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ABSTRACT. In this work we develop a mathematical model of chronic myeloid leukemia including
treatment with instantaneous effects. Our analysis focuses on the values of growth rate v which give
either stability or instability of the disease free equilibrium. If the growth rate ~ of sensitive leukemic
stem cells is less than some threshold v*, we obtain the stability of disease free equilibrium which
means that the disease is eradicated for any period of treatment ry. Otherwise, for v great than v*,
the period of treatment must be less than some specific value 7. In the critical case when the period
of treatment is equal to 7, we observe a persistence of the tumor, which means that the disease is
viable.
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In this work we are interested by the study of a mathematical model of chronic myeloid
leukemia. The chronic myeloid leukemia is a cancer of the bone marrow and blood which
is characterized by an abnormal proliferation of blood cells, usually white blood cells.
This disease is a myelo-proliferative disorder characterized by the expansion of a clone of
hematopoietic cells that carries the Philadelphia chromosome (Ph). The Ph-chromosome
results from a reciprocal translocation between the long arms of chromosomes 9 and 22.
In this paper, we study a mathematical model of chronic myeloid leukemia (CML) under
treatment, the model studied here is inspired from [9] and [16].

Several recent works have been developed to study the dynamics of CML under chemo-
therapy treatment, see ([14], [15], [16] and [17]).

More specifically, we consider the following mathematical model which is an extension
of the model proposed in [9]. In our model, we assume that normal (resp. leukemic) cells
differentiate through two stages of their life cycle, beginning with normal (resp. sensitive
leukemic) stem cells which produce normal (resp. leukemic) progenitor cells.

The mathematical form of the system we shall investigate is the following

&g = (B — ax — Boxo — M1 + y1))%0,

1 = azTo — d121,

1
Yo = (v — ay — Y0 — A@1 + ay1))yo, v
U1 = ayyo — dayr,
with initial conditions
20(0) = 0,21(0) = 0,y0(0) > 0 and y1(0) > 0. @)
Throughout this paper, we assume the following conditions
ay <7, 3)
and
az < B. “)

The conditions (3) and (4) are necessary to obtain the biological meanings of the state
variables xg, x1, yo and 1.

In [9], well-posedness of (1), (2) is proved and stability (local and global) of equilibria
is investigated. In fact, the disease free equilibrium E; = (a:(’j, Z—jxa, 0,0) is locally
asymptotically stable for growth rate of sensitive leukemic stem cells v > v* := a, +
)\Z—Tw.é and unstable for. v < v* where 2§ = % .

In this paper, we consider the model above including chemotherapeutic treatment. We
obtain the following model
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Zo(t) = Fi(zo,21,90,41), )
i1(t) = Fa(zo,21,90,91), (6)
go(t) = Fz(xo, 1,0, Y1), (7
(t) = Fa(xo,21,%0,Y1)s (®)

for ¢t > 0 and ¢ # t;, where t; is the time of the ith treatment,

Fi(zo,z1,90,y1) = (B —az — Bozo — A(@1 + y1))Zo,

Fy(20,71,90,y1) =  azxo — di1,

Fy(xo, 71, 50,41) = (v —ay —v¥0 — A(@1 + ay1))yo, and

Fy(wo,z1,y0,y1) = ayyo — days.

For t = t; we have

zo(ty) = Ou(zolti),z1(t:). yo(t:), ya(t:)), ©
vi(tf) = Oa(wo(ti), w1(ti) yo(t:), ya(t:)), (10)
yo(ti) = Oslwolts), m1(ts),yo(ti), y1(t:)), (11)
() = Ou(wo(ts), x1(ts), yol(ts), y1(ts:)), (12)

where z;(t}) = lim , t j(t) and y; () = lim t y;(t), (j = 0,1) are the

t>t; t>t;
size of z; just after the ' treatment. In our case we have

O1(wo(ti), w1(ti), yo(ts), y1(t:)) = wolts),
O2(zo(ti), v1(ti), yo(ti), y1(t:)) = x1(ts),
O3(zo(ti), z1(ti), yo(t:), y1(t:)) = Toyo(ts),
Ou(wo(ts), z1(t:), yo(t:), v1(t:) = Tiyi(ts).

The variables and parameters are

o : biomass of the normal stem cells,

x1 : biomass of normal progenitor cells,

1o : biomass of sensitive leukemic stem cells,

y1 : biomass of sensitive leukemic progenitor cells,

Bo : death rate of the normal stem cells,

7o : death rate of sensitive leukemic stem cells,

[ : growth rate of normal stem cells,

v : growth rate of sensitive leukemic stem cells,

A : competitive parameter of the stem and progenitor cells,
a, : produce rate of the normal stem cells,

a, : produce rate of the sensitive leukemic stem cells,

d; : death rate of the normal progenitor cells,

ds : death rate of the sensitive leukemic progenitor cells,
« : competition parameter (0 < o < 1),
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To(< 1) : survival fraction of sensitive leukemic stem cells,

Ty (< 1) : survival fraction of sensitive leukemic progenitor cells, and

T : is the time of the first treatment, it’s the period between two successive injections, that
ist; =1471,1 € N.

We obtain a special kind of differential equations called impulsive differential equations
(see [1]-[6] and [8]).

Our main objective is to study the existence of steady states of (1) and their stability.
Our paper is organized as follow ; In the next section we give a mathematical analysis
of our model, we study the well-posedness of (1), the existence of the steady states, and
the stability of the trivial, chronic, blast and non pathological steady states. Further, we
analyze the bifurcation of chronic periodic solutions of (1). Section two is devoted to
numerical simulations, in the third section we give some conclusions. The last section is
an appendix, where we give calculations needed for the previous sections.

1. Mathematical analysis of the model

1.1. Well-posedness

Theorem 1.1 The model (5)-(12) has a unique global positive solution for all positive
initial conditions

PROOF. —

Since F;, (¢ = 1, ...,4) are smooth, then from the Cauchy-Lipschitz theorem we have the
local existence and uniqueness of the solutions of (5)-(8). Since the solutions are bounded
then the solution is global in [0, ¢1].

The system (5)-(8) is quasi positive because for all zg, x1, yo and y; € R4 we have
Fl(O,l‘l, y07y1) =0 > 0, FQ(Z‘(), 0, y07y1) = AT > 0, F3(l‘0,l‘1, O,yl) =0 > 0 and
Fy(xo,21,Y0,0) = ayyo > 0, so we have a unique positive global solution in [0, ¢1].

By recurrence we can prove that Yk € IN*, we have a unique positive global solution in
the interval [ty tx+1]. Hence, we have the existence of a unique positive global solution
of (5)-(12).

1.2. Stability of the disease free equilibrium E¢

—az)d1 Aaz(B—aqx :
We can show that C.(t.) = (o = .(éfdli).)\az, ﬁ‘:]d(fi)\‘fh),o,o) = FEy is a constant
equilibrium of (5)-(12), it is called trivial solution.
To study the stability of ( we use the same approach of fixed point process than in [7] and
[11]-[13].

Since solutions of (5)-(8) exist globally in R and are nonnegative (see [9]) we have
X(t) =®(t,Xp),t >0 (13)

where X (t) = (xo, 21, Y0, y1)(t), X(0) = X, and P is the flow associated to (5)-(12).

The term X (77) denotes the state of the population after the treatment, X (7F) = ©(X (7)) =
O(0(r, X,)).

To have periodic solution we must have X (77) = X that is Xo = O(®(7, Xo)).

