dimensional
affine subspace of R2 and it is K-regular patche as defined in [1].

The main result of the present article is to consider mechanical models of shells with
such G1 surfaces by using a formulation without any dual unknown which is inspired
from an hybrid formulation introduced to a shell with C1 join in [11]. The conforming
approximation of the new hybrid shell model allows us to reduce the number of degrees of
freedom since the new formulation is given in terms of displacement and covariant com-
ponents of the rotation of normal. Therefore, we introduce a new functional framework
for the Naghdi model for shells with G1-midsurface.

This article is organized as follows. We first recall the geometry of the midsurface and
some definitions about G1 regularity needed to introduce the variational formulation of
Naghdi’s shell with G1-midsurface given in [1]. In section 3, we introduce a constraint-
free formulation of Naghdi’s shell with of G1-mid surface instead of the one introduced
by [1]. We then establish the existence and uniqueness of the solution for a such new
model. Section 4 is devoted to the finite element discretization of the hybrid formulation.
Let us note that thanks to this constraint-free formulation we only need five degrees of
freedom by triangle for computing the solution. Finally, in section 5, we present some
numerical tests using FreeFem++ software. We present results of validation for a hyper-
bolic paraboloid shell and a clamped cylindrical shell. We also show results for two other
tests of a basket-handle W 2,∞-shell and a hat W 2,∞-shell.

2. Notation
Greek indices and exponents take their values in the set {1, 2} and Latin indices and

exponents take their values in the set {1, 2, 3}. Unless otherwise specified, the summation
convention for indices and exponents is assumed.

Let (e1, e2, e3) be the Cartesian basis of the Euclidean space R3. We note u · v the
inner product of R3, |u| =

√
u · v the associate Euclidean norm and u ∧ v the vector

product of u and v.
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We recall below some definitions and notations introduced in [1].

Definition 1. Let ω be a Lipschitz domain in R2 and consider a surface chart ϕ : ω → R3.
We assume that :

1) ϕ is bilipschitz chart, i.e., there exist two constants 0 < C ≤ C ′ such that

∀x, y ∈ ω, C||y − x|| 6 ||ϕ(y)− ϕ(x)|| 6 C ′||y − x||. (1)

2) The unit normal vector is defined almost everywhere by

a3(x) =
∂1ϕ(x) ∧ ∂2ϕ(x)

||∂1ϕ(x) ∧ ∂2ϕ(x)||
∈W 1,∞(ω;R3). (2)

At this point, it will be convenient to introduce a notational shortcut and recall some
definitions of [1].

We will say that a surface patch is K-regular if it satisfies (1) and (2).

Definition 2. Let ω1 =] − 1, 0[2 and ω2 =]0, 1[2. And let S1 and S2 be two C2-patches
such that ϕ1(0, x2) = ϕ2(0, x2). Then, S1 and S2 have a locally G1 join around a point
(0, x), 0 < x < 1, if and only if there exists a neighborhood Vx of x such that :

1) Both surfaces have the same tangent plane Tx at point ϕ1(0, x) for all x ∈ Vx.
2) For all unit vectors u = (u1, u2)T in R2, the angle between the vectors

Dϕ1(0, x)u and −Dϕ2(0, x)u is nonzero.

Let ω be a domain of R2 such that ω =
k⋃
i=1

ωi. We consider a shell whose G1-

midsurface is given by S =
k⋃
i=1

Si =
k⋃
i=1

ϕi(ωi) where Si a subdivision of S into patches

and ϕi ∈W 2,∞(ωi;R3), K-regular is one-to-one mapping such that the vectors

aα,i = ∂αϕi, i = 1, ..., k,

are linearly independent at each point x ∈ ωi. We let

a3,i(x) =
a1,i(x) ∧ a2,i(x)

||a1,i(x) ∧ a2,i(x)||
, i = 1, ..., k,

be the unit normal vector on the midsurface at point ϕi(x). The vectors ai,j define the
covariant basis at point ϕj(x). The regularity of the G1-midsurface chart and hypothesis
of linear independence on ωj imply that ai,j belong to W 1,∞(ωj). The contravariant
basis aik is defined by the relation ai,k · ajk = δji,k, where δki,k is the Kronecker symbol.
In particular a3,i(x) = a3i (x). Note that all these vectors are of class W 1,∞. We let
ai(x) = |a1,i(x)∧ a2,i(x)|2 so that ai(x) is the area element of the G1-midsurface in the
chart ϕi.

