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ABSTRACT. In this work we develop a mathematical model of chronic myeloid leukemia including
treatment with instantaneous effects. Our analysis focuses on the values of growth rate γ which give
either stability or instability of the disease free equilibrium. If the growth rate γ of sensitive leukemic
stem cells is less than some threshold γ∗, we obtain the stability of disease free equilibrium which
means that the disease is eradicated for any period of treatment τ0. Otherwise, for γ great than γ∗,
the period of treatment must be less than some specific value τ∗0 . In the critical case when the period
of treatment is equal to τ∗0 , we observe a persistence of the tumor, which means that the disease is
viable.
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In this work we are interested by the study of a mathematical model of chronic myeloid
leukemia. The chronic myeloid leukemia is a cancer of the bone marrow and blood which
is characterized by an abnormal proliferation of blood cells, usually white blood cells.
This disease is a myelo-proliferative disorder characterized by the expansion of a clone of
hematopoietic cells that carries the Philadelphia chromosome (Ph). The Ph-chromosome
results from a reciprocal translocation between the long arms of chromosomes 9 and 22.
In this paper, we study a mathematical model of chronic myeloid leukemia (CML) under
treatment, the model studied here is inspired from [9] and [16].
Several recent works have been developed to study the dynamics of CML under chemo-
therapy treatment, see ([14], [15], [16] and [17]).
More specifically, we consider the following mathematical model which is an extension
of the model proposed in [9]. In our model, we assume that normal (resp. leukemic) cells
differentiate through two stages of their life cycle, beginning with normal (resp. sensitive
leukemic) stem cells which produce normal (resp. leukemic) progenitor cells.
The mathematical form of the system we shall investigate is the following

ẋ0 = (β − ax − β0x0 − λ(x1 + y1))x0,

ẋ1 = axx0 − d1x1,

ẏ0 = (γ − ay − γ0y0 − λ(x1 + αy1))y0,

ẏ1 = ayy0 − d2y1,

(1)

with initial conditions

x0(0) ≥ 0, x1(0) ≥ 0, y0(0) ≥ 0 and y1(0) ≥ 0. (2)

Throughout this paper, we assume the following conditions

ay < γ, (3)

and
ax < β. (4)

The conditions (3) and (4) are necessary to obtain the biological meanings of the state
variables x0, x1, y0 and y1.
In [9], well-posedness of (1), (2) is proved and stability (local and global) of equilibria
is investigated. In fact, the disease free equilibrium Ef =

(
x∗
0,

ax

d1
x∗
0, 0, 0

)
is locally

asymptotically stable for growth rate of sensitive leukemic stem cells γ > γ∗ := ay +

λax

d1
x∗
0 and unstable for γ < γ∗ where x∗

0 = (β−ax)d1

β0d1+λax
.

In this paper, we consider the model above including chemotherapeutic treatment. We
obtain the following model
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ẋ0(t) = F1(x0, x1, y0, y1), (5)

ẋ1(t) = F2(x0, x1, y0, y1), (6)

ẏ0(t) = F3(x0, x1, y0, y1), (7)

ẏ1(t) = F4(x0, x1, y0, y1), (8)

for t > 0 and t ̸= ti, where ti is the time of the ith treatment,

F1(x0, x1, y0, y1) = (β − ax − β0x0 − λ(x1 + y1))x0,

F2(x0, x1, y0, y1) = axx0 − d1x1,

F3(x0, x1, y0, y1) = (γ − ay − γ0y0 − λ(x1 + αy1))y0, and

F4(x0, x1, y0, y1) = ayy0 − d2y1.

For t = ti we have

x0(t
+
i ) = Θ1(x0(ti), x1(ti), y0(ti), y1(ti)), (9)

x1(t
+
i ) = Θ2(x0(ti), x1(ti), y0(ti), y1(ti)), (10)

y0(t
+
i ) = Θ3(x0(ti), x1(ti), y0(ti), y1(ti)), (11)

y1(t
+
i ) = Θ4(x0(ti), x1(ti), y0(ti), y1(ti)), (12)

where xj(t
+
i ) = lim t → ti

t > ti

xj(t) and yj(t
+
i ) = lim t → ti

t > ti

yj(t), (j = 0, 1) are the

size of xj just after the ith treatment. In our case we have

Θ1(x0(ti), x1(ti), y0(ti), y1(ti)) = x0(ti),

Θ2(x0(ti), x1(ti), y0(ti), y1(ti)) = x1(ti),

Θ3(x0(ti), x1(ti), y0(ti), y1(ti)) = T0y0(ti),

Θ4(x0(ti), x1(ti), y0(ti), y1(ti)) = T1y1(ti).

The variables and parameters are
x0 : biomass of the normal stem cells,
x1 : biomass of normal progenitor cells,
y0 : biomass of sensitive leukemic stem cells,
y1 : biomass of sensitive leukemic progenitor cells,
β0 : death rate of the normal stem cells,
γ0 : death rate of sensitive leukemic stem cells,
β : growth rate of normal stem cells,
γ : growth rate of sensitive leukemic stem cells,
λ : competitive parameter of the stem and progenitor cells,
ax : produce rate of the normal stem cells,
ay : produce rate of the sensitive leukemic stem cells,
d1 : death rate of the normal progenitor cells,
d2 : death rate of the sensitive leukemic progenitor cells,
α : competition parameter (0 < α < 1),
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T0(< 1) : survival fraction of sensitive leukemic stem cells,
T1(< 1) : survival fraction of sensitive leukemic progenitor cells, and
τ : is the time of the first treatment, it’s the period between two successive injections, that
is ti = iτ , i ∈ N.
We obtain a special kind of differential equations called impulsive differential equations
(see [1]-[6] and [8]).
Our main objective is to study the existence of steady states of (1) and their stability.
Our paper is organized as follow ; In the next section we give a mathematical analysis
of our model, we study the well-posedness of (1), the existence of the steady states, and
the stability of the trivial, chronic, blast and non pathological steady states. Further, we
analyze the bifurcation of chronic periodic solutions of (1). Section two is devoted to
numerical simulations, in the third section we give some conclusions. The last section is
an appendix, where we give calculations needed for the previous sections.

1. Mathematical analysis of the model

1.1. Well-posedness
Theorem 1.1 The model (5)-(12) has a unique global positive solution for all positive
initial conditions

PROOF. —
Since Fi, (i = 1, . . . , 4) are smooth, then from the Cauchy-Lipschitz theorem we have the
local existence and uniqueness of the solutions of (5)-(8). Since the solutions are bounded
then the solution is global in [0, t1].
The system (5)-(8) is quasi positive because for all x0, x1, y0 and y1 ∈ R+ we have
F1(0, x1, y0, y1) = 0 ≥ 0, F2(x0, 0, y0, y1) = axx0 ≥ 0, F3(x0, x1, 0, y1) = 0 ≥ 0 and
F4(x0, x1, y0, 0) = ayy0 ≥ 0, so we have a unique positive global solution in [0, t1].
By recurrence we can prove that ∀k ∈ N∗, we have a unique positive global solution in
the interval [tk, tk+1]. Hence, we have the existence of a unique positive global solution
of (5)-(12).

1.2. Stability of the disease free equilibrium Ef

We can show that ζ(t) := ζ0 = ( (β−ax)d1

β0d1+λax
, λax(β−ax)

β0d1+λax
, 0, 0) = Ef is a constant

equilibrium of (5)-(12), it is called trivial solution.
To study the stability of ζ we use the same approach of fixed point process than in [7] and
[11]-[13].
Since solutions of (5)-(8) exist globally in R+ and are nonnegative (see [9]) we have

X(t) = Φ(t,X0), t ≥ 0 (13)

where X(t) = (x0, x1, y0, y1)(t), X(0) = X0 and Φ is the flow associated to (5)-(12).
The term X(τ+) denotes the state of the population after the treatment, X(τ+) = Θ(X(τ)) =
Θ(Φ(τ,X0)).
To have periodic solution we must have X(τ+) = X0 that is X0 = Θ(Φ(τ,X0)).
Let Ψ be the operator defined by

Ψ(τ,X0) = Θ(Φ(τ,X0)) (14)
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and denote by DXΨ the derivative of Ψ with respect to X . Then X = Φ(., X0) is a
τ -periodic solution of (5)-(12) if and only if

Ψ(τ,X0) = X0, (15)

i.e. X0 is a fixed point of Ψ(τ, .), and it is exponentially stable if and only if the spectral
radius ρ(DXΨ(τ, .)) is strictly less than 1 (see [10]).
We need the following hypothesis

(H1) : ax < β < ax +
(β0d1+λax)[(β0d1+2λax)−2

√
λax(β0d1+λax)]

β2
0d1

or

β > ax +
(β0d1+λax)[(β0d1+2λax)+2

√
λax(β0d1+λax)]

β2
0d1

.
We deduce the following results.

Theorem 1.2
Let (H1) be satisfied.

1) If γ ≤ γ∗, then the trivial solution ζ is exponentially stable for all τ0 > 0.

2) If γ > γ∗, then the trivial solution ζ is exponentially stable for τ0 < τ∗0 :=
lnT0

−γ+ay+λ ax
d1

x∗
0

and unstable for τ0 > τ∗0 .