Let ¥ be the operator defined by

U(r, Xo) = 0(P(7, Xp)) (14)
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and denote by Dx W the derivative of ¥ with respect to X. Then X = ®(., X) is a
T-periodic solution of (5)-(12) if and only if

\Ij(Ta XO) = XOa (15)

i.e. Xy is a fixed point of ¥(7,.), and it is exponentially stable if and only if the spectral
radius p(Dx ¥(T,.)) is strictly less than 1 (see [10]).
We need the following hypothesis
(H].) Ly < B < ag + (Bod1 +)\az)[(60d1+2)\22)—2\/ Xag (Bodi+Aay)] or
oY1
B> a, + (ﬁoler)\am)[(50d1+22¢§2)1+2\/ Xag (Bodi+Xaz)] )
We deduce the following results.

Theorem 1.2
Let (H1) be satisfied.
1) If v < ~*, then the trivial solution ( is exponentially stable for all Ty > 0.

2)If v > ~*, then the trivial solution ( is exponentially stable for 7o < 75 =

. nfo *
S Ta, AT and unstable for 7o > 7{.

PROOF. — 9%
We have Dx U (7, Xo) = DxO(®P(r, XO))a—X(T, Xo).
Then, for Xy = (p and 7 = 79 we have
Dx¥(r5,l0) = DxO(®(10,¢0)) 2% (10, o)
021 (70,¢0)  9P1(70,¢0) 9Pi1(710.C0) 9Pi1(70,C0)
1 0 O 0 dxo Oz 9yo 9y1
01 0 0 Béza(;'z,Co) 3<I>26(;(17Co) 0 0
0 0 TO 0 0 0 9%3(70,¢0) 0
9yo
00 0 Ty 0 0 0®1(70,60)  9P1(70,¢0)
9yo oy1
9Py (70,0)  9P1(710,¢0) 9®1(70,¢0) 9P (70,¢0)
dxo w1 9yo oy1
0%2(m0,60)  9P2(70,60)
(')a:(()) . 83:(1 . 0 0
0 0 T 3@33(;2,40) 0
9®1(70,60) 9®1(70,60)
0 0 Yo T Oy1

The equilibrium ( is exponentially stable if and only if the spectral radius is less than one.
We have
0®3(19, 04 (70,
det(Dx(ro, Co) — ul) = (%‘3;;040) - u) (Tl‘*éyj@) - u) () (16)
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where
0P 0P 0P 0P 0P,
x(10) = 1= (G (70 0) + Gt (70, 60) ) it (G (0, G0) G (70, C0) = 52270, o) (17)(707@)) ,
From (16) and (17), the equilibrium ¢ = E} is exponentially stable if and only if
T, |42s (7’0,(0)‘ <1,Ty |22 (To,Co)‘ <1and |ps| < 1. Where
(gi; (70,¢0) + %(TO,CO)) +VA
pt =
2
and )
8‘1)1 8‘1’2 6(1)1 8‘1)2
A= 4— . 18
(G0 = G2 )] + 4G 0 ) 2 ) (19
From the variational equation % (Dx ®(t, ) = ((O)O—X(t, o), we have for all 0 <
t S T0
9®1(t,60) _  ditus ezt _ di+uy et
61}0 - U2 —U1 U2 —U1 ’
oD (t, ag u
8(I()Co) = (eu2t — guat),
8@55:;(0) — _ﬁ;tzzl dl;.;ul (e’u,zt _ eult)’
84’5(75,(0) —  _ditw eu2t 4 di+us eult’
1 U2 —U1 U2 —ul
0®3(t,¢o) _ e(’yfayf)\‘;—?z’o‘)t and
dyo )
8®4(t7<0) i e—dzt
Oy1 -

where u; = % VAL ) gy = % VAL ~(gand A, = (Boxt — dy)? —
4hagx§ > 0 for either

(ﬂodl + )\ag;)[(ﬁodl + 2)\%) — 2\/)\ax(60d1 + )\aw)]

0<pB—a, <
g B2d,

or

- (Bod1 + Maz)[(Body + 2Xa,) + 2\/)\az(60d1 + Aag)]

B_az 3d1

(see Appendix, Subsection 4.1).

Then, we obtain A = (e¥2t — ¢®1t)? | ;i = 170 € (0,1) and py = e*2™ € (0,1).
REMARK. —

1) In the hypothesis (H1), the condition 8 > a,, is a biological condition, which will allow
the preservation of the population of healthy hematopoietic stem cells. On the other hand,

(Bodi+Xag)[(Bodi+2Xaz)—24/ )\aw(ﬁﬂd1+)\aw]

0 < a;+ 7
w 2)+2+/Aa, - . .. . .
8> a; + (Bod1 +a )[(ﬁod1+22¢;d)1+2 Aaz (Bodi tAas )] are technical conditions which will

make it possible to determine tlole stability of the periodic solutions without diseases.
2) If (H1) is satisfied and v > ~* we have Tl’ (To,Co)‘ < 1 for 79 < 73 and
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Yo
3) From theorem 1.2, if (H1) is satisfied we show that in case of low growth rate of leu-

kemic sensitive stem cells v(< v*) we can choose any period 7y of treatment to have
eradication of the disease. Otherwise, for high growth rate of leukemic sensitive stem
cells y(> ~*), the eradication of the disease is acquired only for period 79 less than some
threshold 7.

To ’% (70, Co)‘ = 1 for 79 = 7. That is we have a critical case at 7o = 7.

1.3. Bifurcation Analysis of nontrivial periodic solution

In this subsection, we analyze the bifurcation of nontrivial periodic solutions of (5) —
(12) from ¢ at 79 = 7. This case is possible if (H 1) is satisfied and v > ~* (see theorem
1.2). The bifurcated solutions means that the disease is installed.

Let 7 and X such that 7 = 77 + 7 and X = (y + X. The equation (15) is equivalent to

M(7,X) =0, (19)

where M (7,X) = (My(7,X),..., My(7, X)) :=Co+ X — U(r0 +7,{0 + X).
If (7, X) is a zero of M, then ({y + X) is a fixed point of ¥(7§ + 7, .). Let

a b ¢ d

e [ x x

DxM(7,X) = % g (20
* * h i

For (7, X) = (0, (0,0,0,0)), we have

apg by co do

eo fo * *
DxM(©,(0,0,0,0) = |

*x %  hg iy

=% % hm o

—822  1-_4% 0 0

- 0 0 1 - Tpgs 0 (75, o) -
0 0 “Ns 1-Tgn

Then ag = 1 — giﬂl (15, ¢0), bo = —23; (75,¢0)> co = —%(5; (75,C0)s do = _(3(511’

eo = —F22 (75, o),
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fo=1- gg;f (1¢,¢0)r go = 1 — Toa‘bd (78, ¢0) ho = —Tlgjg (15,¢0) and ig = 1 —
1152 (75, o)-
We have the critical cases if and only if det Dx M (0, (0,0,0,0)) = (ao fo — boeo)goio =
0. That is

g9o=0 (21)

since ig = 1 — Tye~ %70 € (0,1) and ag fo — boep = (1 — €270 )(1 — e“170) € (0, 1).
We have M (0, (0,0,0,0)) = 0. Let DxM(0,(0,0,0,0)) = E, then dimker(F) =
codim R(E) = 1. Denote by P, and P, the projectors onto ker(E) and R(E) respecti-

vely, such that P, + P, = Idgs, P\ R* = span{Yo} = ker(E), with Yo = (¢1, 92, 1, q4),
_ Jfo(coio—doho) __eo(coio—doho) h
= i0(boeo—ao fo)’ 42 = i0(boeo—ao fo)’ 94 ioo and

P,R* = span{(1,0,0 O) (0,1,0,0),(0,0,0, 1)} =R(E).