The first and second fundamental forms of the surface are given in covariant compo-
nents by

aαβ,i(x) = aα,i(x) · aβ,i(x),

and

bαβ,i(x) = a3,i(x) · ∂βaα,i(x) = −aα,i(x) · ∂βa3,i(x), since aα,i(x) · a3,i(x) = 0.

Since W 1,∞ is a Banach algebra, it follows that aαβ,i ∈W 1,∞(ωi) and bαβ,i ∈ L∞(ωi).
Finally, the Christoffel symbols are given by Γραβ,i = Γρβα,i = aρi · ∂βaα,i, and we

have Γραβ,i ∈ L∞(ωi).
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Definition 3. We also assume that ωi and ωj are contiguous, i.e., ωi ∩ ωj = ∅ and
∂ωi ∩ ∂ωj is a segment, we let δij denote the common segment on their boundaries.

Similarly, given two functions defined on ωi and ωj , which are equal on δij if their
respective traces on the boundaries agree modulo the translation and rotation that make
ωi and ωj contiguous.

A regular midsurface displacement will now consist of k mappings ui = u|ωi
∈

H1(ωi;R3) that are equal on δij and the same for their regular rotation of the normal vec-
tor ri = r|ωi

∈ H1(ωi;R3), i.e., H1-regular mapping from ωi into R3 given in covariant
and Cartesian components by :

uj(x) = ui,j(x)aij(x) = uci,j(x)ei,j where ui,j = uj · ai,j and uci,j = uj · ei,j ,

and
rj = rα,j(x)aαj (x) = rci,j(x)ei,j with the same meaning.

Note that the tangency requirement is easily expressed in covariant coordinates, as it sim-
ply reads r3,j = 0, whereas it becomes

rci,j(x)ac3,j(x) = 0 in ωj

in Cartesian coordinates.
Let aαβρσi ∈ L∞(ωi) be the elasticity tensor, which we assume to satisfy the usual

symmetries and to be uniformly strictly positive, i.e., for all symmetric tensor ταβ,i and
almost all x ∈ ωi, we have

aαβρσi (x)ταβ,iτρσ,i > c
∑
αβ

|ταβ,i|2 (3)

with c > 0. To be more specific, we will concentrate on the case of homogeneous, isotro-
pic material with Lamé modulus µ > 0 and λ > 0, in which case

aαβρσi = 2µ(aαβi aρσi + aασi aβσi ) +
4λµ

λ+ 2µ
aαβi aρσi ,

where aαβi = aαi · a
β
i are the contravariant components of the first fundamental form.

Let e ∈ L∞ be the thikness of the shell, which we assume to be such that e(x) > c > 0
almost everywhere in ω.

In this context, the covariant components of the change of metric tensor read

γi,αβ(ui) =
1

2
(∂αui · aβ,i + ∂βui · aα,i), (4)

the contravariant components of the change of transverse shear tensor read

δi,α3(ui, ri) =
1

2
(∂αui · a3,i + ri · aα,i), (5)

and the covariant components of the change of curvature tensor read

χi,αβ(ui, ri) =
1

2
(∂αui · ∂βa3,i + ∂βui · ∂αa3,i + ∂αri · aβ,i + ∂βri · aα,i), (6)
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see[1]. Note that all these quantities make sense for shells with little regularity, and are
easily expressed with Cartesian coordinates of the unknowns and geometrical data. For
instance, we have

∂αuj · aβ,j = ∂αu
c
i,ja

c
β,i,j and so on.

We assume that the boundary ∂ω ∩ ∂ωi of the chart domain is divided into two parts : γci
of strictly positive 1-dimensional measure on which the shell is clamped on a part of its
edge and a complementary part γfi on which the shell is subjected to applied tractions and
moments.

Let us consider the function space, introduced in [1], which is appropriate in the
context of shells with little regularity, i.e, with G1 midsurface :

W = {(ui, ri) ∈ H1(ωi;R3)2, ri · a3,i = 0 in ωi, ui = uj and ri = rj on δij}. (7)

This space is endowed with the natural Hilbert norm

‖u‖W =
( k∑
i=1

(
‖ui‖2H1(ωi;R3) + ‖ri‖2H1(ωi;R3)

)) 1
2

. (8)

The boundary conditions considered are hard clamping conditions on part of the boundary

vi = 0 and si = 0 on γci .