PROOF. —
We have DXΨ(τ,X0) = DXΘ(Φ(τ,X0))

∂Φ

∂X
(τ,X0).

Then, for X0 = ζ0 and τ = τ0 we have

DXΨ(τ0, ζ0) = DXΘ(Φ(τ0, ζ0))
∂Φ
∂X (τ0, ζ0)

=



1 0 0 0

0 1 0 0

0 0 T0 0

0 0 0 T1





∂Φ1(τ0,ζ0)
∂x0

∂Φ1(τ0,ζ0)
∂x1

∂Φ1(τ0,ζ0)
∂y0

∂Φ1(τ0,ζ0)
∂y1

∂Φ2(τ0,ζ0)
∂x0

∂Φ2(τ0,ζ0)
∂x1

0 0

0 0 ∂Φ3(τ0,ζ0)
∂y0

0

0 0 ∂Φ1(τ0,ζ0)
∂y0

∂Φ1(τ0,ζ0)
∂y1



=



∂Φ1(τ0,ζ0)
∂x0

∂Φ1(τ0,ζ0)
∂x1

∂Φ1(τ0,ζ0)
∂y0

∂Φ1(τ0,ζ0)
∂y1

∂Φ2(τ0,ζ0)
∂x0

∂Φ2(τ0,ζ0)
∂x1

0 0

0 0 T0
∂Φ3(τ0,ζ0)

∂y0
0

0 0 ∂Φ1(τ0,ζ0)
∂y0

T1
∂Φ1(τ0,ζ0)

∂y1


.

The equilibrium ζ is exponentially stable if and only if the spectral radius is less than one.
We have

det(DXΨ(τ0, ζ0)− µI) =

(
T0

∂Φ3(τ0, ζ0)

∂y0
− µ

)(
T1

∂Φ4(τ0, ζ0)

∂y1
− µ

)
χ(µ) (16)
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where

χ(µ) = µ2−
(
∂Φ1

∂x0
(τ0, ζ0) +

∂Φ2

∂x1
(τ0, ζ0)

)
µ+
(
∂Φ1

∂x0
(τ0, ζ0)

∂Φ2

∂x1
(τ0, ζ0)−

∂Φ1

∂x1
(τ0, ζ0)

∂Φ2

∂x0
(τ0, ζ0)

)
.

(17)
From (16) and (17), the equilibrium ζ = Ef is exponentially stable if and only if

T0

∣∣∣∂Φ3

∂y0
(τ0, ζ0)

∣∣∣ < 1, T1

∣∣∣∂Φ4

∂y1
(τ0, ζ0)

∣∣∣ < 1 and |µ±| < 1. Where

µ± =

(
∂Φ1

∂x0
(τ0, ζ0) +

∂Φ2

∂x1
(τ0, ζ0)

)
±

√
∆

2

and

∆ =

(
∂Φ1

∂x0
(τ0, ζ0)−

∂Φ2

∂x1
(τ0, ζ0)

)2

+ 4
∂Φ1

∂x1
(τ0, ζ0)

∂Φ2

∂x0
(τ0, ζ0). (18)

From the variational equation d
dt (DXΦ(t, ζ0)) =

∂F
∂X (ζ0)

∂Φ
∂X (t, ζ0), we have for all 0 <

t ≤ τ0 

∂Φ1(t,ζ0)
∂x0

= d1+u2

u2−u1
eu2t − d1+u1

u2−u1
eu1t,

∂Φ2(t,ζ0)
∂x0

= ax

u2−u1
(eu2t − eu1t),

∂Φ1(t,ζ0)
∂x1

= − d1+u2

u2−u1

d1+u1

ax
(eu2t − eu1t),

∂Φ2(t,ζ0)
∂x1

= − d1+u1

u2−u1
eu2t + d1+u2

u2−u1
eu1t,

∂Φ3(t,ζ0)
∂y0

= e(γ−ay−λ ax
d1

x∗
0)t, and

∂Φ4(t,ζ0)
∂y1

= e−d2t

where u1 =
−βx∗

0−d1−
√
∆1

2 < 0, u2 =
−βx∗

0−d1+
√
∆1

2 < 0 and ∆1 = (β0x
∗
0 − d1)

2 −
4λaxx

∗
0 > 0 for either

0 < β − ax <
(β0d1 + λax)[(β0d1 + 2λax)− 2

√
λax(β0d1 + λax)]

β2
0d1

or

β − ax >
(β0d1 + λax)[(β0d1 + 2λax) + 2

√
λax(β0d1 + λax)]

β2
0d1

(see Appendix, Subsection 4.1).
Then, we obtain ∆ = (eu2t − eu1t)

2
, µ− = eu1τ0 ∈ (0, 1) and µ+ = eu2τ0 ∈ (0, 1).

REMARK. —
1) In the hypothesis (H1), the condition β > ax is a biological condition, which will allow
the preservation of the population of healthy hematopoietic stem cells. On the other hand,

β < ax +
(β0d1+λax)[(β0d1+2λax)−2

√
λax(β0d1+λax)]

β2
0d1

and

β > ax +
(β0d1+λax)[(β0d1+2λax)+2

√
λax(β0d1+λax)]

β2
0d1

are technical conditions which will
make it possible to determine the stability of the periodic solutions without diseases.
2) If (H1) is satisfied and γ > γ∗ we have T1

∣∣∣∂Φ4

∂y1
(τ0, ζ0)

∣∣∣ < 1 for τ0 < τ∗0 and
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T0

∣∣∣∂Φ3

∂y0
(τ0, ζ0)

∣∣∣ = 1 for τ0 = τ∗0 . That is we have a critical case at τ0 = τ∗0 .
3) From theorem 1.2, if (H1) is satisfied we show that in case of low growth rate of leu-
kemic sensitive stem cells γ(≤ γ∗) we can choose any period τ0 of treatment to have
eradication of the disease. Otherwise, for high growth rate of leukemic sensitive stem
cells γ(> γ∗), the eradication of the disease is acquired only for period τ0 less than some
threshold τ∗0 .

1.3. Bifurcation Analysis of nontrivial periodic solution
In this subsection, we analyze the bifurcation of nontrivial periodic solutions of (5)−

(12) from ζ at τ0 = τ∗0 . This case is possible if (H1) is satisfied and γ > γ∗ (see theorem
1.2). The bifurcated solutions means that the disease is installed.
Let τ̄ and X̄ such that τ = τ∗0 + τ̄ and X = ζ0 + X̄ . The equation (15) is equivalent to

M(τ̄ , X̄) = 0, (19)

where M(τ̄ , X̄) =
(
M1(τ̄ , X̄), . . . ,M4(τ̄ , X̄)

)
:= ζ0 + X̄ −Ψ(τ0 + τ̄ , ζ0 + X̄).

If (τ̄ , X̄) is a zero of M , then (ζ0 + X̄) is a fixed point of Ψ(τ∗0 + τ̄ , .). Let

DXM(τ̄ , X̄) =



a b c d

e f ⋆ ⋆

⋆ ⋆ g ⋆

⋆ ⋆ h i


. (20)

For (τ̄ , X̄) = (0, (0, 0, 0, 0)), we have

DXM(0, (0, 0, 0, 0)) =



a0 b0 c0 d0

e0 f0 ⋆ ⋆

⋆ ⋆ g0 ⋆

⋆ ⋆ h0 i0



=



1− ∂Φ1

∂x0
−∂Φ1

∂x1
−∂Φ1

∂y0
−∂Φ1

∂y1

−∂Φ2

∂x0
1− ∂Φ2

∂x1
0 0

0 0 1− T0
∂Φ3

∂y0
0

0 0 −T1
∂Φ4

∂y0
1− T1

∂Φ4

∂y1


(τ∗0 , ζ0) .

Then a0 = 1 − ∂Φ1

∂x0
(τ∗0 , ζ0), b0 = −∂Φ1

∂x1
(τ∗0 , ζ0), c0 = −∂Φ1

∂y0
(τ∗0 , ζ0), d0 = −∂Φ1

∂y1
,

e0 = −∂Φ2

∂x0
(τ∗0 , ζ0),
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f0 = 1 − ∂Φ2

∂x1
(τ∗0 , ζ0), g0 = 1 − T0

∂Φ3

∂y0
(τ∗0 , ζ0), h0 = −T1

∂Φ4

∂y0
(τ∗0 , ζ0) and i0 = 1 −

T1
∂Φ4

∂y1
(τ∗0 , ζ0).

We have the critical cases if and only if detDXM(0, (0, 0, 0, 0)) = (a0f0− b0e0)g0i0 =
0. That is

g0 = 0 (21)

since i0 = 1− T1e
−d2τ

∗
0 ∈ (0, 1) and a0f0 − b0e0 = (1− eu2τ

∗
0 )(1− eu1τ

∗
0 ) ∈ (0, 1).

We have M(0, (0, 0, 0, 0)) = 0. Let DXM(0, (0, 0, 0, 0)) = E, then dimker(E) =
co dimR(E) = 1. Denote by P1 and P2 the projectors onto ker(E) and R(E) respecti-
vely, such that P1+P2 = IdR4 , P1R

4 = span{Y0} = ker(E), with Y0 = (q1, q2, 1, q4),
q1 = f0(c0i0−d0h0)

i0(b0e0−a0f0)
, q2 = − e0(c0i0−d0h0)

i0(b0e0−a0f0)
, q4 = −h0

i0
and

P2R
4 = span{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1)} = R(E).

