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RÉSUMÉ. Dans ce travail, nous proposons un modèle mathématique pour décrire la dynamique de

l’infection par le virus de l’hépatite B (VHB) en tenant compte la guérison des cellules infectées,

l’exportation des cellules lymphocytes T cytotoxiques (LTC) précurseurs du thymus et les deux modes

de transmission qui sont l’infection de virus-à-cellule et la transmission de cellule-à-cellule. La sta-

bilité locale de l’équilibre libre et de l’équilibre d’infection chronique est obtenue par des équations

caractéristiques. En outre, la stabilité globale des deux équilibres est établie par l’utilisation de deux

techniques, la méthode directe de Lyapunov pour l’équilibre libre et l’approche géométrique pour

l’équilibre de l’infection chronique.

ABSTRACT. In this work, we propose a mathematical model to describe the dynamics of the hepati-

tis B virus (HBV) infection by taking into account the cure of infected cells, the export of precursor

cytotoxic T lymphocytes (CTL) cells from the thymus and both modes of transmission that are the

virus-to-cell infection and the cell-to-cell transmission. The local stability of the disease-free equilib-

rium and the chronic infection equilibrium is obtained via characteristic equations. Furthermore, the

global stability of both equilibria is established by using two techniques, the direct Lyapunov method

for the disease-free equilibrium and the geometrical approach for the chronic infection equilibrium.
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1. Introduction

HBV infection is a major global health problem that can cause acute or chronic
infection and puts people at high risk of death from cirrhosis and liver cancer. In
2015, hepatitis B resulted in 887000 deaths, mostly from complications (including
cirrhosis and hepatocellular carcinoma) [1]. In addition, cytotoxic T lymphocytes
(CTL) cells play an important role in antiviral defense by killing the infected
cells. On the other hand, HBV can spread by two fundamental modes, one by
virus-to-cell infection through the extracellular space and the other by cell-to-cell
transfer involving direct cell-to-cell contact [2, 3]. For these reasons, we propose
the following model :



















ẋ = λ− dx− f(x, y, v)v − g(x, y)y + ρy,
ẏ = f(x, y, v)v + g(x, y)y − (a+ ρ)y − pyz,
v̇ = ky − µv,

ż = s+
cyz

ω + y
− bz,

(1)

where x(t), y(t), v(t) and z(t) represent the concentrations of uninfected cells,
infected cells, free virus and CTL cells at time t, respectively. Susceptible host
(healthy hepatocytes) cells are produced at rate λ, die at rate dx and become
infected either by free virus at rate f(x, y, v)v or by direct contact with an infected
cell at rate g(x, y)y. Hence, the term f(x, y, v)v+g(x, y)y denotes the total infection
rate of uninfected cells. Infected cells cured at rate ρy, die at rate ay and are killed
by the CTL immune response at rate pyz. Free virus is produced by an infected
cell at rate ky and decays at rate µv. CTL cells expand in response to viral antigen

derived from infected cells at rate
cyz

ω + y
, where c is HBV-specific CTL stimulation

rate and ω represents virus load for half-maximal CTL cells stimulation [4] and
decay in the absence of antigenic stimulation at the rate bz. The parameter s
denotes the export of precursor CTL cells from the thymus [4].

As in [5], the incidence functions f(x, y, v) and g(x, y) for the two modes are
continuously differentiable and satisfy the following hypotheses :

(H0) g(0,y)=0, for all y ≥ 0 ;
∂g

∂x
(x, y) ≥ 0

(

or g(x, y) is a strictly monotone

increasing function with respect to x when f ≡ 0
)

and
∂g

∂y
(x, y) ≤ 0, for all

x ≥ 0 and y ≥ 0.

(H1) f(0, y, v) = 0, for all y ≥ 0 and v ≥ 0,

(H2) f(x, y, v) is a strictly monotone increasing function with respect to x
(

or
∂f

∂x
(x, v, y) ≥ 0 when g(x, y) is a strictly monotone increasing function with

respect to x
)

, for any fixed y ≥ 0 and v ≥ 0,

(H3) f(x, y, v) is a monotone decreasing function with respect to y and v.

