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RÉSUMÉ. Le modèle AM2b est classiquement représenté par un système d’équations différentielles.
Toutefois ce modèle n’est valide qu’en grande population et notre objectif est d’établir plusieurs mo-
dèles stochastiques à différentes échelles. À l’échelle microscopique, on propose un modèle sto-
chastique de saut pur que l’on peut simuler de fa con exacte. Mais dans la plupart des situations ce
genre de simulation n’est pas réaliste, et nous proposons des méthodes de simulation approchées de
type poissonnien ou de type diffusif. La méthode de simulation de type diffusif peut être vue comme
une discrétisation d’une équation différentielle stochastique. Nous présentons enfin de fa con infor-
melle un résultat de type loi des grands nombres/théorème central limite fonctionnelle qui démontre
la convergence de ses modèles stochastiques vers le modèles déterministe initial.

ABSTRACT. The model AM2b is conventionally represented by a system of differential equations.
However, this model is valid only in a large population context and our objective is to establish sev-
eral stochastic models at different scales. At a microscopic scale, we propose a pure jump stochastic
model that can be simulated exactly. But in most situations this exact simulation is not feasible, and we
propose approximate simulation methods of Poisson type and of diffusive type. The diffusive type sim-
ulation method can be seen as a discretization of a stochastic differential equation. Finally, we formally
present a result of law of large numbers and of functional central limit theorem which demonstrates
the convergence of these stochastic models towards the initial deterministic models.

MOTS-CLÉS : modèle AM2b, processus de saut pur, équation différentielle ordinaire, approximation
diffusion, équation différentielle stochastique.

KEYWORDS : AM2b Model, pure jump process, ordinary differential equation, diffusion approxima-
tion, stochastic differential equation.

1. Introduction
Stochastic models recently gain more credibility and numerical efficiency in many domains like

chemistry [10], biotechnology [12] or system biology [16] where deterministic models have been

extensively used. In the present paper we explain how a stochastic modeling approach deepens the

insights allowed by the deterministic classical models.

We consider a model of a biotechnological process used for wastewater treatment. The principle of

classical wastewater treatment is to couple the degradation of organic matter via the action of mi-

croorganisms and a decantation processes. An alternative technology to decantation, implemented

in membrane bioreactors (MBR), is based on the sieve principle, that is to say the passage of the ef-

fluent through calibrated pores of a physical membrane. The main drawback of this technology lies

in the membrane performance degradation due to the fouling phenomenon. AM2b is a mathemati-
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cal model of anaerobic membrane bioreactors developed in [1, 2], it is a variant of AM2 model [3],

2-steps Acidogenesis-Methanogenesis model, that includes a soluble microbial products (SMP) dy-

namics. The production and the degradation of SMP play an important role in the membrane fouling

phenomenon.

First, we present the original ordinary differential equation (ODE) model of the AM2b. Then we

introduce a pure jump Markov model of the same device and the associated exact Monte Carlo

simulation method. Next we develop more efficient approximated simulation methods and we pro-

pose a stochastic differential equation (SDE) model of the AM2b. Finally a rescaling technique

bridges these stochastic models with the original ODE model.

2. The ODE model
Define :

S1 : the organic matter,

B1 : the acidogenic biomass,

S2 : the volatile fatty acids (VFA),

B2 : the methanogenic biomass,

S : the soluble microbial products (SMP).

The state of the AM2b model is x = (s1, b1, s2, b2, s) where s1, b1, s2, b2, s are the concentrations

in S1,B1, S2,B2, S. The AM2b model describes the dynamics of biological and anaerobic waste-

water treatment, where substrate s1 is degraded by a bacterial ecosystem b1 to produce substrate

s2 and SMP s. Substrate s2 is transformed by a consortium of bacteria b2 into SMP s. SMP s is

also produced by the mortality of biomasses b1 and b2. SMP s is degraded by b1 to produce s2.
Schematically, AM2b model is :

biological model fouling model

biogas CO2, CH4

influent S1in, S2in

withdraw s1, b1, s2, b2, s

effluent s1, s2, β s

Qout

Qin

Q1

s1, b1,s2, b2, s

s1, b1, s2, b2, s

On the right of this scheme is represented the membrane fouling model ; the separation of mater

is as follow : substrates s1 and s2 go through the membrane without retention (the size of their

molecules is assumed to be smaller than pore diameter), biomasses b1 and b2 are retained by the

membrane, and a fraction β s of the SMP go through the membrane and leaves the reactor ((1−β) s
will be considered as macromolecules).