Then (I − P1)R
4 = span{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1)} and

(I − P2)R
4 = span{(0, 0, 1, 0)}.

Equation (19) is equivalent to
M1(τ̄ , σY0 + Z) = 0,
M2(τ̄ , σY0 + Z) = 0,
M3(τ̄ , σY0 + Z) = 0,
M4(τ̄ , σY0 + Z) = 0,

(22)

where Z = (z1, z2, 0, z4), (τ̄ , X̄) = (τ̄ , σY0 + Z) and (σ, z1, z2, z4) ∈ R4.
From the three equations of (22), we have

det


∂M1(0,(0,0,0,0))

∂z1

∂M1(0,(0,0,0,0))
∂z2

∂M1(0,(0,0,0,0))
∂z4

∂M2(0,(0,0,0,0))
∂z1

∂M2(0,(0,0,0,0))
∂z2

∂M2(0,(0,0,0,0))
∂z4

∂M4(0,(0,0,0,0))
∂z1

∂M4(0,(0,0,0,0))
∂z2

∂M4(0,(0,0,0,0))
∂z4

 = det

 a0 b0 d0
e0 f0 0
0 0 i0


= i0(a0f0 − e0b0) ̸= 0.

From the implicit function theorem, there exist a unique continuous function Z∗, such
that
Z∗(τ̄ , σ) = (z∗1(τ̄ , σ), z

∗
2(τ̄ , σ), 0, z

∗
4(τ̄ , )), Z

∗(0, 0) = (0, 0, 0, 0) and

Mi (τ̄ , (q1σ + z∗1(τ̄ , σ), q2σ + z∗2(τ̄ , σ), σ, q4σ + z∗4(τ̄ , σ))) = 0, (23)

for i = 1, 2, 4, with σ and τ̄ small enough.

We have
∂Z∗

∂τ̄
(0, 0) = 0 and ∂Z∗

∂σ (0, 0) = (− f0c0
a0f0−e0b0

, c0e0
a0f0−e0b0

, 0, 0) (see Appendix,
subsection 4.3).
We have the following theorem.

Theorem 1.3 Let (H1) be satisfied and γ > γ∗. There exist λ0 > 0 such that for λ ∈
(0, λ0) we have a supercritical bifurcation of nontrivial periodic solutions of (5)-(12) with
period τ(σ) = τ∗0 + τ̄(σ) starting from ζ0+σY0+Z∗(τ̄(σ), σ) for σ(> 0) small enough
where τ̄(σ) = − C

2Bσ + ◦(σ).

PROOF. —
We have M(τ̄ , X̄) = 0 if and only if

ω(τ̄ , σ) = M3 (τ̄ , (q1σ + z∗1(τ̄ , σ), q2σ + z∗2(τ̄ , σ), σ, q4σ + z∗4(τ̄ , σ))) = 0. (24)
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We find ω(0, 0) = 0 and ∂ω(0,0)
∂τ̄ = ∂ω(0,0)

∂σ = 0 (see Appendix, subsection 4.4).

Let A = ∂2ω(0,0)
∂τ̄2 , B = ∂2ω(0,0)

∂τ̄∂σ and C = ∂2ω(0,0)
∂σ2 . It’s shown that A = 0 (see Appendix,

subsection 4.5). Hence

ω(τ̄ , σ) = Bτ̄σ + C σ
2

2
+ o

(
|σ|2 + |τ̄ |2

)
,

where
B = −∂Θ3

∂y0

∂2Φ3(τ0,ζ0)
∂τ̄∂y0

= −(γ − ay − λax

d1
x∗
0) < 0

and

C = −∂Θ3

∂y0

{
2∂2Φ3(τ0,ζ0)

∂x0∂y0

(
q1 +

∂z∗
1 (0,0)
∂σ

)
+ 2∂2Φ3(τ0,ζ0)

∂x1∂y0

(
q2 +

∂z∗
2 (0,0)
∂σ

)
+2∂2Φ3(τ0,ζ0)

∂y0∂y1
q4 +

∂2Φ3(τ0,ζ0)
∂y2

0

}
= 2λ ax

u2−u1

(
eu2τ0−1

u2
− eu1τ0−1

u1

)
f0(d0h0−2c0i0)
i0(a0f0−b0e0)

+2λ
(

d1+u2

u2−u1

(
eu2τ0−1

u2

)
− d1+u1

u2−u1

(
eu1τ0−1

u1

))
e0(d0h0−2c0i0)
i0(a0f0−b0e0)

+2λα
(

e−d2τ0−1
d2

)
h0

i0
+ 2γ0

(
e
(γ−ay−λ

ax
d1

x∗
0
)τ0−1

γ−ay−λ ax
d1

x∗
0

)
+λα

ay

γ−ay−λ ax
d1

x∗
0+d2

(
e
(γ−ay−λ

ax
d1

x∗
0
)τ0−1

γ−ay−λ ax
d1

x∗
0

+ e−d2τ0−1
d2

)
.

For λ = 0, we have
C = 2γ0

(
e(γ−ay)τ0−1

γ−ay

)
> 0.

REMARK. —
From theorem 1.3, we deduce that for high growth rate of leukemic sensitive stem cells
γ(> γ∗) and period of treatment dose τ0 = τ∗0 there is lost of stability of the disease free
equilibrium and we note the presence of nontrivial periodic solution which means that the
disease is installed for period τ0(σ) close to τ∗0 .

2. Numerical simulations
To illustrate our results, we give some numerical simulations.
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In Figure 1, we consider the case of the theorem 1.2, we have the stability of the
healthy steady state Ef .
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Figure 1. The curves of normal stem cells (top left), normal progenitor cells (top right),
leukemic stem cells (bottom left) and leukemic progenitor cells (bottom right) with β = 1.1,
ax = 0.8, β0 = 0.00000007, λ = 0.0000001, d1 = 0.405, γ = 1.121, ay = 0.9, γ0 =
0.0000003, α = 0.8, d2 = 0.402, T0 = 0.5, T1 = 0.6, τ = 30, x0(0) = 10000, x1(0) = 10000,
y0(0) = 10000 and y1(0) = 10000
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In the Figure 2, we consider the case of the theorem 1.2, we have the instability of the
healthy steady state Ef , we see that leukemic cells reappears.
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Figure 2. The curves of normal stem cells (top left), normal progenitor cells (top right),
leukemic stem cells (bottom left) and leukemic progenitor cells (bottom right) with β = 0.95,
ax = 0.8, β0 = 0.00007, λ = 0.0001, d1 = 0.41, γ = 1.121, ay = 0.85, γ0 = 0.0003, α = 0.8,
d2 = 0.402, T0 = 0.5, T1 = 0.5, τ = 30, x0(0) = 1000, x1(0) = 1000, y0(0) = 1000 and
y1(0) = 1000
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In Figure 3, we consider the case of the theorem 1.3, we have the bifurcation of perio-
dic solutions for the treatment period τ = τ∗0 .
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Figure 3. The curves of normal stem cells (top left), normal progenitor cells (top right),
leukemic stem cells (bottom left) and leukemic progenitor cells (bottom right) with β = 0.8,
ax = 0.5, β0 = 0.00007, λ = 0.0001, d1 = 0.8, γ = 1.121, ay = 0.95, γ0 = 0.0003, α = 0.8,
d2 = 0.007, T0 = 0.4, T1 = 0.5, τ = τ∗

0 = 31.0706, x0(0) = 2000, x1(0) = 1500, y0(0) = 1
and y1(0) = 1

3. Conclusions
In this work we have analyzed a mathematical model of chronic myeloid leukemia

(CML) which is an extension of a model developed in [9] in the case without medical
treatment. In our work, we considered the case of a treatment with instantaneous effect
described by discrete equations called impulses. We have studied the stability of the heal-
thy equilibrium (trivial solution), it becomes stable if the growth rate of resistant stem
cells γ does not exceed a certain threshold γ∗, if it reaches this threshold we obtain a cri-
tical case which gives bifurcations what we want say that is the tumor persists and remains
viable.
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4. Appendix

4.1. First derivatives of Φ
For all t ∈ (0, τ ], we have d

dtDX(Φ(t, ζ0)) =
∂F
∂X (ζ0)

∂Φ
∂X (t, ζ0) with the initial condi-

tion DX(Φ(0, ζ0)) = IR4 , where

d

dt
DX(Φ(t, ζ0)) =

d

dt


∂Φ1(t,ζ0)

∂x0

∂Φ1(t,ζ0)
∂x1

∂Φ1(t,ζ0)
∂y0

∂Φ1(t,ζ0)
∂y1

∂Φ2(t,ζ0)
∂x0

∂Φ2(t,ζ0)
∂x1

∂Φ2(t,ζ0)
∂y0

∂Φ2(t,ζ0)
∂y1

∂Φ3(t,ζ0)
∂x0

∂Φ3(t,ζ0)
∂x1

∂Φ3(t,ζ0)
∂y0

∂Φ3(t,ζ0)
∂y1

∂Φ4(t,ζ0)
∂x0

∂Φ4(t,ζ0)
∂x1

∂Φ4(t,ζ0)
∂y0

∂Φ4(t,ζ0)
∂y1

 ,

∂F
∂X

(ζ0) =


∂F1(ζ(t))