Biologically, the four hypotheses are reasonable and consistent with the reality.
For more details on the biological significance of these four hypotheses, we refer
the reader to the works [5–7]. Further, the general incidence functions f(x, y, v)
and g(x, y) include various types of incidence rates existing in the literature.
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2. Positivity and boundedness of solutions

The first important step is to validate our model as model that represents the
evolution of cells and virus. In the following result, we show that all cell and virus
concntrations are non-negative and bounded.

Theorem 2.1. All solutions of system (1) starting from positive initial value
(x0,y0,v0,z0) remain bounded and positive for all t > 0. Moreover, we have

(i) T (t) ≤ T (0) +
λ

δ
,

(ii) v(t) ≤ v0 +
k

µ
‖ y ‖∞,

(iii) z(t) ≤ z0 +
s

b
+

c

pω

[

λ

b
+ x0 + y0 + α1‖x‖∞ + α2‖y‖∞

]

,

where T = x + y that represents the total cells of liver, δ = min{a, d}, α1 =

max{0, 1− d

b
} and α2 = max{0, 1− a

b
}.

Proof. First, we prove that any solution starting in the first quadrant R
4
+ =

{

(x, y, v, z) ∈ R
4
+ : x ≥ 0, y ≥ 0, v ≥ 0, z ≥ 0

}

stays in R
4
+. In fact, for

(

x(t), y(t), v(t), z(t) ∈
R

4
+

)

, we have

ẋ|x=0 = λ+ ρy ≥ 0, ẏ|y=0 = f(x, 0, v)v ≥ 0,
v̇|v=0 = ky ≥ 0, ż|z=0 = s > 0,

(2)

this immediately implies that all solutions of system (1) with initial condition
(x0, y0, v0, z0) ∈ R

4
+ stay in the first quadrant.

Next, we prove the boundedness of solutions. We have that Ṫ ≤ λ− δT . Then

T (t) ≤ T (0)e−δt +
λ

δ
(1− e−δt). (3)

Since 0 ≤ e−δt ≤ 1 and 1− e−δt ≤ 1, we deduce (i).
From the third equation of (1), we have

v̇ = ky − µv,

which implies that

v(t) = v(0)e−tµ + k

∫ t

0

y(θ)e(θ−t)µdθ. (4)

Thus,

v(t) ≤ v(0) +
k

µ
‖ y ‖∞ (1− e−tµ). (5)
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The main objective of this work is to investigate the dynamical behavior of sys-
tem (1). To do this end, we start with the existence, the positivity and boundedness
of solutions, which implies that our model is well-posed. After, we determine the
basic reproduction number and steady states of the model. Finally, the local and
global stabilities of the disease-free equilibrium and the chronic infection equili-
brium are established.



Since 1− e−tµ ≤ 1, we have (ii).
From the fourth equation of (1), we get

ż + bz ≤ s+
c

w
yz, (6)

Hence,

ż + bz ≤ s+
c

pw
[λ− (ẋ+ dx)− (ẏ + ay)], (7)

Then

z(t)ebt − z0 ≤
(

s

b
+

cλ

bpω

)

(ebt − 1)− c

pω

∫ t

0 e
(b−d)θ d

dθ
(x(θ)edθ)dθ

− c

pω

∫ t

0
e(b−a)θ d

dθ
(y(θ)eaθ)dθ.

(8)

By integration by parts, we have

∫ t

0
e(b−d)θ d

dθ
(x(θ)edθ)dθ = [x(θ)ebθ ]t0 − (b− d)

∫ t

0
x(θ)ebθdθ,

∫ t

0 e
(b−a)θ d

dθ
(y(θ)eaθ)dθ = [y(θ)ebθ]t0 − (b− a)

∫ t

0 y(θ)e
bθdθ.

(9)

Thus,

z(t) ≤
[

c

pω
(x0 + y0) + z0

]

e−bt +

(

s

b
+

cλ

bpω

)

(1− e−bt)

+
c

pω

[

∫ t

0
[(b − d)x(θ) + (b− a)y(θ)]eb(θ−t)dθ − x(t) − y(t)

]

.