Let us now recall the formulation of Naghdi’s problem with G1-midsurface. It consists in
finding (ui, ri) ∈W such that

∀(vi, si) ∈W, B
(
(ui, ri), (vi, si)

)
= L

(
(vi, si)

)
, (9)

where

B
(
(ui, ri), (vi, si)

)
=

k∑
i=1

∫
ωi

{
e aαβρσi [γi,αβ(ui)γi,ρσ(vi) +

e2

12
χi,αβ(ui, ri)χi,ρσ(vi, si)]

+4 µ e aαβi δi,α3(ui, ri)δi,β3(vi, si)
}√

ai dx

(10)
and

L
(
(vi, si)

)
=

k∑
i=1

∫
ωi

Pi · vi
√
ai dx+

∫
γf
i

Ni · vi +Misidγ. (11)

Theorem 1. Let Pi ∈ L2(ωi;R3) be a given resultant force density, Ni ∈ L2(γfi ;R3)

an applied traction density, Mi ∈ L2(γfi ;R3) an applied moment density such that Mi ·
a3,i = 0 almost everywhere on γfi and e > 0 the thickness of the shell. Then there exists
a unique solution to the problem (9).

Proof.– See [1].
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3. An hybrid version of Naghdi’s model with G1-midsurface
The purpose of the present section is to consider our constraint-free formulation for

Naghdi model for shells with G1-midsurface. The unknowns still are the displacement u
and rotation r, but instead of considering ri as a vector field as in [1], we define it by its
covariant or contravariant components as usual in shell theory. For more details one can
see Ciarlet ([2]).

We firstly define the tensors (4), (5) and (6) in a this new framework. It is the ob-
ject of the following lemma. Let us recall that the covariant derivatives of the tangential
components of rα,i are defined by

rα,i|β = ∂βrα,i − Γραβ,irρ,i.

Lemma 4. Let ui ∈ H1(ωi;R3), rα,i ∈ H1(ωi) and ϕi ∈W 2,∞(ωi). Then the covariant
components of the change of metric tensor read

γαβ,i(ui) =
1

2
(∂αui · aβ,i + ∂βui · aα,i), (12)

the covariant components of the change of transverse shear tensor read

δα3,i(ui, rα,i) =
1

2
(∂αui · a3,i + rα,i) (13)

and the covariant components of the change of curvature tensor read

χαβ,i(ui, rα,i) =
1

2
(∂αui · ∂βa3,i + ∂βui · ∂αa3,i) +

1

2
(rα|β,i + rβ|α,i). (14)

These tensors define functions of L2(ωi).

This leads to the following function space :

M = {(ui, rα,i) ∈ H1(ωi;R3)×H1(ωi)
2, ui = uj and rα,i = rα,j on δij}. (15)

Taking into account the boundary conditions, we thus introduce the Hilbert space

V = {(vi, sα,i) ∈M, vi = sα,i = 0 on γci }, (16)

and we equipe it with the following norm

‖(u, rα)‖V =
( k∑
i=1

‖ui‖2H1(ωi;R3) +
2∑

α=1

k∑
i=1

‖rα,i‖2H1(ωi)

) 1
2 . (17)

Theorem 2. Let Pi ∈ L2(ωi;R3) be a given resultant force density and e > 0 the
thickness of the shell. Then there exists a unique solution to the following problem : Find
(ui, rα,i) ∈ V such that

∀(vi, sα,i) ∈ V, a
(
(ui, rα,i), (vi, sα,i)

)
= l
(
(vi, sα,i)

)
, (18)

where

a
(
(ui, rα,i), (vi, sα,i)

)
=

k∑
i=1

∫
ωi

{e aαβρσi [γαβ,i(ui)γρσ,i(vi) +
e2

12
χαβ,i(ui, rα,i)χρσ,i(vi, sα,i)]

+4 µ e aαβi δα3,i(ui, rα,i)δβ3,i(vi, sα,i)}
√
ai dx

(19)
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and

l
(
(vi, sα,i)

)
=

k∑
i=1

∫
ωi

Pi · vi
√
ai dx. (20)

The proof is based on the following version of the infinitesimal rigid displacement
lemma.

Lemma 5. Let ui ∈ H1(ωi;R3), rα,i ∈ (H1(ωi))
2 and ϕi ∈W 2,∞(ωi;R3).

(i) If γαβ,i(ui) = 0, then there exists a unique ψ ∈ L2(ω;R3) such that :

∂αui = ψ ∧ ∂αϕi.

(ii) If δα3,i(ui, rα,i) = 0, then ∂αui · a3,i = −rα,i belong to H1(ωi). Furthermore
rα,i = −εαβ,iψ · aβi , where ε11,i = ε22,i = 0 et ε12,i = −ε21,i =

√
ai.

(iii) If, in addition to (i) and (ii), χαβ,i(ui, rα,i) = 0, then ψ is a constant vector in R3

and there exists c ∈ R3 such that

ui(x) = c+ ψ ∧ ϕi(x).