∂x0

∂F1(ζ(t))
∂x1

∂F1(ζ(t))
∂y0

∂F1(ζ(t))
∂y1

∂F2(ζ(t))
∂x0

∂F2(ζ(t))
∂x1

∂F2(ζ(t))
∂y0

∂F2(ζ(t))
∂y1

∂F3(ζ(t))
∂x0

∂F3(ζ(t))
∂x1

∂F3(ζ(t))
∂y0

∂F3(ζ(t))
∂y1

∂F4(ζ(t))
∂x0

∂F4(ζ(t))
∂x1

∂F4(ζ(t))
∂y0

∂F4(ζ(t))
∂y1


=

 −β0x
∗
0 −λx∗

0 0 −λx∗
0

ax −d1 0 0
0 0 γ − ay − λax

d1
x∗
0 0

0 0 ay −d2

 ,

and

∂Φ

∂X
(t, ζ0) =


∂Φ1(t,ζ0)

∂x0

∂Φ1(t,ζ0)
∂x1

∂Φ1(t,ζ0)
∂y0

∂Φ1(t,ζ0)
∂y1

∂Φ2(t,ζ0)
∂x0

∂Φ2(t,ζ0)
∂x1

∂Φ2(t,ζ0)
∂y0

∂Φ2(t,ζ0)
∂y1

∂Φ3(t,ζ0)
∂x0

∂Φ3(t,ζ0)
∂x1

∂Φ3(t,ζ0)
∂y0

∂Φ3(t,ζ0)
∂y1

∂Φ4(t,ζ0)
∂x0

∂Φ4(t,ζ0)
∂x1

∂Φ4(t,ζ0)
∂y0

∂Φ4(t,ζ0)
∂y1

 .

From Cauchy Lipschitz theorem (uniqueness of solution) we obtain that ∂Φ2(t,ζ0)
∂yi

=
∂Φ3(t,ζ0)

∂xi
= ∂Φ4(t,ζ0)

∂xi
= 0, i ∈ {0, 1} and ∂Φ3(t,ζ0)

∂y1
= 0. Moreover, we have

d

dt

(
∂Φ1(t, ζ0)

∂x0

)
=

∂F1(ζ(t))

∂x0

∂Φ1(t, ζ0)

∂x0
+

∂F1(ζ(t))

∂x1

∂Φ2(t, ζ0)

∂x0
, (25)

d

dt

(
∂Φ1(t, ζ0)

∂x1

)
=

∂F1(ζ(t))

∂x0

∂Φ1(t, ζ0)

∂x1
+

∂F1(ζ(t))

∂x1

∂Φ2(t, ζ0)

∂x1
, (26)

d

dt

(
∂Φ1(t, ζ0)

∂y0

)
=

∂F1(ζ(t))

∂x0

∂Φ1(t, ζ0)

∂y0
+

∂F1(ζ(t))

∂y1

∂Φ4(t, ζ0)

∂y0
, (27)

d

dt

(
∂Φ1(t, ζ0)

∂y1

)
=

∂F1(ζ(t))

∂x0

∂Φ1(t, ζ0)

∂y1
+

∂F1(ζ(t))

∂y1

∂Φ4(t, ζ0)

∂y1
, (28)

d

dt

(
∂Φ2(t, ζ0)

∂x0

)
=

∂F2(ζ(t))

∂x0

∂Φ1(t, ζ0)

∂x0
+

∂F2(ζ(t))

∂x1

∂Φ2(t, ζ0)

∂x0
, (29)

d

dt

(
∂Φ2(t, ζ0)

∂x1

)
=

∂F2(ζ(t))

∂x0

∂Φ1(t, ζ0)

∂x1
+

∂F2(ζ(t))

∂x1

∂Φ2(t, ζ0)

∂x1
, (30)

d

dt

(
∂Φ3(t, ζ0)

∂y0

)
=

∂F3(ζ(t))

∂y0

∂Φ3(t, ζ0)

∂y0
, (31)

d

dt

(
∂Φ4(t, ζ0)

∂y0

)
=

∂F4(ζ(t))

∂y0

∂Φ3(t, ζ0)

∂y0
+

∂F4(ζ(t))

∂y1

∂Φ4(t, ζ0)

∂y0
, (32)
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d

dt

(
∂Φ4(t, ζ0)

∂y1

)
=

∂F4(ζ(t))

∂y1

∂Φ4(t, ζ0)

∂y1
. (33)

From (31) we obtain ∂Φ3(t,ζ0)
∂y0

= e(γ−ay−λ ax
d1

x∗
0)t.

From (32) we obtain ∂Φ4(t,ζ0)
∂y0

=
ay

γ−ay−λ ax
d1

x∗
0+d2

(e(γ−ay−λ ax
d1

x∗
0)t − e−d2t).

From (33) we have ∂Φ4(t,ζ0)
∂y1

= e−d2t.

From (25) and (29) we have

(
∂Φ1(t,ζ0)

∂x0
∂Φ2(t,ζ0)

∂x0

)
= etA

(
∂Φ1(0,ζ0)

∂x0
∂Φ2(0,ζ0)

∂x0

)
= etA

(
1
0

)
, where

A =

(
∂F1(ζ(t))

∂x0

∂F1(ζ(t))
∂x1

∂F2(ζ(t))
∂x0

∂F2(ζ(t))
∂x1

)
=

(
−β0x

∗
0 −λx∗

0

ax −d1

)
= PV P−1, V =

(
u1 0
0 u2

)
,

P =

(
d1+u1

ax

d1+u2

ax

1 1

)
, P−1 =

(
− ax

u2−u1

d1+u2

u2−u1
ax

u2−u1
− d1+u1

u2−u1

)
,

where u1 =
βx∗

0+d1−
√
∆

2 , u2 =
βx∗

0+d1+
√
∆

2 , ∆ = (β0x
∗
0 − d1)

2 − 4λaxx
∗
0 and

etA = PetV P−1

=

(
d1+u1

ax

d1+u2
ax

1 1

)(
eu1t 0
0 eu2t

)(
− ax

u2−u1

d1+u2
u2−u1

ax
u2−u1

− d1+u1
u2−u1

)
=

(
d1+u1

ax
eu1t d1+u2

ax
eu2t

eu1t eu2t

)(
− ax

u2−u1

d1+u2
u2−u1

ax
u2−u1

− d1+u1
u2−u1

)
=

(
d1+u2
u2−u1

eu2t − d1+u1
u2−u1

eu1t − d1+u2
u2−u1

d1+u1
ax

(eu2t − eu1t)
ax

u2−u1
(eu2t − eu1t) − d1+u1

u2−u1
eu2t + d1+u2

u2−u1
eu1t

)
.

We obtain {
∂Φ1(t,ζ0)

∂x0
= d1+u2

u2−u1
eu2t − d1+u1

u2−u1
eu1t,

∂Φ2(t,ζ0)
∂x0

= ax

u2−u1
(eu2t − eu1t).

From (26) and (30) we have

(
∂Φ1(t,ζ0)

∂x1
∂Φ2(t,ζ0)

∂x1

)
= etA

(
∂Φ1(0,ζ0)

∂x1
∂Φ2(0,ζ0)

∂x1

)
= etA

(
0
1

)
. We

obtain {
∂Φ1(t,ζ0)

∂x1
= − d1+u2

u2−u1

d1+u1

ax
(eu2t − eu1t),

∂Φ2(t,ζ0)
∂x1

= − d1+u1

u2−u1
eu2t + d1+u2

u2−u1
eu1t.

From (27) we have

∂Φ1(t, ζ0)

∂y0
= − λayx

∗
0e

−β0x
∗
0t

γ − ay − λax

d1
x∗
0 + d2

(
e(γ−ay−λ ax

d1
x∗
0+β0x

∗
0)t − 1

γ − ay − λax

d1
x∗
0 + β0x∗

0

− e(β0x
∗
0−d2)t − 1

β0x∗
0 − d2

)
,

From (28) we have

∂Φ1(t, ζ0)

∂y1
= −λx∗

0e
−β0x

∗
0t

(
e(β0x

∗
0−d2)t − 1

β0x∗
0 − d2

)
.
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4.2. Second derivatives of Φ3

The second partial derivatives of Φ3 can be obtained from the following differential
equations,

d
dt

(
∂2Φ3(t,ζ0)

∂x2
0

)
=

∂F3(ζ(t))

∂x0

∂2Φ1(t,ζ0)

∂x2
0

+
∂F3(ζ(t))

∂x1

∂2Φ2(t,ζ0)

∂x2
0

+
∂F3(ζ(t))

∂y0

∂2Φ3(t,ζ0)

∂x2
0

+
∂F3(ζ(t))

∂y1

∂2Φ4(t,ζ0)

∂x2
0

+

(
∂2F3(ζ(t))

∂x2
0

∂Φ1(t,ζ0)

∂x0
+

∂2F3(ζ(t))

∂x0∂x1

∂Φ2(t,ζ0)

∂x0
+

∂2F3(ζ(t))

∂x0∂y0

∂Φ3(t,ζ0)

∂x0
+

∂2F3(ζ(t))

∂x0∂y1

∂Φ4(t,ζ0)