Then (I — P;)R* = span{(1,0,0,0), (0, 1,0,0), (0,0,0,1)} and
(I — P,)R* = span{(0,0,1,0)}.

Equation (19) is equivalent to

Mi(7,0Yy+2) = 0,
My(7,0Yo+2Z) = 0,
Ms(7,0Yo+Z) = 0, (22)
My(7,0Y0+2Z) = 0,
where Z = (21, 22,0, 24), (7, X) = (7,0Yo + Z) and (0, 21, 22, 24) € R*.
From the three equations of (22), we have
OM1(0,(0,0,0,0))  9M;(0,(0,0,0,0))  AM;(0,(0,0,0,0))
921 922 924 ag by do
det 8M2(0,8(0,0,0.,0)) 8M2(0(,9(0,0,0,0)) 8M2(0,8(0.,0,0,0)) — det| e fo O
OM4(0,(00.0.0))  OMa(0.(0:0.0.0)  OMa(0,(0:0.0.0)) 0 0 g

0z1 Ozo 0z4

= io(aofo — eobo) # 0.

From the implicit function theorem, there exist a unique continuous function Z*, such
that
Z*(7,0) = (#1(7,0),25(7,0),0,25(7,)), Z*(0,0) = (0,0,0,0) and

M; (7, (o + 21(7,0), 420 + 25(7,0), 0, a0 + 24(T, 0))) = 0, (23)
fort =1, 2, 4, with ¢ and 7 small enough.

07"
We have — 57 ——(0,0) = 0 and 62 —(0,0) = (— Joco <o _— (,0) (see Appendix,
T

ao fo—eobo’ aofo—eobo

subsection 4.3).
We have the following theorem.

Theorem 1.3 Let (HI) be satisfied and v > ~*. There exist Ao > 0 such that for A €
(0, Ao) we have a supercritical bifurcation of nontrivial periodic solutions of (5)-(12) with
period T(0) = 15 + T (0) starting from (o + oYy + Z*(7(0), o) for o(> 0) small enough
where (o) = —%O’ + o(o).

PROOF. — -
We have M (7, X) = 0 if and only if

w(T,0) = M3 (T, (@10 + 25 (T,0),q20 + 25(T,0),0,q40 + 25 (T,0))) = 0.  (24)
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We find w(0,0) = 0 and 6“)(0’0) = awd(g,o) = 0 (see Appendix, subsection 4.4).

Let A = 8“57720) B = w and C = azggoz,o). It’s shown that A = 0 (see Appendix,
subsection 4.5). Hence

2
w(7,0) = Bro +C 7 +o (|0 + 7).

where
B = _ 803 8°®3(70,¢0)
- Yo OT0Yo
= —(y—ay—)\‘cll—fxg)<0
and
ile) 8%® , 927(0,0 8%® , 823(0,0
c = _8y§ {2 8;(55(;0@)) (Q1+ 21( ))+2 axsl(g;o(o) <q + Zz( ))
92 ®3(70,¢0) 22 ‘1>3(TO,C0)
+2 dyooy, 14 + Oy?
— Q)G e¥270—1  e*170-1\ fo(doho—2coio)
- Us— 1 ug uy i0(ao fo—boeo)

42X ditus (e“270—-1\ _ dituy [e“170—-1 eo(doho—2coio)
Uz —u1 Uz Uy —u1 u1 10 (a0 fo—boeo)

ag ¥
+2\a (‘Eidm_l) ho 1 94 <€(”“'y*dl“”o>’°_1
do 10

— @, —\2Z p*
YAy —AGTTS

+Aa ay LTI TARTOTO g emdao g
'y—ay—)\—L +dso y— ay—/\—JU do :
For A = 0, we have
(v—ay)To _1
cC = 2 e — = 0.
7o Yy =

REMARK. —

From theorem 1.3, we deduce that for high growth rate of leukemic sensitive stem cells
(> «*) and period of treatment dose 7y = 7 there is lost of stability of the disease free
equilibrium and we note the presence of nontrivial periodic solution which means that the
disease is installed for period 7o (o) close to 7.

2. Numerical simulations

To illustrate our results, we give some numerical simulations.
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In Figure 1, we consider the case of the theorem 1.2, we have the stability of the
healthy steady state ;.

x10° «16°
T T T T T

X1

L L L L L L
300 400 500 600 300 400 500 600
t t

L L L L L L
300 400 500 600 300 400 500 600
t t

Figure 1. The curves of normal stem cells (top left), normal progenitor cells (top right),
leukemic stem cells (bottom left) and leukemic progenitor cells (bottom right) with g = 1.1,
a; = 0.8, fo = 0.00000007, A = 0.0000001, di = 0.405, v = 1.121, ay = 0.9, vo =
0.0000003, a = 0.8, d2 = 0.402, Tp = 0.5, T1 = 0.6, 7 = 30, 20(0) = 10000, 21 (0) = 10000,
0(0) = 10000 and 1 (0) = 10000
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In the Figure 2, we consider the case of the theorem 1.2, we have the instability of the
healthy steady state £y, we see that leukemic cells reappears.
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Figure 2. The curves of normal stem cells (top left), normal progenitor cells (top right),
leukemic stem cells (bottom left) and leukemic progenitor cells (bottom right) with 8 = 0.95,
az = 0.8, fo = 0.00007, A = 0.0001, d; = 0.41, v = 1.121, ay = 0.85, y0 = 0.0003, o = 0.8,
de = 0.402, Tp = 0.5, Ty = 0.5, 7 = 30, x0(0) = 1000, x1(0) = 1000, yo(0) = 1000 and
41(0) = 1000
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In Figure 3, we consider the case of the theorem 1.3, we have the bifurcation of perio-
dic solutions for the treatment period 7 = 7.
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Figure 3. The curves of normal stem cells (top left), normal progenitor cells (top right),
leukemic stem cells (bottom left) and leukemic progenitor cells (bottom right) with 3 = 0.8,
ag = 0.5, Bo = 0.00007, A = 0.0001, d1 = 0.8, v = 1.121, ay, = 0.95, 7o = 0.0003, a = 0.8,
ds = 0.007, To = 0.4, Ty = 0.5, 7 = 75 = 31.0706, 20(0) = 2000, 1 (0) = 1500, 4o (0) = 1
andy1(0) =1

3. Conclusions

In this work we have analyzed a mathematical model of chronic myeloid leukemia
(CML) which is an extension of a model developed in [9] in the case without medical
treatment. In our work, we considered the case of a treatment with instantaneous effect
described by discrete equations called impulses. We have studied the stability of the heal-
thy equilibrium (trivial solution), it becomes stable if the growth rate of resistant stem
cells v does not exceed a certain threshold v, if it reaches this threshold we obtain a cri-
tical case which gives bifurcations what we want say that is the tumor persists and remains
viable.
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4.1. First derivatives of ©

Forallt € (0,7], we have & Dx (®(t, (o)) = 9% ((o) 3% (¢, (o) with the initial condi-
tion Dx (®(0,¢p)) = Irs, where