The evolution of x(t) is classically described by a system of ODEs :

ṡ1 = Din [S1in − s1] − k1 µ1(s1) b1 , (1a)

ḃ1 = [µ1(s1) + µ(s)−Ddec −Dwit] b1 , (1b)

ṡ2 = Din [S2in − s2] − k2 µ2(s2) b2 + [c12 µ1(s1) + c02 µ(s)] b1 , (1c)

ḃ2 = [µ2(s2)−Ddec −Dwit] b2 , (1d)

ṡ = [c10 µ1(s1) +Ddec − k0 µ(s)] b1 + [c20 µ2(s2) +Ddec] b2 −M s (1e)

with :
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ki degradation rate of si by bi, M = β Din + (1− β)Dwit,

k0 degradation rate of s by b1, β fraction of SMP leaving the bioreactor,

c12 production rate of s2 by b1 from s1, Din dilution rate,

c02 production rate of s2 by b1 from s, Ddec decay rate of biomass,

ci0 production rate of s by bi from si, Dwit withdrawal rate of biomass,

Siin input concentrations of si, Dout = Din −Dwit outflow rate of the bioreactor

(i = 1, 2). The growth functions are :

µ1(s1) = m1
s1

K1+s1
, µ(s) = m s

K+s
, µ2(s2) = m2

s2
K2+s2+s2

2
/K3

.

µ1 and µ are of Monod type ; µ2 is of Haldane type to model the phenomenon of inhibition of the

eventual accumulation of the VFA in the bioreactor during the methanogenesis, the major problem

of the anaerobic digestion.

System (1) could also be denoted :

ẋ(t) = f(x(t)) , x(0) = x0 . (2)

Model (2) relies on the fact that the stochastic effects can be neglected, thanks to the law of large

numbers, or at least can be averaged out. Although this level of description is sufficient for nume-

rous applications of interest, it could be interesting to account for the stochastic nature of the process

which could prominent at low biomasses concentrations or when small perturbations cumulate in the

context of multi-species. Also, whereas the experimental results observed in well mastered labora-

tory conditions match closely the ODE theoretical behavior, a discrepancy may occur in operational

conditions. In these cases, stochastic features may not be neglected.

3. Pure jump model
Based on the reactions featured in the AM2b model, we propose a AM2b model as a pure jump

Markov process (X(t))t≥0 which takes values in R
d
+. We follow the approach proposed in [5]. Let

X = (S1, B1, S2, B2, S) be the concentrations in S1,B1, S2,B2, S respectively. This process will

encompass J = 15 reactions : each reaction j is characterized by its rate function λj(x) and its

jump function νj(x). Then X(t) is a time-homogeneous markov process and can be described as :

being at X(t) = x :

X(t+∆t) =

{

x+ νj(x) , with probability λj(x)∆t+ o(∆t) for j = 1, . . . , 15 ,

x , with probability 1− λ(x)∆t+ o(∆t)
(3)

where :

λ(x)
def
=

∑15
j=1 λj(x) , pj(x)

def
= λj(x)/λ(x) .

Reaction network

The reaction scheme of AM2b model is based on a modification of reaction scheme of the AM2

model [2, Chapter 2] by introducing the variable s for the SMP component. The production of SMP

is related to the degradation of s1, s2, and biomass decay b1 and b2. They are also degraded and

converted into s2 and carbon dioxide CO2 by the consortium b1.
We define a network of J = 15 reactions classified in three sets :
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1) Biological reactions :

Acidogenesis + SMP production k1 S1 + B1
λ1−→ 2B1 + c12 S2 + c10 S+ κ1 CO2 ,

Methanogenesis + SMP production k2 S2 + B2
λ2−→ 2B2 + c20 S+ κ2 CH4 ,

SMP degradation k0 S+ B1
λ3−→ 2B1 + c02 S2 + κ3 CO2 ,

SMP production from biomass decay B1
λ4−→ S , B2

λ5−→ S

2) Substrate inflow and substrate outflows represented as reactions :

Substrate inflow ∅ λ6−→ S1 , ∅ λ7−→ S2 ,

Substrate outflows S1
λ8−→ ∅ , S2

λ9−→ ∅ , S λ10−−→ ∅

3) Biomass and substrate withdrawal described as reactions :

Withdrawal S1
λ11−−→ ∅ , B1

λ12−−→ ∅ , S2
λ13−−→ ∅ ,

B2
λ14−−→ ∅ , S

λ15−−→ ∅
where the rate functions λj are to be specified.