(10)

In order to find an upper bound to this integral, we study the following cases :
If b− d ≤ 0 and b− a ≤ 0, then

z(t) ≤ z0 +
s

b
+

c

pω

(

λ

b
+ x0 + y0

)

. (11)

If b− d ≤ 0 and b− a ≥ 0, then

z(t) ≤ z0 +
s

b
+

c

pω

[

λ

b
+ x0 + y0 +

(

1− a

b

)

‖y‖∞
]

. (12)

If b− d ≥ 0 and b− a ≤ 0, then

z(t) ≤ z0 +
s

b
+

c

pω

[

λ

b
+ x0 + y0 +

(

1− d

b

)

‖x‖∞
]

. (13)

If b− d ≥ 0 and b− a ≥ 0, then

z(t) ≤ z0 +
s

b
+

c

pω

[

λ

b
+ x0 + y0 +

(

1− d

b

)

‖x‖∞ +
(

1− a

b

)

‖y‖∞
]

. (14)

From (11)-(14), we can conclude (iii).
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3. Basic reproduction number and Equilibria

Obviously, system (1) has always one infection free equilibrium Ef

(

λ
d
, 0, 0, s

b

)

.
Then we define the basic reproduction number of (1) as follows :

R0 =
kf(λ

d
, 0, 0) + µg(λ

d
, 0)

µ(a+ ρ+ p
s

b
)

, (15)

which can be rewritten as R0 = R01 +R02, where

R01 =
k

a+ ρ+ p
s

b

× f(
λ

d
, 0, 0)× 1

µ
,

and

R02 = g(
λ

d
, 0)× 1

a+ ρ+ p
s

b

.

In the formula (15),
1

a+ ρ+ p s
b

denotes the average life expectancy of infected

cells, which is less than
1

a
because of the role of immune cells ;

k

a+ ρ+ p
s

b

denotes

the amount of virus generated from an infected during its survival period ;
1

µ
is the

average life expactancy of viruses ;
λ

d
denotes the number of susceptible cells at the

beginning of the infectious process, which means that f(λ
d
, 0, 0) and g(λ

d
, 0) are the

values of both incidence functions when all cells are uninfected. Hence, R01 is the
basic reproduction number corresponding to virus-to-cell infection mode, whereas
R02 is the basic reproduction number corresponding to cell-to-cell transmission
mode. Therefore,R0 describes the average number of newly infected cells generated
from one infected cell at the beginning of the infectious process.

To find the other equilibrium of (1), we solve the following system

λ− dx− f(x, y, v)v − g(x, y)y + ρy = 0, (16)

f(x, y, v)v + g(x, y)y − (a+ ρ)y − pyz = 0, (17)

ky − µv = 0, (18)

s+
cyz

ω + y
− bz = 0. (19)

By (16) to (19), we have v =
ky

µ
, z =

s(ω + y)

bω + (b − c)y
and x = ψ(y), where

ψ(y) =
λ

d
− y

(

a

d
+

ps(ω + y)

dbω + dy(b − c)

)

. (20)

Define a function Γ on [0,+∞)−
{

bω
b−c

}

as follows

Γ(y) = kf

(

ψ(y), y,
ky

µ

)

+ µg (ψ(y), y)− µ

(

a+ ρ+
ps(ω + y)

bω + y(b− c)

)

. (21)
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When R0 > 1, we have Γ(0) = µ(a+ ρ+ p
s

b
)(R0 − 1) > 0 and

ψ
′

(y) = −a
d
− ps(ω + y)

bω + y(b− c)
− psdωcy

[dbω + dy(b− c)]2
< 0,

Γ
′

(y) = k

(

ψ
′

(y)
∂f

∂x
+
∂f

∂y
+
k

µ

∂f

∂v

)

+ µ

(

ψ
′

(y)
∂g

∂x
+
∂g

∂y

)

− µcpsω

[bω + y(b− c)]2
< 0.