Proof.– We notice that if δα3,i(ui, rα,i) = 0, then ∂αβui · a3,i ∈ L2(ωi). Indeed
∂αβui · a3,i = ∂β(∂αui) · a3,i − ∂αui · ∂βa3,i ∈ L2(ωi) as a3,i ∈ L∞(ωi;R3) and
∂αui · a3,i = −rα,i ∈ H1(ωi).
Consequently, χαβ,i(ui, rα,i) = −(∂αβui−Γραβ,i∂ρui) · a3,i = 0. The results follow the
theorem of [11]. For conclusion, just use the infinitesimal rigid displacement lemma for
shells with minimal regularity, see [13] and [14].

Lemma 6. There exists a constant C > 0 such that

a
(
(vi, sα,i), (vi, sα,i)

)
> C

k∑
i=1

( ∑
α,β

||γαβ,i(vi)||2L2(ωi)
+
∑
α,β

||χαβ,i(vi, sα,i)||2L2(ωi)

+
∑
α
||δα3,i(vi, sα,i))||2L2(ωi)

) 1
2

for all (vi, sα,i) ∈ H1(ωi;R3)× (H1(ωi))
2.

Proof.– Thanks to inequality (3) and the fact that aαβi (x)ηα,iηβ,i > C ′
∑
α

(ηα,i)
2 for

all x ∈ ωi.

Lemma 7. We assume that the patches are in W 2,∞. The bilinear form in (18) is V-
elliptic.

Proof.– Because of lemma (6) and the hypotheses made on the chart ϕi, the elasticity
tensor and the thickness of the shell, it is enough to prove that

|||(v, sα)||| =
k∑
i=1

(∑
αβ

‖γαβ,i(vi)‖2L2(ωi)
+
∑
αβ

‖χαβ,i(vi, sα,i)‖2L2(ωi)
+
∑
α

‖δα3,i(vi, sα,i)‖2L2(ωi)

) 1
2

(21)
is a norm on V bounded from below by a multiple of the natural norm (17) of V . Let
us first prove that |||.||| is a norm. Let (v, sα) ∈ V be such that |||(v, sα)||| = 0. Then,
it follows from the infinitesimal rigid displacement lemma 5 that there exists ψ, c ∈ R3

such that vi(x) = ψ ∧ ϕi(x) + c. Then, we should consider two cases :
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1) The displacement vi vanishes on γci . If ϕi(γci ) is not include in a straight line, it
follows that vi = 0 a.e. in ωi, that is to say ψ = c = 0. Consequently, we have sα,i = 0
a.e. in ωi as well.

2) Let us now suppose that ϕi(γci ) is included in a straight line D and that ψ 6= 0.
In this case, ψ is parallel to D hence belongs to the planes spanned by (∂αϕi)|γc

i
for all

x ∈ γci . Let us pick one such x. Since sα,i = 0 on γci and it follows that ∂αvi = ψ∧∂αϕi,
consequently

∂αvi · a3,i = ∂αϕi ∧ a3,i · ψ = 0, on γci .

and ψ is orthogonal to the plane spanned by (∂αϕi)|γc
i
, which contradicts the hypothesis.

Therefore ψ = 0 and, as before, vi = sα,i = 0 a.e. in ωi.
For conclusion we take the remark of [1] : if ωi and ωj are two contiguous patches, the
equality of traces on δij implies that the patched displacement

ũ : ω −→ R3

x 7−→
{
ui(x) a.e. if x ∈ ωi
uj(x) a.e. if x ∈ ωj

(22)

and patched rotation

r̃α : ω −→ R

x 7−→
{
rα,i(x) a.e. if x ∈ ωi
rα,j(x) a.e. if x ∈ ωj

(23)

are both in H1(ω;R3) × (H1(ω))2 where ω is the interior of ωi ∪ ωj . By applying the
demonstration made above on ũ and r̃α and taking into account the boundary conditions
on γc (corresponds to portions γci of ∂ωi). We obtain

ui = 0, ∀i ∈ {1, 2, ...k}, then ũ = 0 a.e. in ω
rα,i = 0, ∀i ∈ {1, 2, ...k}, then r̃α = 0 a.e. in ω

For the second part of the proof, we argue by contradiction. Let us assume that there
exists a sequence (vn, sα,n) ∈ V such that

‖(vn, sα,n)‖V = 1 but |||(vn, sα,n)||| → 0 when n→ +∞. (24)

By extracting a subsequence, we may assume that there exists (v, sα) ∈ V such that

(vi,n, (sα,i)n) ⇀ (vi, sα,i) weakly in H1(ωi;R3)× (H1(ωi))
2

and
γαβ,i(vi,n) ⇀ γαβ,i(vi),

χαβ,i(vi,n, (sα,i)n) ⇀ χαβ,i(vi, sα,i) and δα3,i(vi,n, (sα,i)n) ⇀ δα3,i(vi, sα,i),

weakly in L2(ωi). By hypothesis (24), the three tensors tend strongly to zero in L2(ωi),
and using lemma 5 and the discussion above, we infer that vi = sα,i = 0. Then, Rellich’s
lemma implies that vi,n and (sα,i)n both tend to zero strongly in L2.