The second and third set of reactions are not biochemical reactions they just describe the inflows

and outflows in the AM2b process. In reaction 10 only a proportion β of the SMP goes through the

membrane, and in reaction 13 a proportion 1− β of the SMP is withdrawn.

Pure jump Markov process

The AM2b reaction network described in previous section is translated into the pure jump Markov

processX(t) defined by (3) thanks to the stochastic law of mass action [16] and mass conservation :

each reaction j is described as an instantaneous jump X(t) → X(t) + νj(X(t)) occurring with

intensity λj(X(t)) defined respectively by :

λj(x)
def
= Nj λ̃j(x) , νj(x)

def
= [x+ 1

Nj
ν̃j ]+ − x (4)

where [x]+ the orthogonal projection of x onto R
5
+, and :

j λ̃j(x) ν̃∗
j j λ̃j(x) ν̃∗

j

1 µ1(s1) b1 (−k1, 1, c12, 0, c10) 9 Dout s2 (0, 0,−1, 0, 0)
2 µ2(s2) b2 (0, 0,−k2, 1, c20) 10 β Dout s (0, 0, 0, 0,−1)
3 µ(s) b1 (0, 1, c02, 0,−k0) 11 Dwit s1 (−1, 0, 0, 0, 0)
4 Ddec b1 (0,−1, 0, 0, 1) 12 Dwit b1 (0,−1, 0, 0, 0)
5 Ddec b2 (0, 0, 0,−1, 1) 13 Dwit s2 (0, 0,−1, 0, 0)
6 DinS1in (1, 0, 0, 0, 0) 14 Dwit b2 (0, 0, 0,−1, 0)
7 DinS2in (0, 0, 1, 0, 0) 15 (1− β)Dwit s (0, 0, 0, 0,−1)
8 Dout s1 (−1, 0, 0, 0, 0)

The coefficientsNj are rescaling parameters which characterize the size of the jump in the reaction

j. LargeNj corresponding to frequent and small jumps. These scale parametersNj do not act on the

mean values of the increments but on their variances, large Nj will correspond to small variances.

We can assume that the Nj’s range from 104 to 109. When a reaction involves only substrate

molecules the corresponding Nj’s range from 107 to 109. When a reaction involves only bacteria

the corresponding Nj’s range from 104 to 106. A standard case could be :

Nj =







106 for j = 4, 5, 12, 14 ,
105 for j = 1, 2, 3 ,
104 for 6 ≤ j ≤ 15 .

(5)
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We define :

F (x)
def
=

15
∑

j=1

λj(x) νj(x) (6)

note that F (x) depends on the Nj’s but F (x) =
∑15

j=1

λj(x)

Nj
×Nj νj(x) so that, for large Nj’s :

F (x) ≃
15
∑

j=1

λ̃j(x) ν̃j (7)

and :

f(x)
def
=

15
∑

j=1

λ̃j(x) ν̃j (8)

is exactly the second hand term of Equation (2).

Note that :

νj(x)
def
= [x+ 1

Nj
ν̃j ]+ − x

We have then for each component : ∀ i = 1, . . . , 5 :

– if xi +
1
Nj
{ν̃j}i ≥ 0 then {νj(x)}i = 1

Nj
{ν̃j}i ;

– if xi +
1
Nj
{ν̃j}i ≤ 0 then {νj(x)}i = −xi.

In this last case |{νj(x)}i| = xi ≤ 1
Nj
|{ν̃j}i| and then ∃ C such that for all j :

|Nj νj(x)| ≤ C |ν̃j | , ∀x ∈ R
5
+ . (9)

Representation of the process X(t)

Trajectories of the process X(t) can be exactly simulated according to the so-called Stochastic

Simulation Algorithm (SSA) popularized by Gillespie [7]. Starting for an initial condition X(0),
we simulate the next time of jump T1 from an exponential distribution of intensity λ(X(0)), then
we draw the index j0 of the reaction from the distribution pj(X(0)), j = 1, . . . , J . ThenX(T1) =
X(0) + νj0(X(0)), and so on. Hence the Markov process X(t) can be represented as :

X(t) = X(0) +
15
∑

j=1

∫ t

0

∫

R+

νj(X(s−)) 1[0,λj(X(s−))](v) Nj(ds, dv) (10)

where the Nj(ds, dv) are independent Poisson random measures (also independent from X(0)) of
intensity measure ds× dv, the Lebesgue measure on R

2
+.