9%y (t,¢0)  9®1(t,¢o)  O9P1(t,.Co)  9P1(t,¢o)
oz ox o o
d d 8¢§£Qﬁ a@g&cm a@gﬁkw a@gﬁmw
aDX (®(t:C0)) = dt 54’%&?(0) 34’%(?(0) 34):5&?@0) 3‘1)%&1)(0) ’
3‘1’4%;5?(0) 3‘1’4&40) 34’4&?(0) 34)4&{(0)
dzg oz 9yo oy1
BFE(C(t)) BFE(C(t)) 3Fg(<(t)) 3F19(C(t))
or aﬁgﬁﬁtn afgﬁﬁtn aF%ﬂ&t» aféﬂiw>
ox (C) = a%§b> a%@m> m%@w> wg&m
oFs (L) 9Fs(C)  OFs(l)  9Fy(E)
dzxg R 9yo Oy
—Boxy —Axg 0 —Az;
_ () —dl 0 0
N 0 0 Y —ay — AFExH 0
0 0 Ay —d2
and
9% (t,¢0) 9% (t,¢0) 9% (t,¢0) 9% (t,¢o0)
oz Ox o o
9% a@gfcm a@gécm aézﬁkm aézﬁgm
ax (o) = 6@3320) 6@3320) a¢%@ko> 6¢%@ka
84’4@?(0) 94’4@1@0) 54’4&%0) 34’4&%(0)
9z oz 9yo oy1
From Cauchy Lipschitz theorem (uniqueness of solution) we obtain that %j’c") =

023(t.Co) _ ‘9@(‘9(’&’40) =0,:€{0, 1} and % = 0. Moreover, we have
Y1

d <a<1>1(t,<o))
dt 8370

d (9®1(t,Co)
dt 8x1

i (a‘bl(t,CO))
dt 3y0

d <a<1>1(t,co))
dt 8y1

d (8<I>2(t,co>)
dt 81'0

i 8@2(t,€0)
dt (91'1

i <8(D3(t740))
dt 8y0

i <8q)4(t740))
dt 8y0

OF1(C(t)) 0P1(t, o) " OF1(C(t)) 0P2(t, Co)

Ao Ao O, oxg
_OF1(C(t) 091 (2, Co) n OF1(((t)) 0P2(t, (o)
o 8:1:0 8171 8x1 83:1 ’
_ OF(C(t)) 0P1(t,Co) . OF(C(t)) 0P4(t, Co)

8x0 Byo 3y1 3y0 ’
_ OF1(¢(t)) 091(t, (o) + OF1(¢(t)) 0P4(t, (o)

Oz Oy1 oy1 ’
~ OFy(C(t) 091 (2, Co) n OF(((t)) 0P2(t, (o)
- dg dg Oy Oxg
_ OFy(C(t)) 091(2, Co) n OF>(¢(t)) 0P2(t, Co)
o 8%0 3%1 8%1 8$1 ’
_ OF3(C(1)) 0%3(t, ¢o)

Yo dyo
~ OFy(C(t) 093(t, Co) + OF,(((t)) 0Pa(t, (o)

Yo Yo o ’

(25)

(26)

27

(28)

(29)

(30)

€29

(32)
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d<5¢4@ﬂ®)) _ OFi(((1) 0%a(t, Go) o)
dt oy oy Ay
From (31) we obtain 222(t¢0) — ((=ay=AGreo)t,
Yo .
From (32) we obtain aq’ggjf“ = v_ay_;%zﬁ@ (e W AT Tt _ o—dat)
From (33) we have % = ¢—d2t,

0% (¢,¢0) 0%1(0,60) 1
From (25)and 29) we have | 55270y | =€ | 00y | =€ ( 0 ) , where

Oz Oxo
OF1(¢(t))  9F1(¢(t)) * *
A= b2y b _( —Boxg —Azg | _ prpt v ™ 0
OF>(¢(t))  9Fa(¢(t)) az —d; ) 0 us )
dzq oz
ditur  ditus _1 _ _Gg ditus
PEUTT )’P G PR FE= T
U2 —Uq U2 —U71

*tdi—VA @ +di VA
where u; = w, Us = w, A = (Boxy — d1)? — 4Aa,xy and

etA — PetVP71
ditur  ditug eutt 0 —_aw ditug
— g Qg ¢ U2 —ul “5-“1
1 1 0 e2 az _dituy
U —uq U2 —uUl
ditur guit  ditug just __az ditug
= agz ag u2—ujl uéfln
eult eth agx _ditug
U2 —ul U2 —ul
d1+us euzt _ dituy eult _ ditus ditug (eugt _ eult)
— U —uq Uy —uq 3*’“‘1 ag
ay (6u2t _ eult) _ditu 6u2t =+ di+us eult
U —u1 U —uq Uy —uq
We obtain
0®1(t,60) _  ditus euzt _ di4u;g euit
Oz Uo—U7 Uy —U1 ’
8@2@,{0) — Qg ust uit
3 = (et2t — eu1t),
T U2 —U1l

Bq%(tyio) N 34’:9(0,(0) A
x Lt T _ ot
From (26) and (30) we have DD (t-Co) =e 0D (05C0) =e ( 1 > . We

. 8131 6m1
obtain
0%, (t,60) _ ditus ditus (Lust urt
Oz - _uéfu? 1(11 l(e et )7
0P3(t,60) _  _ditwy euet 4 di+ug eutt
Ox1 U2 —U1 U2 —uy :
From (27) we have
8@1(f,€0) )\aymge—,@0$ét e(’Y*ay*)\%ISJrBOIS)t -1 e(ﬂow;—dz)t -1
- - B}
dyo Y —ay — AFETE +da \ v —ay — AGEag + Boxg Boxg — do

From (28) we have

1(t o) = —Azpe Pozot <e(ﬁ013d2)t1>
ayl ’ ﬂox(’ﬁ - dg ’
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4.2. Second derivatives of ®;

The second partial derivatives of ®3 can be obtained from the following differential
equations,

d (32<I’3(M0)> _ 9F3(¢(t) a%m S0) 4 2P 9%®3(t,¢0) | 2F3(C(1)) 82<1>3<t S0) 4 OF3(S(1) 9°®a(t:Co)

dt 922 CED o2 By o2 Jyo 02 Yy o2
1 22Fsc)) 221 (160) | 62F3<<<t>) 223 (t:¢0) 82F3(c(t)> 223 (t:co) 82F3(<<t>> 894(t,¢o) | 991 (t.Co)
o2 GED) GERCER GET GERCET) GET) 3200y CET oz
I 62F3<<<t>> 0% (1:¢0) | 62F3<c<t>> Q‘Pz(t 0 4 82 F3(¢(1) 823(¢,¢0) I 92 F3(C()) 84 (¢,¢0) | 222 (¢,¢0)
dxgox] dz( 022 dx10yQ I dz10y1 dz( dxq
4 22Esc)) 221 (1.60) | 82F3<<<t>> 9®5(t.¢0) | 62F3(<<t>) 6®3<t S0) | 22F3(C(1) 9a(t.¢o) | O3(t:Co)
dxndyg dx( dx19yg dxzq By dyp9dy1 dx( dxq
+ 82 F3(¢(t)) 81 (t,¢0) i 82 F3(¢(1) 822 (t,¢0) 4 62F3(<(t>) 223 (t:co) 4 82 F3(¢(1) 0%4(t,C0) | 8P4(t,C0)
dxgdyy dxq dx10yy dxq dyp9y1 EETD By% ECED) dxq