(22)
Let α = bω

c−b
be a pole of Γ. Hence, we discuss two cases :

(i) If c > b, then α > 0. Since z = s(ω+y)
bω+y(b−c) ≥ 0, we have that y < α, which

means that there is no positive equilibrium point if y ≥ α . It is evident to show
that

lim
y→α−

Γ(y) = −∞. (23)

Thus, there exists a unique y∗ ∈ (0, α) such that Γ(y∗) = 0. Since ψ(0) =
λ

d
> 0

and limy→α− ψ(y) = −∞. Then there exists a unique ȳ ∈ (0, α) such that ψ(ȳ) = 0.
So, we have

Γ(ȳ) = −µ(a+ ρ+
ps(ω + ȳ)

bω + ȳ(b − c)
) < 0.

Then we deduce that 0 < y∗ < ȳ implying ψ(ȳ) < ψ(y∗) < ψ(0). Thus,
0 < x∗ < λ

d
. Also, it is clear that v∗ and z∗ are positive. Thus, model (1) has

a unique chronic infection equilibrium E∗(x∗, y∗, v∗, z∗), where x∗ ∈
(

0, λ
d

)

,
y∗ ∈ (0, ȳ), v∗ > 0 and z∗ > 0.

(ii) If c < b, then α < 0 and limy→+∞ ψ(y) = −∞. As ψ(0) = λ/d > 0, then
there exists a unique ỹ ∈ (0,+∞) such that ψ(ỹ) = 0 . We have

Γ(ỹ) = −µ(a+ ρ+
ps(ω + ỹ)

bω + ỹ(b − c)
) < 0. (24)

Similarly to above, we can show that x∗, v∗ and z∗ are positive. Therefore, model
(1) has a unique chronic infection equilibrium E∗(x∗, y∗, v∗, z∗), where x∗ > 0,
y∗ ∈ (0, ỹ), v∗ > 0 and z∗ > 0.

The pervious discussions can be summarized in the following result.

Theorem 3.1.

(i) When R0 ≤ 1, the model (1) has always one infection-free equilibrium of the
form Ef (

λ
d
, 0, 0, s

b
) .

(ii) When R0 > 1, the model (1) has a unique chronic infection equilibrium of the
form E∗(x∗, y∗, v∗, z∗) with x∗ > 0, y∗ > 0, v∗ > 0, and z∗ > 0.
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4. Local stability of equilibria

In this section, we discuss the local stability of both equilibria of model (1).
Note that the Jacobian matrix of (1) is given by


















−d− v
∂f

∂x
− y

∂g

∂x
−v ∂f

∂y
− y

∂g

∂y
− g(x, y) + ρ −v ∂f

∂v
− f(x, y, v) 0

v
∂f

∂x
+ y

∂g

∂x
v
∂f

∂y
+ y

∂g

∂y
+ g(x, y)− (a+ ρ+ pz) v

∂f

∂v
+ f(x, y, v) −ρy

0 k −µ 0

0
czω

(ω + y)2
0

cy

ω + y
− b



















.

(25)
Firstly, we get the following result.

Theorem 4.1. The infection-free equilibrium Ef is locally asymptotically stable
if R0 < 1 and becomes unstable if R0 > 1.

Proof. Evaluated (25) at Ef , we obtain

JEf
=











−d −g(λ
d
, 0) + ρ −f(λ

d
, 0, 0) 0

0 g(λ
d
, 0)− (a+ ρ+ p s

b
) f(λ

d
, 0, 0) 0

0 k −µ 0

0
cs

bω
0 −b











. (26)

Then the characteristic equation at Ef is given by

(ξ+d)(ξ+b)

[

ξ2 +

(

µ+ a+ ρ+ p
s

b
− g(

λ

d
, 0)

)

ξ + µ
(

a+ ρ+ p
s

b

)

(1−R0)

]

= 0.

(27)
Hence, the roots of (27) are :

ξ1 = −d,
ξ2 = −b,

ξ3 =
g(λ

d
, 0)− µ− a− ρ− p

s

b
−
√
∆

2
,

ξ4 =
g(λ

d
, 0)− µ− a− ρ− p

s

b
+
√
∆

2
,

(28)

where ∆ =
[

µ+a+ρ+p
s

b
−g(λ

d
, 0)
]2−4µ(a+ρ+p

s

b
)(1−R0). Clearly, ξ1, ξ2 and ξ3

are negative. However, ξ4 is negative if R0 < 1 and is positive if R0 > 1. Therefore,
Ef is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Next, we focus on the local stability of the chronic infection equilibrium E∗.