Note that (10) is expressed in law and is a generalization of the expression obtained in the case of

constant jumps (see [17, theorem 4.1 chapter 6]), namely we used :

J
∑

j=1

∫ t

0

Pj(ds× λj(Xs−))νj(Xs−)
L
=

J
∑

j=1

∫ t

0

∫ ∞

0

1[0,λj(Xs−
)](u) νj(Xs−)Nj(ds, du) ,

for more justification, see [18].

The law of the process X(t) is characterized by its infinitesimal generator define by :

Aφ(x) = lim
t→0

E[φ(X(t))− φ(X(0))|X(0) = x]

t
,
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we can easily check that :

Aφ(x) = λ(x)

∫

R
5
+

[

φ(y)− φ(x)
]

ρ(x, dy) =

15
∑

j=1

λj(x)
[

φ(x+ νj(x))− φ(x)
]

for all continuous with compact support function φ, where :

ρ(x, dy)
def
=

15
∑

j=1

pj(x) δx+νj(x)(dy)

We introduced the compensated Poisson measure :

Ñj(ds, dv)
def
= Nj(ds, dv)− ds dv .

From (10) we get :

X(t) = X(0) +

∫ t

0

F (X(s)) ds+Mt (11)

where F (x) is defined by (6) and :

Mt =

15
∑

j=1

M j
t , with M j

t
def
=

∫ t

0

∫

R+

νj(X(s−)) 1[0,λj(X(s−))](v) Ñj(ds, dv)

M j
t is a square integrable martingale with predictable quadratic variation :

〈

M j〉

t
=

∫ t

0

λj(X(s)) |νj(X(s))|2 ds (12)

In Equation (11) the process X(t) is written as the sum of :

– a drift term
∫ t

0
F (X(s)) dswhich describes the deterministic dynamics ofX(t) and, for large

Nj’s, it coincides with the model AM2b (2) ;

– a martingale term Mt with quadratic variation (12), this quadratic variation characterizes the

variance of the difference between the stochastic model and the deterministic model. In particular,

this term converges to 0 when Nj →∞.

4. Discrete time approximations
The Stochastic Simulation Algorithmic (SSA) simulates each reaction of the ecosystem asynchro-

nously in time. In many situations this detailed simulation is too cumbersome, this is why synchro-

nous discrete time approximations have been proposed. Let :

tm
def
= m∆t

for ∆t > 0 fixed.

Poisson approximation
We construct an approximation (X̃(tm))m≥1. On the interval [tm, tm+1) suppose that the different

rate functions are constant with :

λj(X̃(t) ≃ λj(X̃(tm))
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so that the J = 15 reactions are independent and occur at constant rates λj(X̃(tm)), that is the

occurrence of reaction of type j is a Poisson process of intensity λj(X̃(tm)). Hence, on the time

interval [tm, tm+1) the number of reactions of type j follows a Poisson distribution of parameter

∆t λj(X̃(tm)). We obtain the following approximation called τ -leaping :

X̃(tm+1) =
[

X̃(tm) +
15
∑

j=1

νj(X̃(tm))Pj,m

]

+
(13)

where for eachm, thePj,m are independent Poisson distributed variables with parameter∆t λj(X̃(tm)).

Diffusion approximation
The Poisson distribution with parameter ∆t λj(X̃(tm)) can be approximated by a normal distribu-

tion of mean ∆t λj(X̃(tm)) and variance ∆t λj(X̃(tm)). From (13) we get :

ξ̃(tm+1) =

[

ξ̃(tm) +

15
∑

j=1

νj(ξ̃(tm))
(

∆t λj(ξ̃(tm)) +

√

∆t λj(ξ̃(tm))wj,m

)

]

+

where wj,m are independent N(0, 1) random variables. This last equation can be rewritten :

ξ̃(tm+1) =

[

ξ̃(tm) + F (ξ̃(tm))∆t+

15
∑

j=1

1
√

Nj

gj(ξ̃(tm)) [Wj(tm+1)−Wj(tm)]

]

+

(14)

where Wj(t) are independent standard Brownian motions so that Wj(tm+1) −Wj(tm) are inde-

pendent and N(0,∆t), and :

gj(x)
def
=

√

Nj λj(x) νj(x) =

√

λ̃j(x) Nj νj(x) .

and according to (9) :

|gj(x)| ≤ C

√

λ̃j(x) ν̃j .