Let us introduce the two-dimensional vector (wi,n)α = vi,n ·aα,i. We have, wi,n → 0
in L2(ωi;R2) strongly. Let us define 2eαβ(w) = ∂αwβ + ∂βwα. It is easy to see that

eαβ(wi,n) = γαβ,i(vi,n) + vi,n · ∂αaβ,i → 0 strongly in L2(ωi). (25)
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Indeed, ∂αaβ,i ∈ L∞(ωi). Then, by the two-dimensional Korn inequality, we deduce that

wi,n → 0 strongly in H1(ωi;R2). (26)

Next we note that

∂ρvi,n · aα,i = ∂ρ
(
(wi,n)α

)
− vi,n · ∂ρaα,i → 0 strongly in L2(ωi). (27)

Indeed, ∂ρaα,i ∈ L∞(ωi). Moreover, as (sα,i)n → 0 in L2(ωi) strongly, and ∂ρvi,n ·
a3,i = δρ3,i(vi,n, si,n)− (sα,i)n, we already know that

∂ρvi,n · a3,i → 0 strongly in L2(ωi). (28)

We deduce that
∂ρvi,n → 0 in L2(ωi;R3), (29)

by (27) and (28). It follows that vi,n → 0 strongly in H1(ωi;R3).
We use a similar argument to prove that (sα,i)n → 0 strongly in H1(ωi).
Combining now the convergence of vi,n and (sα,i)n, we see that ‖(vi,n, (sα,i)n)‖V →

0, which contradicts the hypothesis and proves the lemma.

Lemma 8. For all i ∈ {1, 2, . . . , k}, ui ∈ H1(ωi;R3) then u ∈ H1(ω;R3).
For all i ∈ {1, 2, . . . , k}, rαi ∈ H1(ωi) then rα ∈ H1(ω).

Proof.– If ui ∈ H1(ωi;R3) such that ui = 0 on γci and ui = uj on δij then u ∈
H1(ω;R3) and u = 0 on γc. If rαi ∈ (H1(ωi))

2 such that rαi = 0 on γci and rαi = rαj
on δij then rα ∈ (H1(ωi))

2 and rα = 0 on γc.
Proof.– (of theorem 2)

The bilinear and linear forms of problem (18) are clearly continuous on the space V . We
have just shown that the bilinear form is V -elliptic. We use the Lax-Milgram theorem to
conclude.

4. Finite Element Approximation

4.1. A finite element formulation
Let us first introduce some notation. Let(Thi

) be a shape-regular family of triangula-
tions of ωi. For a triangle Ki in Thi

, let hKi
be its diameter and set hi = maxKi

hKi
. We

denote by Shi
the set of vertices in Thi

. For any subdomain ∆i of ωi and for k ≥ 0 we
define by Pki(∆i) the space of polynomials on ∆i with degree ≤ k. In what follows, C
denotes a constant independent of hi.

The discrete space of admissible displacements and rotations is given by

Vh = {(vh,i, sα,h,i) ∈Mh, vh,i = sα,h,i = 0 on γci } (30)

where

Mh = {(vh,i, sα,h,i) ∈ C0(ωi;R3)×C0(ωi)
2,∀Ki ∈ Thi

(vh,i, sα,h,i)|Ki
∈ P1(Ki;R3)×P1(Ki)

2,

vh,i = vh,j and sα,h,i = sα,h,j on δij}.
Thus the discrete problem reads : Find (uh,i, (rα,h,i)) ∈ Vh such that

∀(vh,i, sα,h,i) ∈ Vh, a((uh,i, rα,h,i), (vh,i, sα,h,i)) = l(vh,i, sα,h,i) (31)

Naturally, this problem has a unique solution.
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4.2. Convergence
By virtue of the classical properties of Galerkin approximation, we have the following

convergence results

Theorem 3. There exists a sequence h→ 0 such that

‖(ui, rα,i)− (uh,i, rα,h,i)‖V → 0 (32)

Proof.– We have uh,i → ui when h→ 0 by virtue of properties of Galerkin approxi-
mation of a classical variational problem.