Theorem 4.2. The chronic infection equilibrium E∗ is locally asymptotically
stable if R0 > 1.

Proof. Suppose that R0 > 1. Evaluating (25) at E∗ gives

ξ4 + a1ξ
3 + a2ξ

2 + a3ξ + a4 = 0, (29)
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where

a1 = d+ µ+ a+ ρ+ pz∗ +
s

z∗
+ C1 − C2,

a2 = d(a+ ρ+ pz∗ − C2) +

(

µ+
s

z∗

)(

d− a− ρ− pz∗ + C1 − C2

)

− (a+ 2ρ+ pz∗)C1 − kC3

−µ
(

cy∗

ω + y∗
− b

)

+
cρωy∗z∗

(ω + y∗)2
,

a3 =

(

µ+ b− cy∗

ω + y∗

)(

d(a+ ρ+ pz∗) + C2 + (a++pz∗)C1

)

− k

(

d+ b− cy∗

ω + y∗

)

C3

+µ
s

z∗

(

d+ a+ ρ+ pz∗ + C1 − C2

)

+
cρωy∗z∗

(ω + y∗)2
(d+ µ+ C1),

a4 = d

(

cy∗

ω + y∗
− b

)(

kC3 + µC2 − µ(a+ ρ+ pz∗)

)

+ µC1

(

(a+ pz∗)
s

z∗
+

cρωy∗z∗

(ω + y∗)2

)

,

with

C1 = v∗
∂f

∂x
(x∗, y∗, v∗) + y∗

∂g

∂x
(x∗, y∗),

C2 = v∗
∂f

∂y
(x∗, y∗, v∗) + y∗

∂g

∂y
(x∗, y∗) + g(x∗, y∗),

C3 = v∗
∂f

∂v
(x∗, y∗, v∗) + f(x∗, y∗, v∗).

When R0 > 1, it is clear that a1, a2, a3 and a4 are positive. In addition,
∣

∣

∣

∣

a1 1
a3 a2

∣

∣

∣

∣

= a1a2 − a3 > 0. (30)

In the same way, we have

∣

∣

∣

∣

∣

∣

a1 1 0
a3 a2 a1
0 a4 a1

∣

∣

∣

∣

∣

∣

= a3

∣

∣

∣

∣

a1 1
a2 a3

∣

∣

∣

∣

− a21a4 > 0. (31)

From the Routh-Hurwitz theorem, we know that all roots of (29) have negative
real parts. Thus, the chronic infection equilibrium E∗ is locally asymptotically
stable for R0 > 1.

5. Global Stability of Equilibria

In this section, we study the global stability of both equilibria . For the infection-
free equilibrium Ef , we assume that a ≥ d. Therefore, we have the following result.

Theorem 5.1. The infection-free equilibrium Ef is globally asymptotically stable
if R0 ≤ 1.
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Proof. Consider
Ω =

{

(x, y, v, z) ∈ R
4
+ : z >

s

b

}

.

We see that any solution (x(t), y(t), v(t), z(t)) starting in Ω remains there forever.
In fact, by Theorem 2.1 we have (x(t), y(t), v(t), z(t)) ∈ R

4
+. it remains to prove

that z >
s

b
with z0 >

s

b
. According to the fourth equation of (1), we have

z(t) >
s

b
+
(

z0 −
s

b

)

e−bt, (32)

which implies that z >
s

b
. Then (x(t), y(t), v(t), z(t)) ∈ Ω. We construct the Lya-

punov functional L on Ω as follows :

L(t) = y(t) +
f(λ

d
, 0, 0)

µ
v(t).

Calculating the time derivative of L along the positive solution of (1), we get

dL

dt
=

(

f(x, y, v)− f(
λ

d
, 0, 0)

)

v +

(

a+ ρ+ pz

)







kf(
λ

d
, 0, 0) + µg(x, y)

µ(a+ ρ+ pz)
− 1






y.