Stochastic differential equation
Equation (14), is an Euler-Maruyama approximation of the following SDE :

dξ(t) = F (ξ(t)) dt+
15
∑

j=1

1
√

Nj

gj(ξ(t)) dWj(t) . (15)

5. Scales and asymptotics

A first analysis
Suppose that Nj = N for all j. We can prove rigorously [13, 14] that :

sup
0≤t≤T

|X(t)− x(t)| −−−−→
N→∞

0 (16)

in L2(Ω) or in probability. In (16) we can also replace X(t) by ξ(t). So under specific conditions,

when the population sizes are large and so the number of reactions is, i.e. N large, the ODE model

(2) is valid.
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At an intermediate scale, a functional central limit theorem states that the process
√
N (X(t) −

x(t)) can be approximated in law by
∑15

j=1

∫ t

0
gj(x(s))dW̃j(s) where the W̃j(s) are independent

standard Brownian motions, that is formally :

X(t) ≃ x(t) +
1√
N

15
∑

j=1

∫ t

0

gj(x(s))dW̃j(s) .

This proves that the SDE model (15) is valid for N large but also for N moderately large.

A second analysis : hybrid model
In many situation ODE and SDE models are not valid. This is the case when one of the bacterial

population is present in low concentration but still affects the global dynamic of the process. This

so-called molecular randomness may influence the global dynamic even when the population sizes

are not so small [6]. In this case we may adopt an hybrid approach.

We present an example where we separate the dynamics of the substrates from the dynamics of the

biomasses, i.e. separate substrate type reactions from biomass type reactions, then to describe the

first ones as a system of ODE’s and to describe the second ones as a pure jump Markov process.

We obtain a system of ODE’s describing the continuous evolution of the substrates and the SMP

concentrations :

ṡ1 = D (S1in − s1) − k1 µ1(s1)B1 ,

ṡ2 = D (S2in − s2) − k2 µ2(s2)B2 +
(

c12 µ1(s1) + c02 µ(s)
)

B1 ,

ṡ =
(

c10 µ1(s1) +Ddec − k0 µ(s)
)

B1 +
(

c20 µ2(s2) +Ddec

)

B2 −M s

coupled to a 2−dimensional pure jump process describing the discrete evolution of the biomasses

concentrations :

jump rate jump rate

B1 → B1 + δ1 µ1(s1)B1/δ1 B2 → B2 + δ2 µ2(s2)B2/δ2
B1 → B1 + δ1 µ(s)B1/δ1 B2 → B2 − δ2 Ddec B2/δ2
B1 → B1 − δ1 Ddec B1/δ1 B2 → B2 − δ2 D1 B2/δ2
B1 → B1 − δ1 D1 B1/δ1

6. Simulation
We now present some simulations of the ODE and SDE models using the values for the parameters

of the AM2b model defined in [1, Table 1 p. 6].
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FIGURE 1 : Simulation of diffusion approximation (14) with the parameters (5). Time evo-

lution of the organic matter concentration (left), time evolution of the acidogenic biomass

concentration (right). Phase portrait acidogenic biomass/organic matter concentrations

(below).
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7. Conclusion
We show that the ODE model (1) contains all the ingredients that can be used to establish a pure

jump Markov model. The ODE model is valid only in large population scales. The SDE model
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FIGURE 2 : Simulation of diffusion approximation (14) with the parameters (5). Time evo-

lution of the AGV concentration (left), time evolution of the methanogic biomass concen-

tration (right). Phase portrait methanogic biomass/AGV concentrations (below).
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FIGURE 3 : Simulation of diffusion approximation (14) with the parameters (5). Time evo-

lution of the SMP concentration (left). Phase portrait acidogenic biomass/SMP concen-

trations (right).

is valid in large population scales but also in “moderately” large population scales. For small po-

pulation scales, only the pure jump Markov model is valid. The most promising approach is to

hybridize an ODE model for substrate dynamics coupled with a stochastic model for the dynamic

of the biomasses.
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