2
with the initial condition %@“) = 0, then
0

d (52‘1’3(@40)) _ 9Fs3(C(®) 9% ®3(t, Co) 34

dt azg dYo 8953

with the initial condition 9225(0.00) _ 0. From (34) we have

Oz
2
6 (D?)(ta CO)
a2 0.
oz
d a%su,co)) _ 9F3(¢() 82@4 (¢,¢0) n 8F3(<<t)> 8225 (t,¢0) n aF3<<<r>> 8225(t,¢0) 4 9Fs(c(®) 92®4(t,¢0)
dt dxpdxy - EED) dxpdxy dxq dxgdxy ) dxgdxq dy1 dxpdxy
I 82 F3(¢(t)) 89 (t,¢q) 4 92 F3(¢(1) a<1>2(t ) 82 F3(¢(1) 823(t,¢0) I 82 F3(C(1) 824 (t,¢0) | 221 (¢,¢0)
3£2 dzq IR oz EERCET dxq dz00y1 dxq EET
I 62F3<<<t>> 02 (t.¢0) | D2F3(S(1) OB (1.co) | D2F3(C(1) D3(tico) | 22F3(L(1)) O4(ti) | 22 (t:do)
dxgox] dzq 022 CESY dx10yQ dzq 921091 Oz dxq
1 22Face) 221 (1ico) 62F3<<<t>> 2% (t:G0) 62F3(<<t>) 023 (t:60) | 92 F3(S(1) 924 (4,60) | 2%3(+:¢0)
dxndyg dxq dxz10yg dxq By dxq 9yp9y1 dxq dxq
n 82 F3(¢(t)) 81 (t,¢q) n 82 F3(¢(1) 895 (¢,¢0) 4 82F3(C(t)) 223(t.co) 4 82 F3(¢(1) 8P4 (t,¢0) | 224 (t,¢0)
dxgdyy dxq dx10yy dxq 9yp9y1 dxq By2 dxq 22
2
. ... .. )
with the initial condition 2-22(%:50) — () then
89006911 ?
d (9®3(t,¢0)\ _ OF3(¢(1)) 9> @s(t, Go) 35)
dt Oxo0x1 dyo Oxo0x1
. .. .. 8%2®4(0,
with the initial condition ﬁ = 0. From (35) we have
2
0 @3(ta<0) _

83008331

al

dt EENEEN CED) 9z dyg CES EENEEN dyo 9z dyq oy 9z dyg

d (02‘1>3(t>C0)> _ 9F3() 2221 (t:¢0) 2r3(C(1) 025 (t,¢o) | 23 (C(1) 2%25(t.¢0) F3(C(1) 92®4(t,¢0)
t

62F3<<<t>> 0%y (1:¢0) | 82 F3(¢(1) 85 (¢,¢0) 4 82 F3(¢(1) 9@3(¢,¢0) I 92 F3(C()) 8P4 (¢,¢0) | 291 (¢,¢0)

+

Bz dyo CEREES dyo EEREET ) dz(dy1 dyo oz

i 62F3<<<t>> 01 (t:60) | 02 F3(S(1) 023 (t:¢o) 4 D2 F3(C(1) 9%5(+¢o) | 02 Fa(C(1) d%4(t:o) | 223 (t:G0)
dxgdxq dyo 8@2 dyg dxq10yg dyg dx190yq dyg dxq

i 82 F3(¢(t) 6<1>1<r ) | 62F3<<<r>> 8% (t,Co) , 82F3(¢(t) 8®5(t,¢q) n 82 F3(¢(1) 8P4 (t,¢0) | 225(¢.¢0)
dxgdyg dx1dyq dyo 3y2 dyo dyp9yq dyo 22

i 82 F3(¢(t) a<I>1<t <) 82 F3(¢() 85 (¢,¢0) 4 62F3(c(t>) 6<1>s<t ) 92 F3(¢()) 8P4 (t,¢0) | 224 (t,¢0)

8z dyy dx19y1 9yo 9yp9y1 9yo oy? 9yo EED
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. . .. 92d3(0,
with the initial condition %yc“) = 0, then
d (92®3(t, o)\ _ OF3(L(t)) 92 @3(t, o) n P F3(¢(1) dP3(t, o) dP2(t, Co) 36)
dt 8:E08y0 8y0 6$08y0 6118y0 6y0 awo
. .. .. 92d4(0
with the initial condition Wﬁ‘)) = 0. From (36) we have
2 y t 02
0°®3(t, (o) ors (7 0°F3(((s)) 0Pa(s, (o)
. —e dyg d
81‘08y0 0 8x18y0 8£C0
a (9%®s(1.¢0) | _ 2F5(c() 921 (t.0) | 6F3<<<t)> 9%®3(1.¢0) | 2F3(C(1)) 9%®s(t.¢o) | oF3(C() %@, (t,¢o)
dt GERCET = GED) GERCET CERYEE dyg Omoé’yl 9yy 9z 0y
i 82F3<<<t>> 01 (t:60) | O2F3(C(1) %3 (t:¢o) 4 O2F3(S(1) 9P3(tCo) | 02Fa(C(t)) O%4(tio) | 221 (t:S0)
3_, dyq dxpdxq dyq dxzndyg dy1 dxgdyy dyq dxq
I 62F3<<<t>> 0% (t:¢0) | 02F3<<<t>> 0<I>2<t 0 82 F3(¢(1) 823(¢,¢0) I 92 F3(¢()) 804 (t,¢0) | 222 (t,¢0)
CENEES dy1 81 dyq dz190yg dy1 dz10y1 dy1 CEN
I 92 F3(¢(t)) 991 (t,¢0) i 62F3<c<t>> 22 (t,¢0) | 62F3(<<t>) 6@3@ 0 4 82 F3(C()) 8®4(¢,¢0) | 2P3(¢,¢0)
EETYEET) 9y1 0z 9yg 9y1 ay 9y 9yp9y1 9y1 CER
1 22Fa(c)) 021 (t.¢0) | 92 F3(¢(1)) 9R3(t:Go) 62F3(<<t>) 023 (t:6g) | 92 F3(S(1) %4 (t,60) | 2%a(t:¢0)
9w Iy 9y 91 9y1 9y 9y 9y oyy oy? 9y dz(
. .. .. 92d4(0
with the initial condition w = 0, then
To0Y1
d (9®3(t,¢0)\ _ OF3(¢(1)) 9> ®5(t, ¢o) a7
dt dx00y1 Ayo O0x00y1
. . ... 9%d4(0,
with the initial condition ﬁyﬁ‘)) = 0. From (37) we have
2
a (I)B(ta CO)
——2=0.
090y
a [ 9%@3(t.¢o) | _ 9F3(¢(t) 82@4 (¢,¢0) n 8F3(<<t>> 82%5(t,¢0) 4 2F3(6() 8225(t,¢0) 4 2F3(6(®) 92®,4(t,¢0)
dt aTQ - 9z aTQ CESY 0T2 9y amf 9y1 8.7:%
n 82F3(<<f>> 02y (o) | 62F3<c<f>) 3‘1)2(* ) 82F3(c(t)) 8«1>d<f 0 | 82 F3(C(1) 804 (t,¢0) | 221 (¢.¢0)
612 CES CERCES] 9wy dx( 0y EES CEZ
I 62F3<c<t>> 0% (1,¢0) | 92 F3(¢() 85 (¢,¢0) 4 82 F3(¢(1) «9<I>3<t 0 4 92 F3(C()) 8®4(¢,¢0) | 222 (¢,¢0)
dxgox] dz1 02 GES) dx10yQ 921091 dz1 GES)
1 22Esc)) 221 (1.60) | 82F3<<<t>> a®3(t.¢0) | 62F3(<<t>) 6<I>3<t ) | 2%F3(C(1) 9a(t.Co) | O3(t:¢o)

dxndyg dxq dxz10yg dxq 31/ dyp9y1 dxq dxq

I 82 F3(¢(t)) 891 (t,¢0) 4 82 F3(¢(1) 822 (t,¢0) 4 82F3(C(t)) 223 (t:¢o) 82F3<<<t>> 8P4 (t,¢0) | 8%4(t.C0)
dxgdyy dxq dx10y1 dxq dyp9y1 dxq ay dxq dxq

