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Abstract

Modeling by fractional order differential equations has more ad-
vantages to describe the dynamics of phenomena with memory which
exists in many biological systems. In this paper, we propose a frac-
tional order model for human immunodeficiency virus (HIV) infection
by including a class of infected cells that are not yet producing virus,
i.e., cells in the eclipse stage. We first prove the positivity and bound-
edness of solutions in order to ensure the well-posedness of the pro-
posed model. By constructing appropriate Lyapunov functionals, the
global stability of the disease-free equilibrium and the chronic infec-
tion equilibrium is established. Numerical simulations are presented
in order to validate our theoretical results.

Keywords: HIV infection, eclipse stage, nonlinear incidence rate, global
stability.

1 Introduction

In recent years, many mathematical models used fractional order differential
equations (FDEs) have been developed to better describe the dynamics of vi-
ral infections such as the human immunodeficiency virus (HIV), the hepatitis
B virus (HBV) and the hepatitis C virus (HCV). In 2012, Arafa et al. [1] in-
troduced fractional-order into a model of HIV infection of CD4+ T cells and 
they studied the effect of the changing the average number of viral parti-
cles with different sets of initial conditions on the dynamics of the presented
model. In 2016, Liu et al. [2] proposed a fractional mathematical model which
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includes cure rate and Beddington-DeAngelis functional response. They es-
tablished only the local stability of equilibria, but not investigated the global
stability of these equilibria. In 2017, Salman and Yousef [3] considered a
fractional-order model for HBV infection with cure of infected cells and they
discussed the local asymptotic stability of equilibria. In the same years,
Boukhouima et al. [4] generalized all the above models by modeling the in-
fection transmission process by Hattaf’s incidence rate [5]. This incidence
rate was used by many authors [6–9] and it covers many common types ex-
isting in the literature, such as the bilinear incidence function called also the
mass action, the saturation incidence rate, the Beddington-DeAnglis func-
tional response [10, 11] and the Crowley-Martin functional response [12]. In
the above fractional-order models [1–4], infected cells are assumed to pro-
duce new virions immediately after target cells are infected by a free virus.
However, there are many biological steps between viral infection of target
cells and the production of new virions. In our study, we extend and improve
these fractional models by incorporating an eclipse phase, representing the
stage in which infected cells have not started to produce new virions.

The rest of this paper is outlined as follows. In the next section, we for-
mulate our fractional model and give their basic properties. In Section 3, by
constructing suitable Lyapunov functionals, the global stability of equilibria
is investigated. Numerical simulations are presented in Section 4. Finally,
we conclude our results and give future work.

2 Model formulation and basic properties

The first aim of this paper is to extend and improve the fractional-order
models [1–4] by proposing the following model

DαT (t) = λ− µTT (t)− f(T (t), V (t))V (t) + ρE(t),
DαE(t) = f(T (t), V (t))V (t)− (µE + ρ+ γ)E(t),
DαI(t) = γE(t)− µII(t),
DαV (t) = kI(t)− µV V (t),

(1)

where Dα is fractional derivative in the Caputo sense and α is a parameter 
that describes the order of the fractional time-derivative with 0 < α ≤ 1. 
The variables T (t), E(t), I(t) , V (t) denote the concentrations of uninfected 
CD4+ T cells, infected cells in the eclipse stage (unproductive infected cells),
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productive infected cells and free HIV particles at time t, respectively. The
constant λ is the production rate of infected CD4+ T cells and µT is their

natural death rate, and f(T, V )V =
βTV

1 + α1T + α2V + α3TV
describes the

incidence of HIV infection of health CD4+T cells, where α1, α2, α3 ≥ 0 are
the saturation factors measuring the inhibitory or psychological effect, and
β is the infection rate. The unproductive infected cells die at the rate µE,
return to the uninfected cells at the rate ρ and become productive infected
cells at the rate γ. Productive infected cells die at the rate µI . Free HIV
particles are produced from infected cells at the rate k and cleared at the
rate µV . It is very important to note when α = 1, system (1) becomes a
model with an ordinary derivative presented by Hattaf and al. in [8] which
is the generalization of ODE models presented in [14, 16].

The use of fractional derivative in our model is justified by the fact that
the membranes of cells of biological organisms have fractional order electri-
cal conductance [17]. Further, the comparisons between the results of the
fractional-order model, the results of the integer model and the measured
real data obtained from 10 patients during HIV infection show that the re-
sults of the fractional-order model give predictions to the plasma virus load
of the patients better than those of the integer model [18].

For biological reasons, we assume that the initial data for system (1)
satisfy:

T (0) = T0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, V (0) = V0 ≥ 0. (2)

First, we have the following result.