It is not hard to see that lim
t→∞

sup x(t) ≤ λ

d
and lim

t→∞

sup z(t) ≥ s

b
. This yields that

all omega limit points satisfy x(t) ≤ λ

d
and z(t) ≥ s

b
. So, it suffices to consider

solutions for which x(t) ≤ λ

d
and z(t) ≥ s

b
. Using the expression of R0 given in

(15), we obtain

dL

dt
≤
(

f(x, 0, 0)− f(
λ

d
, 0, 0)

)

v + (a+ ρ+ pz)(R0 − 1)y

≤ (a+ ρ+ pz)(R0 − 1)y.

Since R0 ≤ 1, we have
dL

dt
≤ 0. In addition, it is easy to show that the largest

compact invariant set in

{

(x, y, v, z) :
dL

dt
(t) = 0

}

is the singleton {Ef}. By the

LaSalle invariance principle, the infection-free equilibrium Ef is globally asymp-
totically stable for R0 6 1.

Next, we will study the global dynamics of model (1) when R0 > 1. Firstly, we
need the following lemma.

Lemma 5.2. The model (1) is uniformly persistent if R0 > 1.

Proof. The maximal invariant set M on the boundary ∂Ω is the singleton {Ef} and
it is isolated. Further, Theorem 4.2 given in [8] ensures the equivalence between the
uniform persistence of model (1) and the instability of the infection-free equilibrium
Ef . From Theorem 4.1, we have Ef is unstable if R0 > 1. Therefore, model (1) is
uniformly persistent if R0 > 1.

Now, we focus on the global stability of E∗ under the assumption R0 > 1 and
the incidence function f satisfies the following property :
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(H4) f(x, y, v) + v
∂f

∂v
(x, y, v) > 0 for all x > 0, y > 0 and v > 0.

Theorem 5.3. Suppose R0 > 1 and (H4) holds. Then the chronic infection equi-
librium E∗is globally asymptotically stable.

Proof. To study the global stability of E∗, we apply the geometrical approach
given in [9]. So, we consider the following sub-system :







ẋ = λ− dx− f(x, y, v)v − g(x, y)y + ρy,
ẏ = f(x, y, v)v + g(x, y)y − (a+ ρ)y − pyz,
v̇ = ky − µv.

(33)

The Jacobian matrix of system (33) is

J =











−d− v
∂f

∂x
− y

∂g

∂x
−v ∂f

∂y
− y

∂g

∂y
− g(x, y) + ρ −v ∂f

∂v
− f(x, y, v)

v
∂f

∂x
+ y

∂g

∂x
v
∂f

∂y
+ y

∂g

∂y
+ g(x, y)− (a+ ρ+ pz) v

∂f

∂v
+ f(x, y, v)

0 k −µ











(34)
and its second additive compound matrix is

J [2] =





j11 + j22 j23 −j13
j32 j11 + j33 j12
−j31 j21 j22 + j33



 , (35)

where jkl is the (k,l)the entry of the matrix J . In this case, we choose P =
diag(1, y

v
, y
v
). Then

PfP
−1 = diag(0,

ẏ

y
− v̇

v
,
ẏ

y
− v̇

v
),

where Pf is obtained by replacing each entry pij of P by its derivative in the
direction of solution of (33). Also, we have

B = PfP
−1 + PJ [2]P−1 =

(

B11 B12

B21 B22

)

, (36)

where

B11 = −(a+ d+ ρ+ pz)− ∂f

∂x
v − ∂g

∂x
y +

∂f

∂y
v +

∂g

∂y
y + g(x, y),

B12 =
(

v
y
(∂f
∂v
v + f) v

y
(∂f
∂v
v + f)

)

,

B21 =

(

ky

v
0

)

,

B22 =

(

ẏ
y
− v̇

v
− µ− d− ∂f

∂x
v − ∂g

∂x
y ρ− ∂f

∂y
v − g(x, y)− ∂g

∂y
y,

∂f
∂x
v + ∂g

∂x
y ẏ

y
− v̇

v
− a− ρ− pz − µ+ ∂f

∂y
v + g(x, y) + ∂g

∂y
y

)

.