2
with the initial condition Z-22(3:2) = 0, then
1

d (32<I>3(t7€0)) _ 9F3(¢(1) 9% @5(t: o) 38)

dt ox? dyo Oz?
: - L 025(0.60)
with the initial condition = 5=>%> = 0. From (38) we have
1

a2q)3 (ta CO)

=0.
ox?

a4 [ 8%23(t,¢0) | _ 8F3(<(t) 8281 (t.¢q) I an(c(t» 8225 (t,¢0) 4 8F3<<<f>> 8225(t,¢0) 4 8F3<c(t>) 8224 (t,¢0)
dx1dyg - EED dx1dyq dx19dyg 9yo dx1dyg 9y dx1dyq

62F3<<<t>> 0%y (1:¢0) | 82 F3(¢(1) 85 (¢,¢0) 4 82 F3(¢(1) 9@3(¢,¢0) I 92 F3(C()) 8P4 (¢,¢0) | 291 (¢,¢0)

+

oa2 EE) EEDEEES 9yo 9z dyq R 9y Y0 oz

i 62F3<<<t>> 01 (t:60) | 02 F3(S(1) 023 (t:¢o) 4 O2F3(C(1) 9P5(+¢o) | 02 Fa(C(1) d%4(t:o) | 223 (t:G0)
dxgdxq dyo 8@2 dyg dxq10yg dyg dx190yq dyg dxq

i 82 F3(¢(t) ad>1<r ) | 62F3<<<r>> 8% (t,Co) , 82F3(¢(t) 8®5(t,¢q) n 82 F3(¢(1) 8P4 (t,¢0) | 225(¢.¢0)
dxgdyg dx1dyq dyo 3y2 dyo dyp9yq dyo 9wy

i 92 F3(¢(#) a<I>1<t <) 82 F3(¢() 85 (¢,¢0) 4 62F3(c(t>) 6<1>s<t ) 92 F3(¢()) 8P4 (t,¢0) | 224 (t,¢0)

8z dyy dx19y1 9yo 9yp9y1 9yo oy? 9yo CES
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with the initial condition 2-22(0:50) — () then

0x10Yo
d (9%®3(t, o)\ _ OF3(¢(t) 9 ®a(t, Go) | OF(¢(1)) 9®a(t, o) 2 (t, Co) 39)
dt dx10yo Ayo 8x10yo Ox10yo0 dyo Oz
. .. .. 8%®5(0,
with the initial condition ﬁygo) = 0. From (39) we have
2 . t o2
0°®3(t, o)  2mcen, [* 97 F3(((s)) 0Pa(s, (o)
—— 27 = 9y d
010y o 0210y 0x1
a4 [ 8%®3(t.¢0) |\ _ 8F3(<(t) 921 (t.¢0) n 8F3(<<t)> 8225 (t,¢0) n aF3<<<r>> 8225(t,¢0) 4 9Fs(¢(®) 92®4(t,¢0)
dt dx10yy - BED dx10y1 dxq dx10yy Jyo w1 dyy dy1 dx10yy
I 92 F3(¢()) 891 (t,¢q) 4 92 F3(¢(1) 0<I>2<t 0 82 F3(¢(1) 0@3@ ) 92 F3(C()) 804 (¢,¢0) | 291 (¢.¢0)
éu? 9y EESYES 9y CEREIT EEDYEEY 9y EES
I 62F3<<<t>> 0%y (1,¢0) | 92 F3(¢(1) a@g(t 0 82 F3(¢(1)) 6@3@ 0 4 82 F3(C()) 894 (¢,¢0) | 292 (t,¢0)
dxgdxq dy1 812 dyq dx10yq Oy dxq 0y dy1 dxq
1 22Face) 221 (hico) 62F3<<<t>> 2% (t:G0) 62F3(<<t>) 023 (t:6g) | 92 F3(S(1) 924 (,G0) | %3 (+:¢0)
9wy 9y 9z19yg 9y1 31/ 9y 9yp9oy1 9y CES
n 82 F3(¢(t)) 891 (t,¢q) n 82 F3(¢(1) 825 (¢,¢0) 4 82F3(r:(t)) 023(t.¢0) 82 F3(¢(1) 824 (t,¢0) | 224 (t,¢0)
dxpdyy 9y dx10yy dyq dyp9y1 dy1 8y2 9y dxq
. . ... 0%®3(0
with the initial condition w = 0, then
r10Y1
d (92®3(t, o)\ _ OF5({(t)) 9732, Co) “0)
dt dx10y1 Yo 0x10y1
. C ... 8%®3(0
with the initial condition #@ﬁo) = 0. From (40) we have
2
0 q)?)(ta CO) -0
0z10y1
a [ 9%@3(t.¢0) | _ 9F5(c(1) 8% (¢.¢o) n 8F3<<<t)> 82 @5 (t,¢0) 4 2F3(6() 82®3(t,¢o) 4 2F3(6() 8284 (t,¢0)
dt 07/2 dz( oy2 ZESY 31,2 dyo ayg 9y1 oy
i 82F3(<<f>> 02y (tie) | 62F3<c<t>) 223 (t:¢0) 82F3(c(t)) 223 (t.co) 4 82 F3(C(1) 8P4 (t,¢0) | 221 (¢.¢0)
o2 I GERCEE dyo GERCIT) 5vo dx( 0yl I I
L 82F3<c<t>> 0%y (1:¢0) | 92 F3(¢(1) 95 (¢,¢0) 4 a"‘Fg(c(t)) a<1>3<t < 92 F3(¢(#) a<1>4<t ¢o) | 822 (t.¢0)
CEREES dyo a;f dyo dz1 0y ) dz10y1 dyo dyo
o 22Face 6<b1<t C) 4 92F3(C(1) 8%y (tiGo) | 62F3(<<t>) 9%®3(t.¢0) | 92F3(C(1) O%4(t,¢a) | 2%®5(t:¢0)
9w 9y CEFRET dyg By 9yg 9ypoy1 9yo 9yg

+ 82 F3(¢(t) 8‘1>1(f <o) + 92 F3(¢(t)) %3 (t.¢0) + 32F3(C(t)) 9®3(t,¢0) + 32F3(<(t)) P4 (t,¢o) | 924 (¢,¢0)
CER:ET dyg w10y, dyo 9yp9y1 dyg oy? dyg dyo