∂x0

)
∂Φ1(t,ζ0)

∂x0

+

(
∂2F3(ζ(t))

∂x0∂x1

∂Φ1(t,ζ0)

∂x0
+

∂2F3(ζ(t))

∂x2
1

∂Φ2(t,ζ0)

∂x0
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ3(t,ζ0)

∂x0
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ4(t,ζ0)

∂x0

)
∂Φ2(t,ζ0)

∂x0

+

(
∂2F3(ζ(t))

∂x0∂y0

∂Φ1(t,ζ0)

∂x0
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ2(t,ζ0)

∂x0
+

∂2F3(ζ(t))

∂y2
0

∂Φ3(t,ζ0)

∂x0
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ4(t,ζ0)

∂x0

)
∂Φ3(t,ζ0)

∂x0

+

(
∂2F3(ζ(t))

∂x0∂y1

∂Φ1(t,ζ0)

∂x0
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ2(t,ζ0)

∂x0
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ3(t,ζ0)

∂x0
+

∂2F3(ζ(t))

∂y2
1

∂Φ4(t,ζ0)

∂x0

)
∂Φ4(t,ζ0)

∂x0

with the initial condition ∂2Φ3(0,ζ0)
∂x2

0
= 0, then

d

dt

(
∂2Φ3(t, ζ0)

∂x2
0

)
=

∂F3(ζ(t))

∂y0

∂2Φ3(t, ζ0)

∂x2
0

(34)

with the initial condition ∂2Φ3(0,ζ0)
∂x2

0
= 0. From (34) we have

∂2Φ3(t, ζ0)

∂x2
0

= 0.

d
dt

(
∂2Φ3(t,ζ0)

∂x0∂x1

)
=

∂F3(ζ(t))

∂x0

∂2Φ1(t,ζ0)

∂x0∂x1
+

∂F3(ζ(t))

∂x1

∂2Φ2(t,ζ0)

∂x0∂x1
+

∂F3(ζ(t))

∂y0

∂2Φ3(t,ζ0)

∂x0∂x1
+

∂F3(ζ(t))

∂y1

∂2Φ4(t,ζ0)

∂x0∂x1

+

(
∂2F3(ζ(t))

∂x2
0

∂Φ1(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x0∂x1

∂Φ2(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x0∂y0

∂Φ3(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x0∂y1

∂Φ4(t,ζ0)

∂x1

)
∂Φ1(t,ζ0)

∂x0

+

(
∂2F3(ζ(t))

∂x0∂x1

∂Φ1(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x2
1

∂Φ2(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ3(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ4(t,ζ0)

∂x1

)
∂Φ2(t,ζ0)

∂x0

+

(
∂2F3(ζ(t))

∂x0∂y0

∂Φ1(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ2(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂y2
0

∂Φ3(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ4(t,ζ0)

∂x1

)
∂Φ3(t,ζ0)

∂x0

+

(
∂2F3(ζ(t))

∂x0∂y1

∂Φ1(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ2(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ3(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂y2
1

∂Φ4(t,ζ0)

∂x1

)
∂Φ4(t,ζ0)

∂x0

with the initial condition ∂2Φ3(0,ζ0)
∂x0∂x1

= 0, then

d

dt

(
∂2Φ3(t, ζ0)

∂x0∂x1

)
=

∂F3(ζ(t))

∂y0

∂2Φ3(t, ζ0)

∂x0∂x1

(35)

with the initial condition ∂2Φ3(0,ζ0)
∂x0∂x1

= 0. From (35) we have

∂2Φ3(t, ζ0)

∂x0∂x1
= 0.

d
dt

(
∂2Φ3(t,ζ0)

∂x0∂y0

)
=

∂F3(ζ(t))

∂x0

∂2Φ1(t,ζ0)

∂x0∂y0
+

∂F3(ζ(t))

∂x1

∂2Φ2(t,ζ0)

∂x0∂y0
+

∂F3(ζ(t))

∂y0

∂2Φ3(t,ζ0)

∂x0∂y0
+

∂F3(ζ(t))

∂y1

∂2Φ4(t,ζ0)

∂x0∂y0

+

(
∂2F3(ζ(t))

∂x2
0

∂Φ1(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x0∂x1

∂Φ2(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x0∂y0

∂Φ3(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x0∂y1

∂Φ4(t,ζ0)

∂y0

)
∂Φ1(t,ζ0)

∂x0

+

(
∂2F3(ζ(t))

∂x0∂x1

∂Φ1(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x2
1

∂Φ2(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ3(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ4(t,ζ0)

∂y0

)
∂Φ2(t,ζ0)

∂x0

+

(
∂2F3(ζ(t))

∂x0∂y0

∂Φ1(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ2(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂y2
0

∂Φ3(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ4(t,ζ0)

∂y0

)
∂Φ3(t,ζ0)

∂x0

+

(
∂2F3(ζ(t))

∂x0∂y1

∂Φ1(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ2(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ3(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂y2
1

∂Φ4(t,ζ0)

∂y0

)
∂Φ4(t,ζ0)

∂x0
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with the initial condition ∂2Φ3(0,ζ0)
∂x0∂y0

= 0, then

d

dt

(
∂2Φ3(t, ζ0)

∂x0∂y0

)
=

∂F3(ζ(t))

∂y0

∂2Φ3(t, ζ0)

∂x0∂y0

+
∂2F3(ζ(t))

∂x1∂y0

∂Φ3(t, ζ0)

∂y0

∂Φ2(t, ζ0)

∂x0

(36)

with the initial condition ∂2Φ3(0,ζ0)
∂x0∂y0

= 0. From (36) we have

∂2Φ3(t, ζ0)

∂x0∂y0
= e

∂F3(ζ(t))

∂y0
t
∫ t

0

∂2F3(ζ(s))

∂x1∂y0

∂Φ2(s, ζ0)

∂x0
ds.

d
dt

(
∂2Φ3(t,ζ0)

∂x0∂y1

)
=

∂F3(ζ(t))

∂x0

∂2Φ1(t,ζ0)

∂x0∂y1
+

∂F3(ζ(t))

∂x1

∂2Φ2(t,ζ0)

∂x0∂y1
+

∂F3(ζ(t))

∂y0

∂2Φ3(t,ζ0)

∂x0∂y1
+

∂F3(ζ(t))

∂y1

∂2Φ4(t,ζ0)

∂x0∂y1

+

(
∂2F3(ζ(t))

∂x2
0

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x0∂x1

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x0∂y0

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x0∂y1

∂Φ4(t,ζ0)

∂y1

)
∂Φ1(t,ζ0)

∂x0

+

(
∂2F3(ζ(t))

∂x0∂x1

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x2
1

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ4(t,ζ0)

∂y1

)
∂Φ2(t,ζ0)

∂x0

+

(
∂2F3(ζ(t))

∂x0∂y0

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y2
0

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ4(t,ζ0)

∂y1

)
∂Φ3(t,ζ0)

∂x0

+

(
∂2F3(ζ(t))

∂x0∂y1

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y2
1

∂Φ4(t,ζ0)

∂y1

)
∂Φ4(t,ζ0)

∂x0

with the initial condition ∂2Φ3(0,ζ0)
∂x0∂y1

= 0, then

d

dt

(
∂2Φ3(t, ζ0)

∂x0∂y1

)
=

∂F3(ζ(t))

∂y0

∂2Φ3(t, ζ0)

∂x0∂y1

(37)

with the initial condition ∂2Φ3(0,ζ0)
∂x0∂y1

= 0. From (37) we have

∂2Φ3(t, ζ0)

∂x0∂y1
= 0.

d
dt

(
∂2Φ3(t,ζ0)

∂x2
1

)
=

∂F3(ζ(t))

∂x0

∂2Φ1(t,ζ0)

∂x2
1

+
∂F3(ζ(t))

∂x1

∂2Φ2(t,ζ0)

∂x2
1

+
∂F3(ζ(t))

∂y0

∂2Φ3(t,ζ0)

∂x2
1

+
∂F3(ζ(t))

∂y1

∂2Φ4(t,ζ0)

∂x2
1

+

(
∂2F3(ζ(t))

∂x2
0

∂Φ1(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x0∂x1

∂Φ2(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x0∂y0

∂Φ3(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x0∂y1

∂Φ4(t,ζ0)

∂x1

)
∂Φ1(t,ζ0)

∂x1

+

(
∂2F3(ζ(t))

∂x0∂x1

∂Φ1(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x2
1

∂Φ2(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ3(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ4(t,ζ0)

∂x1

)
∂Φ2(t,ζ0)

∂x1

+

(
∂2F3(ζ(t))

∂x0∂y0

∂Φ1(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ2(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂y2
0

∂Φ3(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ4(t,ζ0)

∂x1

)
∂Φ3(t,ζ0)

∂x1

+

(
∂2F3(ζ(t))

∂x0∂y1

∂Φ1(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ2(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ3(t,ζ0)

∂x1
+

∂2F3(ζ(t))

∂y2
1

∂Φ4(t,ζ0)

∂x1

)
∂Φ4(t,ζ0)

∂x1

with the initial condition ∂2Φ3(0,ζ0)
∂x2

1
= 0, then

d

dt

(
∂2Φ3(t, ζ0)

∂x2
1

)
=

∂F3(ζ(t))

∂y0

∂2Φ3(t, ζ0)