If the solution is assumed to have some regularity, the second step of the approxima-
tion may of course be controlled via an error estimate.

Proposition 9. Assume that the solution (ui, rα,i) of problem (18) belongs toH2(ωi,R3)×
(H2(ωi))

2. Then there exists a constant C independent of h, such that

‖(ui, rα,i)− (uh,i, rα,h,i)‖V ≤ C h ‖(ui, rα,i)‖H2(ωi,R3)×(H2(ωi))2 (33)

Proof.– See [10], for example.

Remarks 10. i) The a priori error estimate given in Proposition 9 makes an essential use
of a H2-regularity of the solution.

ii) For our Hybrid Naghdi’s formulation of the present work and also for Cartesian
equations where the surface is globally W 2,∞, the solution regularity is still an open
problem.

iii) The solution regularity depends on the regularity of chart defining the shell mid-
surface. In the case where the chart is of class C3, O. Iosifescu in [17] has established the
H2-regularity of the solution in a local covariant or contravariant framework.

iv) In a recent work [16], I. Merabet and S. Nicaise have introduced a new mixed for-
mulation for Nagdhi’s shell which is appropriate for folded surfaces and have approxima-
ted the solution of the problem using the DK method. The standard a priori error analysis
of such methods uses additional regularity on the solution but in [16], I. Merabet and S.
Nicaise have carried out an error analysis which only requires the regularity of the weak
solution.

5. Numerical experiments
In this section, we implement the discretization of the hybrid approach. We compare

it on a literature benchmark for validation. We also apply it to shells with curvature dis-
continuities where the midsurface is G1.

5.1. Implementation details
The model formulation only require the knowledge of aα,i, a3,i, and ∂αa3,i. All other

quantities, either geometrical like the elasticity tensor or kinematical like the strain ten-
sors, can be expressed by means of dot products involving these quantities. It is conve-
nient to define these vectors as FreeFem++ functions. The dot products are expressed
as FreeFem++ macros, which are then combined into other macros that eventually ex-
pand to all the other quantities of interest. The net result is that our code automatically
constructs the bilinear forms, with minimal user input. This works well if an analytic
description of the G1-midsurface is available.
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We note that with respect to user input and code complexity, our approach compares
favorably with classical formulations which require the computation of the covariant and
mixed components of the second fundamental form and of the Christoffel symbols of the
chart ; see, for example, [9].

Three-dimensional visualization of the undeformed and deformed shells uses Medit,
a free mesh visualization software available at http://www.ann.jussieu.fr/frey/
logiciels/medit.html.

All the tests were run on 4GB HP 15 Notebook laptop.

5.2. Numerical validation
We present in this section two tests. The first is a literature benchmark for shell ele-

ments. The second is a cylindrical shell.

5.2.1. The hyperbolic paraboloid shell
The midsurface of the hyperbolic paraboloid shell is represented by a chart of class

C∞.
The reference domain of the midsurface is given by

ω = {(x, y) ∈ R2, |x|+ |y| <
√

2b},

and the chart is defined by

ϕ(x, y) = (x, y,
c

2b2
(x2 − y2))T ,

with b = 50 cm and c = 10 cm. The thickness of the shell is e = 0.8 cm.
The shell is clamped on ∂ω and subjected to a uniform pressure q = 0.01 kp/cm2. The

mechanical data are
E = 2.85× 104 kp/cm2, ν = 0.4

The reference value for this test is the normal displacement at the center O(0, 0) of the
shell. Its value computed by various methods is of −0.024 cm ; see [9].

Due to the symmetries of the problem, we use the computational domain

ω
′

= {(x, y) ∈ R2, 0 < x, 0 < y, x+ y <
√

2b},

and enforce the symmetry conditions

u2 = 0, r2 = 0, on y = 0, and u1 = 0, r1 = 0 on x = 0.

These conditions are obtained by expressing the continuity of the three-dimensional Kirchhoff-
Love displacement along these edges. In Table 1. the value of normal displacement at O
is reported for hybrid and mixed formulation. Those values are given in respect of the
number of degrees of freedom.

Tableau 1 – Hybrid formulation vs mixed formulation
Formulation Dof u3(0, 0)

Hybrid 10615 - 0.0242544
Mixed 14861 - 0.0242545

The numerical results obtained for the reference value are very satisfactory as they
are close to −0.024 cm, the value given in the literature. We note that the hybrid method
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achieves excellent performance in terms of the reference value and with less degrees of
freedom, which is in good agreement. For qualitative results we plot the isovalues of u3
below in Figure (1), solution of the hybrid equations.