2
with the initial condition 6%37;2’&’) = 0, then
0

d (32<D3(t7C0)> _ 9F(C(®) 32‘1’3(t,C0)+(32Fs(€(t)) 0P3(t, o) n 9’ F3(¢(1) 3<I’4(t740)) 9®3(t, Co)

dt dy2 dyo dy3 dy2 dyo dyody1 dyo dyo
, 41)
with the initial condition 84)5’7?52’40) = 0. From (41) we have
0
0®3(t, o) _ BWt/t (52F3(<(5)) 0%s(s,Co) 02 F3(¢(5)) 3@4(8,@)) d
B 0 Ay Ao Ayodn Ao

d (02‘1’3(t>C0)> _ 9F3(¢(1) 82@(¢,¢q) I an(c(t» 8225 (t,¢0) 4 8F3<<<f>> 8225(t,¢0) 4 8F3<c(t>) 8224 (t,¢0)
dt -

dt Y00y I dy0oy1 CES dypdy1 9y dypdy1 dy1 9yp9y1

I 62F3<<<t>> 0%y (1,¢0) | 82 F3(¢(1) 85 (¢,¢0) +62F3(<<t>) 223(t:C0) | 92 F3(C()) 8P4 (¢,¢0) | 291 (¢,¢0)

Bz 9y1 EETYES 9y1 CEREIT 9y CEREET 9y1 dyg
i 62F3<<<t>> 0%y (t:60) 92 F3(¢(1) 9%5(t,¢n) +62F3(<<t>) 223 (t:Go) 4 82 F3(¢(1) 0%4(t,¢0) | 8% (t,¢o)
dxgdxq 9y 8&‘2 Y1 dxq10yg 9y dx190yq 9y dyg

i 82 F3(¢(t) ad>1<r 0 | 62F3<<<r>> 8% (t,Co) , 82F3(¢(t) 8®5(t,¢q) n 82 F3(¢(1) 8P4 (t,¢0) | 225(¢,¢0)
dxgdyg dx1dyq dyq 3y2 dy1 dyp9yq dyq dyg

i 92 F3(¢(#) a<I>1<t ) 4 82 F3(¢() 85 (¢,¢0) 4 62F3(c(t>) 223(t:¢0) 92 F3(¢()) 8P4 (t,¢0) | 8P4 (t,¢0)
EEREITY dz10y1 dy1 9ypdy1 dy1 ayf dy1 dyo
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with the initial condition 8537((%&’) = 0, then

(42)

d (52@3(757C0)) _ OFs(C(1) 9 ®s(t,Co) | ?F5(C(1) OPa(t, Co) OP3(t Co)
dt OyoOy1 Yo OyoOy1 O0yo0y1 Oy1 Yo

2
with the initial condition % = 0. From (42) we have

O*®3(t, o) o B, L 02 F5(¢(s)) a¢4(5740)d

OyoOy1 o O0Yo0y oy

a4 (22230¢0) | — 2Fa(c() 2221 (8¢ 2F3(C(1)) 0%®5(t,¢o) | 9F3(C(1) o%25(t.¢0) 9F3(C(®) 9204(t,¢0)

dt ayz dz( ay2 dxq Oyz dyo ayf dy1 8yf

I 62F3<<<t>> 9®1(t.¢0) | 82F3<<<t>> 81‘2(t ) 4 62F3(<<t>) 9%®3(t.¢0) | 92F3(C(1) 9%4(t,¢a) | 221 (t:¢0)

012 dy1 EENCES EEREET 9y1 EERECIT dy1 dy1

+ 82F3<<<t>> 01 (t:60) | d2F3<<<r>> 2% (t:Go) 82 F3(¢(1) 9®3(t,¢o) n 82 F3(¢(1) 0%4(t,C0) | 8P (t,¢o)
CERES 9y (7:1‘ 9y 9x19yq 9y 9w 0yy 9y 9y1

n 82 F3(¢(t)) 891 (t,¢q) 4 82Fd<c<f>) 225 (t:¢0) 82F3(c(t)) o23(t.co) 4 92 F3(C()) 824 (¢,¢0) | 225(¢.¢0)
9z 9yg 9y 9z10yg 9y1 ay 9y 9yoy1 9y dy1

I 92 F3(¢(t)) 891 (t,¢0) 4 92 F3(¢() 85 (¢,¢0) 4 62F3(<<t>) 223(t:¢0) | 62F3<c<t>> Py (t,¢0) | P4 (t.C0)
9w dyy 9y1 CEFEETY 9y1 9yp9y1 9y1 Gy dy1 9y

2
with the initial condition ©-23(5:2) — 0, then
1

d (9PPs(t, o)\ _ IFs(C(t)) 9> Ps(t, Co) “3)
dt oy? T Byo oy?

with the initial condition 8‘1)63715) = 0. From (43) we have
Y1

9?®3(t, Co) —0
Ayt '

4.3. First derivatives of Z*

Letn(7) = 70+7,m(7,0) = 25+ q10+21(T,0), n2(T, 0) = Fa5+q20+23(7, 0),
n3(7,0) = o and Ny (7, 0) = quo + 25 (T, 0).
From (23) we have

%(nl - @1 o (b(na m,n2,ns, 774))(()’ 0) = 07
%(7]2 - @2 o (I)(T]a N1,1M2,M3, 774))(03 O) = O
%(774 - @4 © ‘1)(77; n,M2,73, 774))(0’ 0) =0.
Therefore
927 (0,0) 901 (®(70,¢0)) (a@l(m,co) + %1 (10,¢0) 8z1 (0 0) + 0%1(70,C0) 5z2 (0,0)
orT Oxq Oxo Oxy ot
+8‘I’18(;? ,$0) W) 0,
025(0,0) 902 (®(710,0)) <3<I>2(7'0,C0) + %P2 (70,¢0) 927(0,0) + 9P2(70,60) 925 (0,0)
or Oxq or Oxo or Oxq or
+3‘I’2(§7y'?,fo) 8%8(270) =0,
3226(970) 3@4(‘;(7'0740)) (3@4(7'07%) + 3‘1>48(7'07C0) 3218(0 ,0) + 3@48(7'(),(0) 82;6(970)
T Y1 Zo Z1 T
+a<1>4(§;?,<o> 6%(2,0)) —0.
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021(10,¢0) _ 9%2(70,60) _ O0Pa(70,$0) _ 0. we obtain

Since === = T=0e =
aoa fago) + by 923 (0,0) +dg 8z4(00) _o,
eo 15)(;) ,0) +f dz2(0 0) 07
io 8z48(79 -0
That is
027(0,0) 0
0% =Y
8243(7(.) ,0) —0.
In the same way as above, we obtain
di(nl — 00 (I)(nan177727773a 774))(0’ 0) = 07
E(TIZ - 92 o ‘I)(ﬁ77717772>7737 774))(07 0) = 07
55 (14 — ©4 0 (1,11, 12,13,14))(0,0) = 0.
Therefore
6z%<3,0) _ ael(gizo,<o>> (8%6(;3,40) (q n 6z1 (0, 0)) n acln@(grci,co) (q n 6z2 (0 0)
8<I> (10,¢0) 0P (710,¢0) 82 (0,0) o
+ ldy?, 0 + 1ayr11 0 q1 + 4 o = O7
8z;3(£,0) _ 8@2(30(;0,(0)) (a%a(ro,co) (q + azl (0, 0)) + 8<I>28(TO,C0) g2 + 622 (0 0)

|
=)

+8CD26§;(;1<0) + 84)2(7;;(0) q1 + 824(0 0)

821(9(30) _ 694(<§ifoo,<o>> <3<1>48(m,<o> (q n azl(o 0)) 4 3¢4§To,40) <q n 622(0 0))
+8<I>4(TO,40) + 8q>4[§m,40) (q + 8,24(0 o))) —0.