∂x2
1

(38)

with the initial condition ∂2Φ3(0,ζ0)
∂x2

1
= 0. From (38) we have

∂2Φ3(t, ζ0)

∂x2
1

= 0.

d
dt

(
∂2Φ3(t,ζ0)

∂x1∂y0

)
=

∂F3(ζ(t))

∂x0

∂2Φ1(t,ζ0)

∂x1∂y0
+

∂F3(ζ(t))

∂x1

∂2Φ2(t,ζ0)

∂x1∂y0
+

∂F3(ζ(t))

∂y0

∂2Φ3(t,ζ0)

∂x1∂y0
+

∂F3(ζ(t))

∂y1

∂2Φ4(t,ζ0)

∂x1∂y0

+

(
∂2F3(ζ(t))

∂x2
0

∂Φ1(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x0∂x1

∂Φ2(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x0∂y0

∂Φ3(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x0∂y1

∂Φ4(t,ζ0)

∂y0

)
∂Φ1(t,ζ0)

∂x1

+

(
∂2F3(ζ(t))

∂x0∂x1

∂Φ1(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x2
1

∂Φ2(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ3(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ4(t,ζ0)

∂y0

)
∂Φ2(t,ζ0)

∂x1

+

(
∂2F3(ζ(t))

∂x0∂y0

∂Φ1(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ2(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂y2
0

∂Φ3(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ4(t,ζ0)

∂y0

)
∂Φ3(t,ζ0)

∂x1

+

(
∂2F3(ζ(t))

∂x0∂y1

∂Φ1(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ2(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ3(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂y2
1

∂Φ4(t,ζ0)

∂y0

)
∂Φ4(t,ζ0)

∂x1
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with the initial condition ∂2Φ3(0,ζ0)
∂x1∂y0

= 0, then

d

dt

(
∂2Φ3(t, ζ0)

∂x1∂y0

)
=

∂F3(ζ(t))

∂y0

∂2Φ3(t, ζ0)

∂x1∂y0

+
∂2F3(ζ(t))

∂x1∂y0

∂Φ3(t, ζ0)

∂y0

∂Φ2(t, ζ0)

∂x1

(39)

with the initial condition ∂2Φ3(0,ζ0)
∂x1∂y0

= 0. From (39) we have

∂2Φ3(t, ζ0)

∂x1∂y0
= e

∂F3(ζ(t))

∂y0
t
∫ t

0

∂2F3(ζ(s))

∂x1∂y0

∂Φ2(s, ζ0)

∂x1
ds.

d
dt

(
∂2Φ3(t,ζ0)

∂x1∂y1

)
=

∂F3(ζ(t))

∂x0

∂2Φ1(t,ζ0)

∂x1∂y1
+

∂F3(ζ(t))

∂x1

∂2Φ2(t,ζ0)

∂x1∂y1
+

∂F3(ζ(t))

∂y0

∂2Φ3(t,ζ0)

∂x1∂y1
+

∂F3(ζ(t))

∂y1

∂2Φ4(t,ζ0)

∂x1∂y1

+

(
∂2F3(ζ(t))

∂x2
0

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x0∂x1

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x0∂y0

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x0∂y1

∂Φ4(t,ζ0)

∂y1

)
∂Φ1(t,ζ0)

∂x1

+

(
∂2F3(ζ(t))

∂x0∂x1

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x2
1

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ4(t,ζ0)

∂y1

)
∂Φ2(t,ζ0)

∂x1

+

(
∂2F3(ζ(t))

∂x0∂y0

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y2
0

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ4(t,ζ0)

∂y1

)
∂Φ3(t,ζ0)

∂x1

+

(
∂2F3(ζ(t))

∂x0∂y1

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y2
1

∂Φ4(t,ζ0)

∂y1

)
∂Φ4(t,ζ0)

∂x1

with the initial condition ∂2Φ3(0,ζ0)
∂x1∂y1

= 0, then

d

dt

(
∂2Φ3(t, ζ0)

∂x1∂y1

)
=

∂F3(ζ(t))

∂y0

∂2Φ3(t, ζ0)

∂x1∂y1

(40)

with the initial condition ∂2Φ3(0,ζ0)
∂x1∂y1

= 0. From (40) we have

∂2Φ3(t, ζ0)

∂x1∂y1
= 0.

d
dt

(
∂2Φ3(t,ζ0)

∂y2
0

)
=

∂F3(ζ(t))

∂x0

∂2Φ1(t,ζ0)

∂y2
0

+
∂F3(ζ(t))

∂x1

∂2Φ2(t,ζ0)

∂y2
0

+
∂F3(ζ(t))

∂y0

∂2Φ3(t,ζ0)

∂y2
0

+
∂F3(ζ(t))

∂y1

∂2Φ4(t,ζ0)

∂y2
0

+

(
∂2F3(ζ(t))

∂x2
0

∂Φ1(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x0∂x1

∂Φ2(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x0∂y0

∂Φ3(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x0∂y1

∂Φ4(t,ζ0)

∂y0

)
∂Φ1(t,ζ0)

∂y0

+

(
∂2F3(ζ(t))

∂x0∂x1

∂Φ1(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x2
1

∂Φ2(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ3(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ4(t,ζ0)

∂y0

)
∂Φ2(t,ζ0)

∂y0

+

(
∂2F3(ζ(t))

∂x0∂y0

∂Φ1(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ2(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂y2
0

∂Φ3(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ4(t,ζ0)

∂y0

)
∂Φ3(t,ζ0)

∂y0

+

(
∂2F3(ζ(t))

∂x0∂y1

∂Φ1(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ2(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ3(t,ζ0)

∂y0
+

∂2F3(ζ(t))

∂y2
1

∂Φ4(t,ζ0)

∂y0

)
∂Φ4(t,ζ0)

∂y0

with the initial condition ∂2Φ3(0,ζ0)
∂y2

0
= 0, then

d

dt

(
∂2Φ3(t, ζ0)

∂y2
0

)
=

∂F3(ζ(t))

∂y0

∂2Φ3(t, ζ0)

∂y2
0

+

(
∂2F3(ζ(t))

∂y2
0

∂Φ3(t, ζ0)

∂y0

+
∂2F3(ζ(t))

∂y0∂y1

∂Φ4(t, ζ0)

∂y0

)
∂Φ3(t, ζ0)

∂y0

(41)

with the initial condition ∂2Φ3(0,ζ0)
∂y2

0
= 0. From (41) we have

∂2Φ3(t, ζ0)

∂y20
= e

∂F3(ζ(t))

∂y0
t
∫ t

0

(
∂2F3(ζ(s))

∂y20

∂Φ3(s, ζ0)

∂y0
+

∂2F3(ζ(s))

∂y0∂y1

∂Φ4(s, ζ0)

∂y0

)
ds.

d
dt

(
∂2Φ3(t,ζ0)

∂y0∂y1

)
=

∂F3(ζ(t))

∂x0

∂2Φ1(t,ζ0)

∂y0∂y1
+

∂F3(ζ(t))

∂x1

∂2Φ2(t,ζ0)

∂y0∂y1
+

∂F3(ζ(t))

∂y0

∂2Φ3(t,ζ0)

∂y0∂y1
+

∂F3(ζ(t))

∂y1

∂2Φ4(t,ζ0)

∂y0∂y1

+

(
∂2F3(ζ(t))

∂x2
0

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x0∂x1

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x0∂y0

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x0∂y1

∂Φ4(t,ζ0)

∂y1

)
∂Φ1(t,ζ0)

∂y0

+

(
∂2F3(ζ(t))

∂x0∂x1

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x2
1

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ4(t,ζ0)

∂y1

)
∂Φ2(t,ζ0)

∂y0

+

(
∂2F3(ζ(t))

∂x0∂y0

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y2
0

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ4(t,ζ0)

∂y1

)
∂Φ3(t,ζ0)

∂y0

+

(
∂2F3(ζ(t))

∂x0∂y1

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y2
1

∂Φ4(t,ζ0)

∂y1

)
∂Φ4(t,ζ0)

∂y0
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with the initial condition ∂2Φ3(0,ζ0)
∂y0∂y1

= 0, then

d

dt

(
∂2Φ3(t, ζ0)

∂y0∂y1

)
=

∂F3(ζ(t))

∂y0

∂2Φ3(t, ζ0)

∂y0∂y1

+
∂2F3(ζ(t))

∂y0∂y1

∂Φ4(t, ζ0)

∂y1

∂Φ3(t, ζ0)

∂y0

(42)

with the initial condition ∂2Φ3(0,ζ0)
∂y0∂y1

= 0. From (42) we have

∂2Φ3(t, ζ0)

∂y0∂y1
= e

∂F3(ζ(t))

∂y0
t
∫ t

0

∂2F3(ζ(s))

∂y0∂y1

∂Φ4(s, ζ0)

∂y1
ds.

d
dt

(
∂2Φ3(t,ζ0)

∂y2
1

)
=

∂F3(ζ(t))

∂x0

∂2Φ1(t,ζ0)

∂y2
1

+
∂F3(ζ(t))

∂x1

∂2Φ2(t,ζ0)

∂y2
1

+
∂F3(ζ(t))

∂y0

∂2Φ3(t,ζ0)

∂y2
1

+
∂F3(ζ(t))

∂y1

∂2Φ4(t,ζ0)

∂y2
1

+

(
∂2F3(ζ(t))

∂x2
0

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x0∂x1

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x0∂y0

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x0∂y1

∂Φ4(t,ζ0)

∂y1

)
∂Φ1(t,ζ0)

∂y1

+

(
∂2F3(ζ(t))

∂x0∂x1

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x2
1

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ4(t,ζ0)

∂y1

)
∂Φ2(t,ζ0)

∂y1

+

(
∂2F3(ζ(t))

∂x0∂y0

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y0

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y2
0

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ4(t,ζ0)

∂y1

)
∂Φ3(t,ζ0)

∂y1

+

(
∂2F3(ζ(t))

∂x0∂y1

∂Φ1(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂x1∂y1

∂Φ2(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y0∂y1

∂Φ3(t,ζ0)

∂y1
+

∂2F3(ζ(t))

∂y2
1

∂Φ4(t,ζ0)

∂y1

)
∂Φ4(t,ζ0)

∂y1

with the initial condition ∂2Φ3(0,ζ0)
∂y2

1
= 0, then

d

dt

(
∂2Φ3(t, ζ0)

∂y2
1

)
=

∂F3(ζ(t))

∂y0

∂2Φ3(t, ζ0)

∂y2
1

(43)

with the initial condition ∂2Φ3(0,ζ0)
∂y2

1
= 0. From (43) we have

∂2Φ3(t, ζ0)

∂y21
= 0.