Figure 1 – Qualitative result : Isovalues of u3.

5.2.2. A clamped cylindrical shell
In this example, we consider a cylindrical shell which is submitted to a uniform pres-

sure load, and clamped only on the top. The opposite side being free. The reference do-
main of the midsurface is given by

ω = {(x, y) ∈ R2; 0 < x < 2πR, 0 < y < H},

and the chart is defined by

ϕ(x, y) = (R cos(x), R sin(x), y)t,

where H = 20cm and R = 10cm. The thickness of the shell is e = 0.5 cm. The shell is
clamped on γe = {(x,H) ∈ R2; 0 < x < 2πR} and subjected to an internal pressure
p = 1kp/cm2. The mechanical data are E = 3× 105kp/cm2, and ν = 0.22. The analytic
normal displacement solution of the problem is given by :

u3 = K(1 + exp(µy)(A cos(γy) +B sin(γy)) + exp(−µy)(C cos(γy) +D sin(γy)))

where

K =
3p(1− ν2)

2e3E

e2R4

e2 + 3R2(1− ν2)
, µ =

√
c2 − b√

2
, γ =

√
c2 + b√

2
,

with b =
ν

R2
, c4 =

1

R4
+

3(1− ν2)

ε2R2
,

and

(A,B,C,D) = (−0.0001466,−0.0003600,−0.0058966, 0.0061476).
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Figure 2 – Exact and approximate solutions of u3
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Figure 3 – Convergence rate for the displacement in V norm (up). Convergence rate for
the displacement in L2 norm (down).

We plot in Fig 2. the exact and approximate solutions of the normal covariant displa-
cement of the midsurface. We thus establish the error between the approximate and exacte
solutions in V norm as well as in L2 norm. In Fig 3. we show the convergence rates which
confirm the theoretical estimates.

5.3. Other tests

5.3.1. A basket-handle tunnel
Our next test is a genuine W 2,∞ test with curvature discontinuities. The shell is made

of 3 cylindrical parts with different radiuses and C1-joins. It is a tunnel-like shell based
on a slightly extended 3-circles basket-handle arc.

The mechanical data are given by E = 3 × 106 psi, ν = 0.0 and the thickness of
the shell e equals 3 in. The shell is submitted to a uniform downward pressure of −0.625
lb/in2.
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The reference domain of the midsurface is given by, ω =
3⋃
i=1

ωi =]− 4π

9
R,

4π

9
R[×]−

L,L[ where

ω1 =]− 4π

9
R,−2π

9
R[×]− L,L[,

ω2 =]− 2π

9
R,

2π

9
R[×]− L,L[,

and
ω3 =]

2π

9
R,

4π

9
R[×]− L,L[,

and the chart is defined by

ϕ : ω −→ R3

(x, y) 7−→


(
R
3 + 2R

3 sin( 3x
2R + π

6 ), y, 2R3 cos( 3x
2R + π

6 )
)

if (x, y) ∈ ω1(
4R
3 sin( 3x

4R ), y,− R√
3

+ 4R
3 cos( 3x

4R )
)

if (x, y) ∈ ω2(
R
3 + 2R

3 sin( 3x
2R −

π
6 ), y, 2R3 cos( 3x

2R −
π
6 )
)

if (x, y) ∈ ω3

with R = 300 in and L = 300 in.

Figure 4 – The mesh on the basket-handle midsurface.

Concerning boundary conditions, we consider the case of hard clamping on both rec-
tilinear sides of the shell. The large circle radius is 400 in. and the small circle radius 200
in. (We compute the whole shell without using the symmetries for better visualization.)

Figure 5 – Qualitative result : Isovalues of u3.
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Now, for the same shell we consider G1-parametrization instead of the C1 one. We
thus propose below a G1 chart on the same reference domain :

ϕ : ω −→ R3

(x, y) 7−→


ϕ1(x, y) =

(
R
3 + 4R

3 sin( 3x
2R + π

6 ), y, 4R3 cos( 3x
2R + π

6 )
)

if (x, y) ∈ ω1

ϕ2(x, y) =
(
4R
3 sin( 3x

4R ), y,− R√
3

+ 4R
3 sin( 3x

4R )
)

if (x, y) ∈ ω2

ϕ3(x, y) =
(
R
3 + 4R

3 sin( 3x
2R −

π
6 ), y, 4R3 cos( 3x

2R −
π
6 )
)