We choose a norm in R
3 as follows |ω1, ω2, ω3| = max{|ω1| , |ω2| + |ω3|} for

(ω1, ω2, ω3) ∈ R
3. Thus, the Lozinskii measure µ with respect to this norm | . | can

be estimated as follows (see [10]) :

µ(B) 6 sup{g1, g2}, (37)

66   ARIMA   -   volume 30   -   2019



where g1 = µ1(B11) + |B12|) and g2 = |B21|+ µ1(B22).
Here, µ1 represents the Lozinskii measure with respect to l1 vector norm, |B12|
and |B21| are matrix norms with respect to l1 norm. Furthermore, we have

µ1(B11) = −(a+ d+ ρ+ pz)− ∂f

∂x
v − ∂g

∂x
y +

∂f

∂y
v +

∂g

∂y
y + g(x, y),

|B12| =
v

y

(

v
∂f

∂v
+ f(x, y, v)

)

=
ẏ

y
+ a+ ρ+ pz +

v2

y

∂f

∂v
− g(x, y),

|B21| = k
y

v
=
v̇

v
+ µ,

µ1(B22) = max

{

ẏ

y
− v̇

v
− µ− d,

ẏ

y
− v̇

v
− µ− a− pz)

}

≤ ẏ

y
− v̇

v
− µ− δ.

Thus,

g1 =
ẏ

y
− d+

v2

y

∂f

∂v
− ∂f

∂x
v − ∂g

∂x
y +

∂f

∂y
v +

∂g

∂y
y

≤ ẏ

y
− δ,

and

g2 ≤ ẏ

y
− δ.

Therefore,

µ(B) 6
ẏ

y
− δ.

From Lemma 5.2, the model (1) is uniformly persistent for R0 > 1. Then there
exists a compact absorbing set K ⊂ Ω [11]. Along each solution (x(t), y(t), v(t)) of
(1) with X0 = (x(0), y(0), v(0)) ∈ K, we have

1

t

∫ t

0

µ(B)ds ≤ 1

t
ln

(

y(t)

y(0)

)

− δ,

which implies that

q2 = lim sup
t→∞

sup
X0∈K

1

t

∫ t

0

µ(B)ds 6
−δ
2
< 0.

Hence, the positive equilibrium (x∗, y∗, v∗) of the sub-system (33) is globally
asymptotically stable. From the last equation of model(1), we have

ż = s+
cyz

ω + y
− bz, (38)

and its limit system is

ż = s+
cy∗z

ω + y∗
− bz. (39)
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By b− cy∗

ω + y∗
=

s

z∗
, we obtain

ż = s
(

1− z

z∗

)

. (40)

Then
lim
t→∞

z(t) = z∗. (41)

Therefore, the chronic infection equilibrium E∗ is globally asymptotically stable
for R0 > 1.

6. Discussion and conclusions

In this work, we have proposed an HBV infection model that takes into the
account cell-to-cell transmission and CTL immune response. In the proposed mo-
del, the infection processes for the two modes of transmission are modeled by two
general functions. We first proved the existence, positivity, and the boundedness of
solutions of the problem which ensures that our model is well-posed. Under some
assumptions about the general incidence functions, the global dynamics of the mo-
del are fully characterized by a threshold parameter called the basic reproduction
number R0. More precisely, the infection-free equilibrium Ef is globally asympto-
tically stable if R0 ≤ 1 which biologically means that the virus is cleared and the
infection die out. When R0 > 1, Ef becomes unstable and the chronic infection
equilibrium E∗ is globally asymptotically stable. In this case, the HBV persists
in the liver. From the above analytical results, we deduce a strategy to control
the HBV infection. This strategy is based on the reduction of R0 and makes its
valeur less then or equal to 1. From explicit expression of R0 given in (15), the
value of R0 can be reduced by increasing the export of the thymus. Therefore, we
conclude that cellular immunity mediated by CTL cells plays an important role in
the clearance of HBV from the liver.
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