4.3. First derivatives of Z∗

Let η(τ̄) = τ0+ τ̄ , η1(τ̄ , σ) = x∗
0+q1σ+z∗1(τ̄ , σ), η2(τ̄ , σ) =

ax

d1
x∗
0+q2σ+z∗2(τ̄ , σ),

η3(τ̄ , σ) = σ and η4(τ̄ , σ) = q4σ + z∗4(τ̄ , σ).
From (23) we have

∂
∂τ̄ (η1 −Θ1 ◦ Φ(η, η1, η2, η3, η4))(0, 0) = 0,
∂
∂τ̄ (η2 −Θ2 ◦ Φ(η, η1, η2, η3, η4))(0, 0) = 0,
∂
∂τ̄ (η4 −Θ4 ◦ Φ(η, η1, η2, η3, η4))(0, 0) = 0.

Therefore

∂z∗
1 (0,0)
∂τ̄ − ∂Θ1(Φ(τ0,ζ0))

∂x0

(
∂Φ1(τ0,ζ0)

∂τ̄ + ∂Φ1(τ0,ζ0)
∂x0

∂z∗
1 (0,0)
∂τ̄ + ∂Φ1(τ0,ζ0)

∂x1

∂z∗
2 (0,0)
∂τ̄

+∂Φ1(τ0,ζ0)
∂y1

∂z∗
4 (0,0)
∂τ̄

)
= 0,

∂z∗
2 (0,0)
∂τ̄ − ∂Θ2(Φ(τ0,ζ0))

∂x1

(
∂Φ2(τ0,ζ0)

∂τ̄ + ∂Φ2(τ0,ζ0)
∂x0

∂z∗
1 (0,0)
∂τ̄ + ∂Φ2(τ0,ζ0)

∂x1

∂z∗
2 (0,0)
∂τ̄

+∂Φ2(τ0,ζ0)
∂y1

∂z∗
4 (0,0)
∂τ̄

)
= 0,

∂z∗
4 (0,0)
∂τ̄ − ∂Θ4(Φ(τ0,ζ0))

∂y1

(
∂Φ4(τ0,ζ0)

∂τ̄ + ∂Φ4(τ0,ζ0)
∂x0

∂z∗
1 (0,0)
∂τ̄ + ∂Φ4(τ0,ζ0)

∂x1

∂z∗
2 (0,0)
∂τ̄

+∂Φ4(τ0,ζ0)
∂y1

∂z∗
4 (0,0)
∂τ̄

)
= 0.
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Since ∂Φ1(τ0,ζ0)
∂τ̄ = ∂Φ2(τ0,ζ0)

∂τ̄ = ∂Φ4(τ0,ζ0)
∂τ̄ = 0, we obtain

a0
∂z∗

1 (0,0)
∂τ̄ + b0

∂z∗
2 (0,0)
∂τ̄ + d0

∂z∗
4 (0,0)
∂τ̄ = 0,

e0
∂z∗

1 (0,0)
∂τ̄ + f0

∂z∗
2 (0,0)
∂τ̄ = 0,

i0
∂z∗

4 (0,0)
∂τ̄ = 0.

That is 
∂z∗

1 (0,0)
∂τ̄ = 0,

∂z∗
2 (0,0)
∂τ̄ = 0,

∂z∗
4 (0,0)
∂τ̄ = 0.

(44)

In the same way as above, we obtain
∂
∂σ (η1 −Θ1 ◦ Φ(η, η1, η2, η3, η4))(0, 0) = 0,
∂
∂σ (η2 −Θ2 ◦ Φ(η, η1, η2, η3, η4))(0, 0) = 0,
∂
∂σ (η4 −Θ4 ◦ Φ(η, η1, η2, η3, η4))(0, 0) = 0.

Therefore

∂z∗
1 (0,0)
∂σ − ∂Θ1(Φ(τ0,ζ0))

∂x0

(
∂Φ1(τ0,ζ0)

∂x0

(
q1 +

∂z∗
1 (0,0)
∂σ

)
+ ∂Φ1(τ0,ζ0)

∂x1

(
q2 +

∂z∗
2 (0,0)
∂σ

)
+∂Φ1(τ0,ζ0)

∂y0
+ ∂Φ1(τ0,ζ0)

∂y1

(
q1 +

∂z∗
4 (0,0)
∂σ

))
= 0,

∂z∗
2 (0,0)
∂σ − ∂Θ2(Φ(τ0,ζ0))

∂x0

(
∂Φ2(τ0,ζ0)

∂x0

(
q1 +

∂z∗
1 (0,0)
∂σ

)
+ ∂Φ2(τ0,ζ0)

∂x1

(
q2 +

∂z∗
2 (0,0)
∂σ

)
+∂Φ2(τ0,ζ0)

∂y0
+ ∂Φ2(τ0,ζ0)

∂y1

(
q1 +

∂z∗
4 (0,0)
∂σ

))
= 0,

∂z∗
4 (0,0)
∂σ − ∂Θ4(Φ(τ0,ζ0))

∂x0

(
∂Φ4(τ0,ζ0)

∂x0

(
q1 +

∂z∗
1 (0,0)
∂σ

)
+ ∂Φ4(τ0,ζ0)

∂x1

(
q2 +

∂z∗
2 (0,0)
∂σ

)
+∂Φ4(τ0,ζ0)

∂y0
+ ∂Φ4(τ0,ζ0)

∂y1

(
q1 +

∂z∗
4 (0,0)
∂σ

))
= 0.

We obtain 
a0

∂z∗
1 (0,0)
∂σ + b0

∂z∗
2 (0,0)
∂σ + c0 + d0

∂z∗
4 (0,0)
∂σ = 0,

e0
∂z∗

1 (0,0)
∂σ + f0

∂z∗
2 (0,0)
∂σ = 0,

i0
∂z∗

4 (0,0)
∂σ = 0.

That is 
∂z∗

1 (0,0)
∂σ = − f0c0

a0f0−b0e0
,

∂z∗
2 (0,0)
∂σ = e0c0

a0f0−b0e0
,

∂z∗
4 (0,0)
∂σ = 0.

(45)

4.4. First derivatives of ω
We have
∂ω
∂τ̄ = ∂

∂τ̄ (η3 −Θ3 ◦ Φ(η, η1, η2, η3, η4))
= −∂Θ3

∂y0

(
∂Φ3(η,η1,η2,η3,η4)

∂τ̄ + ∂Φ3(η,η1,η2,η3,η4)
∂x0

∂z∗
1

∂τ̄ + ∂Φ3(η,η1,η2,η3,η4)
∂x1

∂z∗
2

∂τ̄

+∂Φ3(η,η1,η2,η3,η4)
∂y1

∂z∗
4

∂τ̄

)
.

At (τ̄ , σ) = (0, 0) we have ∂Φ3(τ0,ζ0)
∂τ̄ = 0, then we obtain

∂ω
∂τ̄

(0, 0) = − ∂Θ3
∂y0

(
∂Φ3(τ0,ζ0)

∂x0

∂z∗1 (0,0)

∂τ̄
+ ∂Φ3(τ0,ζ0)

∂x1

∂z∗2 (0,0)

∂τ̄
+ ∂Φ3(τ0,ζ0)

∂y1

∂z∗4 (0,0)

∂τ̄

)
= 0.
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∂ω
∂σ =

∂

∂σ
(η3 −Θ3 ◦ Φ(η, η1, η2, η3, η4))

= 1− ∂Θ3

∂y0

(
∂Φ3(η,η1,η2,η3,η4)

∂x0

(
q1 +

∂z∗
1

∂σ

)
+ ∂Φ3(η,η1,η2,η3,η4)

∂x1

(
q2 +

∂z∗
2

∂σ

)
+∂Φ3(η,η1,η2,η3,η4)

∂y0
+ ∂Φ3(η,η1,η2,η3,η4)

∂y1

(
q4 +

∂z∗
4

∂σ

))
.