if (x, y) ∈ ω3

Let us compute the tangent vectors at join points (− 2π
9 , 0) and ( 2π

9 , 0).
On x = (− 2π

9 , 0), we get

a11 =
∂ϕ1

∂x
= (
√

3, 0, 1)t and a12 =
∂ϕ2

∂x
(

√
3

2
, 0,

1

2
)t

We thus obtain a11 = 2a12.
On x = ( 2π

9 , 0), we obtain

a13 =
∂ϕ3

∂x
= (
√

3, 0,−1)t and a12 =
∂ϕ2

∂x
= (

√
3

2
, 0,−1

2
)t

and then we find a13 = 2a12.
The reference value for this test is the normal displacement at the centerO(0, 0) of the

shell. In Table 2. we present the values of normal displacement at O and the number of
degrees of freedom which are obtained from mixed method with C1-parametrization, hy-
brid method with C1-parametrization and hybrid method with G1-parametrization, using
the same geometry with P2 elements.

Tableau 2 – Comparison of resolution methods
Formulation Dof u3(0, 0)

Mixed with C1-parametrization 693 - 0.02178
Hybrid with C1-parametrization 495 - 0.02161
Hybrid with G1-parametrization 525 - 0.02147

We note that the hybrid method achieves excellent performance in terms of the re-
ference value and with less degrees of freedom, which is in good agreement. Figure (4)
presents the initial mesh and for qualitative results we plot the isovalues of u3 in figure
(5), solution of the hybrid equations with G1-parametrization.

5.3.2. Plate-cylinder
We consider a real test of a W 2,∞ shell with curvature discontinuities. Let a shell

formed by a flat part, called plate, and a cylindrical portion, which are connected in a
C1-way. See figure (6).
To solve the problem of this shell, we use the hybrid method and we compared it with the
mixed method . The reference domain of the midsurface is given by ω =] − L,L[×] −
Ld

2
,
Ld

2
[, and the chart is defined by :

ϕ(x, y) =

{ (
x, y, 0

)t
if x < 0,(

R sin(x/R), y, R(1− cos(x/R)))t if x ≥ 0,
(34)
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Figure 6 – Shell plate-cylinder.
with L = 2R

π

9
in., R = 300 in. and Ld = 600 in.

The thickness of the shell e equals 7.5 in. and the mechanical data are given by E =
2.1 × 104 psi, ν = 0.0. The shell is submitted to a uniform downward pressure of
P = 0.625 Lb/in2.
Concerning boundary conditions, we consider the case of hard clamping on the lines AB
and DC

u1 = u2 = u3 = 0, and r1 = r2 = 0,

and on the remaining edges, it is assumed that the shell is free. Thanks to symmetries, we
consider only the half of the midsurface, y > 0. The corresponding symmetry conditions
on AD are

u2 = r2 = 0.

Figure 7 – Qualitative result : Isovalues of u3.

Now, for the same shell we consider G1-parametrization instead of the C1 one. We
thus propose below a G1 chart on the same reference domain :

ϕ(x, y) =

{ (
x, y, 0

)t
if x < 0,(

2R sin(x/R), y, R(1− cos(x/R)))t if x ≥ 0,
(35)
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Let us compute the tangent vectors at join point (0, y).
We obtain

a11 =
∂ϕ1

∂x
= (1, 0, 0)t and a12 =

∂ϕ2

∂x
= (2, 0, 0)t.

We thus obtain a11 = 2a22.
The reference value for this test is the normal displacement at the center O(0, 0) of

the shell. Table 3. present the values of normal displacement at O and the number of de-
grees of freedom which are obtained from mixed method withC1-parametrization, hybrid
method with C1-parametrization and hybrid method with G1-parametrization, using the
same geometry with P1 elements.

Tableau 3 – Comparison of resolution methods
Formulation Dof u3(0, 0)

Mixed with C1-parametrization 539 - 18.1381
Hybrid with C1-parametrization 385 - 18.1384
Hybrid with G1-parametrization 420 - 18.1323

We note that the hybrid method achieves excellent performance in terms of the refe-
rence value and with less degrees of freedom, which is in good agreement. For qualitative
results we plot the isovalues of u3 in figure (7), solution of the hybrid equations with
G1-parametrization.

6. Conclusion
In this paper we have presented a new version of Naghdi’s shell with G1-midsurface.

We thus introduce an hybrid Naghdi problem in which the unknowns are the displace-
ment u and the rotation r, respectively elements of the spaces H1(ω;R3) and (H1(ω))2

without any functional constraint. For this hybrid model we have derived a finite element
scheme for which we have established existence and uniqueness of the solution as well.
Its discretization requires less degrees of freedom than the mixed formulation of [5].
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