9yo
We obtain
a0 821(00) 4 by 8229(00) 4 oo+ d 824(00) _o,
eo 8216(0 ,0) + f ('9z2 (0 0) _ =0,
. 92:(0,0
Zo% 0.
That is
921(0,0) _  foco
P *d(% 0) ~ aofo—boeo’
25(0,0) _ .
230 - aoff)ofzoeo ’ (43)
BZZ (0,0) 0
do -
4.4. First derivatives of w
We have
%2 = L(ns—O308(n,n1,m2,13, 7))
_ 003 [ 0®3(n,m1,1m2,13,14) + 9Ps3(1,m1,m2,13,M4) 321 + 0®3(n,m1,m2,m3,14) 025
- Byo or BI(] 31}1 orT
| 9%s(nn1mamg.na) Oz )
0’[/1 oT :

At (7,0) = (0,0) we have W = 0, then we obtain

dw _ _ 003 [ 9%3(70,40) 921(0,0) 9®3(70,¢0) 925(0,0) 93 (70,60) 924(0,0) \ _
ﬁ(o O) — 7 yo ( dzo a7 + Bz PLd + Ay ar =0.
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0
oo = %(773 — O30 ®(1,11,M2,713,M4))
_ 903 ( 9®3(n,m1,m2,m3,m4) 0z] 9®3(n,m1,m2,m3,7m4) 0z
o 17@03( : (’;m0234(q+ 20 ) T . (’;11234(q+ 2)
0®3(n,m1,m2,m3,m4) | OP3(n,m1,m2,m3,m4) Oz;
+ 3 alyOZ 3,714 + 3 5y12 3,714 (q _|’_ 4 )) .

At (7,0) = (0,0) we obtain

E od 5 o 0,0 oD s o 0,0
%(0’0) _ 1_%( 36(6240) <q + Z1( ) + 35;24‘0) <q + Zz( ))
+3<1>3{§;2»C0) + 34’38(;(1),%) (q + 624(0 0)))
983 9®3(70,60)
9yo 9yo
go=0

Therefore Dz ,w(0,0) = (0,0).

4.5. Second derivatives of w
Let A = 82“5;3’0) B=2 ”(30 0) and € = %.

4.5.1. Calculation of A.
2 2
We have 3% = 25 (n3 — ©3 0 (1,11, 12,73,M4)), then

072
9w _ _ 903 [02®3(n, m,nzwa,nzx) + 25 @3(n,m1,m2,m3,14) 321 + 25 ®3(n,m1,m2,m3,m4) 925
o732 dyo or TOxg 070z or
) 92 ®3(1,1m1,12,13,M4) 824 + 2 ®3(n,m1,m2,m3,m4) [ 021 + 23 ®3(n,m1,m2,m3,m4) 021 925
o070y 8ac or GCERCESY or of

+25 @3 (n,m1,m2,m3,m4) 021 324 + 923(n.m1.m2.m3.m4) a? z1 + % @3(n, m,nz,ns,m) 923
dxg0y1 or oz oF 8z or

92 ®3(n.m1.02,m3.,14) (‘922)
2

92 ®3(n,m1,m2,m3,m4) 925 324 83 (n.m1.,m2,m3,m4) O° 9%z3

Oz10y1 or GCEEY or oy7
2
+!94’3(7N717772,773»774) 9%z
oy1 o972 )

At (7,0) = (0,0) we have % = 0. Then

A=0.

4.5.2. Calculation of C.
We have 2w — 5‘9722(773 — O30 ®(1,11,72,73,M4)), then

do
22w _ 803 [ 9*®3(n,n1,m2,m3,m4) 821 8% ®3(n,m ,m2,m3,14) 021
do2 Yo Ox? @+ +2 OxoOx1 @+ do 92+
> ®3(n,m1,M2,M3,m4) 321 324 923 (n,n1,m2,M3,04) 321
%3 (nym1,m2,ms,ma) ((0°25 9’ ‘i’s(mm,nz,ns,m) dzz
+ do 502 ) T 31:1 @2+ 3
9> ®3(n,m1,M2,m3,M4) 0z; 22 <I>3(n 7]177]277737774) 3Z2
+2 Bwlayl q2 + W q4 + + 2 ayoawl q +
2
+d<1>5(n M1m2.ms.ma) (0225 + 32@3(777771,712,713,714) 9z + 28 %(mmmzma,m)
oz do2 oy? do 0yoOy1 94

_|_8<I>3(771n1,n27n3m4) 9%z; _|_32<I’3(77,771,n2,n3,n4)
Oy1 002 Ay? :

az

W)

324)
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At (7,0) = (0,0) we obtain
8%®5(10, 827(0,0 8%®5(10, 823(0,0
c = 7%7(;)03{2 ;P;,(Ea(;lfo) (qlJr 1( ))+2 g;fazfo) <q + 2( ))
92 ®3(70,60) 22 ‘1’3(TO7C0)
+2 dyody: 14 + dyg }

4.5.3. Calculation of 5.

2w _ 2 (D
We have 2 = = (£ (3 — O3 0 ®(n, 71,72, 73,74))) , then
Pw _ 003 {32‘1’3(77»771777271737%) ( + 5 621 + 92 ®3(n,n1,m2,n3,14) +% 8z2
9700 dyo GEGET q GEGES q2
9> ®3(n,m1,m2,ms, 9> ®3(n,n1,m2,ms, Oz
I 3(71821625 ng.na) 4 s(nav;lazf n3,14) (q n 4)
9> ®3(n,m1,m2,m3,m4) D=1 o 9*®3(n,m1,m2,m3,m4) 27 dz3
+ 3(n glwgz 13,M4) OZ'Fl ((h + 21) + 3(%;101671?1773 n4) 62 (q2 + 812)
*®s(nm1,m2.ms,ma) 027 92 P3(n,01,m2,m3,14) 321 3Z4
+ dyoOxo or + dy10x0 g4 +
OP3(n,m1,m2,m3,m4) 022} 82®3(n,m1,m2,13, dz dz
1 9%s(n 7]5122 13,774) i i 3(?);;6221”3 n4) 923 (q n 1)
5% M2,M3,M4) O 2] o) N2, 9
+ 3(n, glwnz 13,M4) ;z @+ 2 Zz + 3(%;1118220 13,M4) 22
9%® 12,M3,M4) O 8 %P3 (n,m1,m2,m3,m4) O°
+ s(% ;:7113221 n3,14) az; qa + 24 + 3(n né'ciz 73,M4) 87237
82®3(n,m1,m2,m3,m4) 02 a 52® m2,m3,n4) 024 5]
+EOtm ) 0 (g, 4 1) 4 Potamammnd 5 (4, 1 95)
82®3(n,m1,m2,M3, 0z} Bz 82®3(n,m1,m2,M3, 82
+ 3(n g;g}z 13,74) 8?1 Q-+ 9 4 + a(%ggazzl 13,74) a;
_|_3<I>3(?7J71777277]3ﬂ74) 9%z,
0y1 oTdo [ °
_ o o2 P3(70,60) __ 82‘193(7'0,C0) 9% ®3(10,80) __
At (7,0) = (0,0) we have =% FEER o205, = 0, then we obtain
B— _99s 32@3(7'0,&))_

9yo

0T0Yo
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