At (τ̄ , σ) = (0, 0) we obtain

∂ω
∂σ (0, 0) = 1− ∂Θ3

∂y0

(
∂Φ3(τ0,ζ0)

∂00

(
q1 +

∂z∗
1 (0,0)
∂σ

)
+ ∂Φ3(τ0,ζ0)

∂x1

(
q2 +

∂z∗
2 (0,0)
∂σ

)
+∂Φ3(τ0,ζ0)

∂y0
+ ∂Φ3(τ0,ζ0)

∂y1

(
q4 +

∂z∗
4 (0,0)
∂σ

))
= 1− ∂Θ3

∂y0

∂Φ3(τ0,ζ0)
∂y0

= g0 = 0

Therefore D(τ̄ ,σ)ω(0, 0) = (0, 0).

4.5. Second derivatives of ω
Let A = ∂2ω(0,0)

∂τ̄2 , B = ∂2ω(0,0)
∂τ̄∂σ and C = ∂2ω(0,0)

∂σ2 .

4.5.1. Calculation of A.
We have ∂2ω

∂τ̄2 = ∂2

∂τ̄2 (η3 −Θ3 ◦ Φ(η, η1, η2, η3, η4)), then

∂2ω
∂τ̄2 = − ∂Θ3

∂y0

{
∂2Φ3(η,η1,η2,η3,η4)

∂τ̄2 + 2 ∂2Φ3(η,η1,η2,η3,η4)
∂τ̄∂x0

∂z∗1
∂τ̄

+ 2 ∂2Φ3(η,η1,η2,η3,η4)
∂τ̄∂x1

∂z∗2
∂τ̄

+2 ∂2Φ3(η,η1,η2,η3,η4)
∂τ̄∂y1

∂z∗4
∂τ̄

+ ∂2Φ3(η,η1,η2,η3,η4)

∂x2
0

(
∂z∗1
∂τ̄

)2

+ 2 ∂2Φ3(η,η1,η2,η3,η4)
∂x0∂x1

∂z∗1
∂τ̄

∂z∗2
∂τ̄

+2 ∂2Φ3(η,η1,η2,η3,η4)
∂x0∂y1

∂z∗1
∂τ̄

∂z∗4
∂τ̄

+ ∂Φ3(η,η1,η2,η3,η4)
∂x0

∂2z∗1
∂τ̄2 + ∂2Φ3(η,η1,η2,η3,η4)

∂x2
1

(
∂z∗2
∂τ̄

)2

+2 ∂2Φ3(η,η1,η2,η3,η4)
∂x1∂y1

∂z∗2
∂τ̄

∂z∗4
∂τ̄

+ ∂Φ3(η,η1,η2,η3,η4)
∂x1

∂2z∗2
∂τ̄2 + ∂2Φ3(η,η1,η2,η3,η4)

∂y2
1

(
∂z∗4
∂τ̄

)2

+ ∂Φ3(η,η1,η2,η3,η4)
∂y1

∂2z∗4
∂τ̄2

}
.

At (τ̄ , σ) = (0, 0) we have ∂2Φ3(τ0,ζ0)
∂τ̄2 = 0. Then

A = 0.

4.5.2. Calculation of C.
We have ∂2ω

∂σ2 = ∂2

∂σ2 (η3 −Θ3 ◦ Φ(η, η1, η2, η3, η4)), then

∂2ω
∂σ2 = −∂Θ3

∂y0

(
∂2Φ3(η,η1,η2,η3,η4)

∂x2
0

(
q1 +

∂z∗
1

∂σ

)2
+ 2∂2Φ3(η,η1,η2,η3,η4)

∂x0∂x1

(
q1 +

∂z∗
1

∂σ

)(
q2 +

∂z∗
2

∂σ

)
+2∂2Φ3(η,η1,η2,η3,η4)

∂x0∂y1

(
q1 +

∂z∗
1

∂σ

)(
q4 +

∂z∗
4

∂σ

)
+ 2∂2Φ3(η,η1,η2,η3,η4)

∂x0∂y0

(
q1 +

∂z∗
1

∂σ

)
+∂Φ3(η,η1,η2,η3,η4)

∂x0

(
∂2z∗

1

∂σ2

)
+ ∂2Φ3(η,η1,η2,η3,η4)

∂x2
1

(
q2 +

∂z∗
2

∂σ

)2
+2∂2Φ3(η,η1,η2,η3,η4)

∂x1∂y1

(
q2 +

∂z∗
2

∂σ

)(
q4 +

∂z∗
4

∂σ

)
+ 2∂2Φ3(η,η1,η2,η3,η4)

∂y0∂x1

(
q2 +

∂z∗
2

∂σ

)
+∂Φ3(η,η1,η2,η3,η4)

∂x1

(
∂2z∗

2

∂σ2

)
+ ∂2Φ3(η,η1,η2,η3,η4)

∂y2
1

(
∂z∗

4

∂σ

)2
+ 2∂2Φ3(η,η1,η2,η3,η4)

∂y0∂y1

(
q4 +

∂z∗
4

∂σ

)
+∂Φ3(η,η1,η2,η3,η4)

∂y1

(
∂2z∗

4

∂σ2

)
+ ∂2Φ3(η,η1,η2,η3,η4)

∂y2
0

}
.
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At (τ̄ , σ) = (0, 0) we obtain

C = −∂Θ3

∂y0

{
2∂2Φ3(τ0,ζ0)

∂x0∂y0

(
q1 +

∂z∗
1 (0,0)
∂σ

)
+ 2∂2Φ3(τ0,ζ0)

∂x1∂y0

(
q2 +

∂z∗
2 (0,0)
∂σ

)
+2∂2Φ3(τ0,ζ0)

∂y0∂y1
q4 +

∂2Φ3(τ0,ζ0)
∂y2

0

}
.

4.5.3. Calculation of B.
We have ∂2ω

∂τ̄∂σ = ∂
∂τ̄

(
∂
∂σ (η3 −Θ3 ◦ Φ(η, η1, η2, η3, η4))

)
, then

∂2ω
∂τ̄∂σ = −∂Θ3

∂y0

{
∂2Φ3(η,η1,η2,η3,η4)

∂τ̄∂x0

(
q1 +

∂z∗
1

∂σ

)
+ ∂2Φ3(η,η1,η2,η3,η4)

∂τ̄∂x1

(
q2 +

∂z∗
2

∂σ

)
+∂2Φ3(η,η1,η2,η3,η4)

∂τ̄∂y0
+ ∂2Φ3(η,η1,η2,η3,η4)

∂τ̄∂y1

(
q4 +

∂z∗
4

∂σ

)
+∂2Φ3(η,η1,η2,η3,η4)

∂x2
0

∂z∗
1

∂τ̄

(
q1 +

∂z∗
1

∂σ

)
+ ∂2Φ3(η,η1,η2,η3,η4)

∂x0∂x1

∂z∗
1

∂τ̄

(
q2 +

∂z∗
2

∂σ

)
+∂2Φ3(η,η1,η2,η3,η4)

∂y0∂x0

∂z∗
1

∂τ̄ + ∂2Φ3(η,η1,η2,η3,η4)
∂y1∂x0

∂z∗
1

∂τ̄

(
q4 +

∂z∗
4

∂σ

)
+∂Φ3(η,η1,η2,η3,η4)

∂x0

∂2z∗
1

∂τ̄∂σ + ∂2Φ3(η,η1,η2,η3,η4)
∂x0∂x1

∂z∗
2

∂τ̄

(
q1 +

∂z∗
1

∂σ

)
+∂2Φ3(η,η1,η2,η3,η4)

∂x2
1

∂z∗
2

∂τ̄

(
q2 +

∂z∗
2

∂σ

)
+ ∂2Φ3(η,η1,η2,η3,η4)

∂x1∂y0

∂z∗
2

∂τ̄

+∂2Φ3(η,η1,η2,η3,η4)
∂x1∂y1

∂z∗
2

∂τ̄

(
q4 +

∂z∗
4

∂σ

)
+ ∂Φ3(η,η1,η2,η3,η4)

∂x1

∂2z∗
2

∂τ̄∂σ

+∂2Φ3(η,η1,η2,η3,η4)
∂y1∂x0

∂z∗
4

∂τ̄

(
q1 +

∂z∗
1

∂σ

)
+ ∂2Φ3(η,η1,η2,η3,η4)

∂y1∂x1

∂z∗
4

∂τ̄

(
q2 +

∂z∗
2

∂σ

)
+∂2Φ3(η,η1,η2,η3,η4)

∂y2
1

∂z∗
1

∂τ̄

(
q4 +

∂z∗
4

∂σ

)
+ ∂2Φ3(η,η1,η2,η3,η4)

∂y0∂y1

∂z∗
4

∂τ̄

+∂Φ3(η,η1,η2,η3,η4)
∂y1

∂2z∗
4

∂τ̄∂σ

}
.

At (τ̄ , σ) = (0, 0) we have ∂2Φ3(τ0,ζ0)
∂τ̄∂x0

= ∂2Φ3(τ0,ζ0)
∂τ̄∂x1

= ∂2Φ3(τ0,ζ0)
∂τ̄∂y1

= 0, then we obtain

B = −∂Θ3

∂y0

∂2Φ3(τ0,ζ0)
∂τ̄∂y0

.
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