Theorem 2.1. For any initial data satisfying (2), system (1) has a unique
solution on [0,+∞). This solution remains non-negative and bounded for all
t ≥ 0. Moreover, we have

(i) N(t) ≤ N(0) + λ
δ
,

(ii) V (t) ≤ V (0) + k
µV

‖I‖
∞
,

where N(t) = T (t) + E(t) + I(t) and δ = min{µT , µE, µI}.
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Proof. From (1), we have

DαT |T=0 = λ + ρE ≥ 0,

DαE |E=0 = f(T, V )V ≥ 0 ,

DαI |I=0 = γE ≥ 0,

DαV |V=0 = kI ≥ 0.

It follows from [13] that the set IR4
+ = {(T,E, I, V ) ∈ IR4 : T ≥ 0, E ≥ 0, I ≥

0, V ≥ 0} is positively invariant.
It is not hard to see that the vector function of system (1) satisfies the

first condition of Lemma 4 in [4]. It remains to show the second condition
condition of this Lemma. Let

X(t) =









T (t)
E(t)
I(t)
V (t)









and η =









λ

0
0
0









.

So, we discuss four cases:

• If α1 6= 0, then system (1) can be written as follows

DαX(t) = η + A1X +
α1T

1 + α1T + α2V + α3TV
A2X,

where

A1 =









−µT ρ 0 0
0 −(µE + ρ+ γ) 0 0
0 γ −µI 0
0 0 k −µV









and A2 =









0 0 0 −β

α1

0 0 0 β

α1

0 0 0 0
0 0 0 0









.

(3)
Then

‖DαX(t)‖ ≤ ‖η‖+ (‖A1‖+ ‖A2‖) ‖X‖ . (4)

• If α2 6= 0, we have

DαX(t) = η + A1X + A3X,
α2V

1 + α1T + α2V + α3T V
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where

A3 =









−β

α2

0 0 0
β

α2

0 0 0

0 0 0 0
0 0 0 0









.

Then

‖DαX(t)‖ ≤ ‖η‖+ (‖A1‖+ ‖A3‖) ‖X‖ .

• If α3 6= 0, we have

DαX(t) = η + A1X +
α3TV

1 + α1T + α2V + α3TV
A4X,

where

A4 =









−1
α3

0 0 0
1
α3

0 0 0

0 0 0 0
0 0 0 0









.

Then

‖DαX(t)‖ ≤ ‖η‖+ (‖A1‖+ ‖A4‖) ‖X‖ .

• If α1 = α2 = α3 = 0, we have

DαX(t) = ζ + A1X + V A5X,

where

A5 =









−β 0 0 0
β 0 0 0
0 0 0 0
0 0 0 0









,

Then

‖DαX(t)‖ ≤ ‖ζ‖+ (‖V ‖‖A5‖+ ‖A1‖)‖X‖.

Hence, the second condition of Lemma 4 in [4] is satisfied. Therefore, system
(1) has a unique solution on [0,+∞).

By adding the first three equations of system (1), we obtain

DαN(t) ≤ λ− δN(t),
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which implies that

N(t) ≤ N(0)Eα(−δtα) +
λ

δ
[1− Eα(−δtα)] ,

where Eα(z) =
∞
∑

k=0

zα

Γ(αk + 1)
is the Mittag-Leffler function of parameter α.

Since 0 ≤ Eα(−δtα) ≤ 1 , we deduce (i).

Now, we show (ii). The fourth equation of system (1) implies that

V (t) = V (0)Eα(−µV t
α) + k

∫ t

0

αI(s)(t− s)α−1E ′

α(−µV (t− s)α)ds.

Then

V (t) ≤ V (0)Eα(−µV t
α) +

k

µV

‖I‖
∞
[1− Eα(−µV t

α)] .

Thus,

V (t) ≤ V (0) +
k

µV

‖I‖
∞
.

We begin the analysis of the equilibria by observing that system (1) has a

disease-free equilibrium Q0(
λ

µT

, 0, 0, 0). Then we define the basic reproduc-

tion number of (1) as follows

R0 =
λβkγ

µIµV (λα1 + µT )(ρ+ µE + γ)
,

which represents the average number of secondary infections produced by
one productive infected cell during the period of infection when all cells are
uninfected.

Similarly to [8], it is not hard to get the following result.

Theorem 2.2.

(i) If R0 ≤ 1, then the system (1) has a unique disease-free equilibrium of

the form Q0(T0, 0, 0, 0), where T0 =
λ

µT

.
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(ii) If R0 > 1, the disease-free equilibrium is still present and the system (1)
has a unique chronic infection equilibrium of the form Q1(T1, E1, I1, V1)

where T1 ∈ (0,
λ

µT

), E1 =
λ− µTT1

µE + γ
, I1 =

γ(λ− µTT1)

µI(µE + γ)
and V1 =

kγ(λ− µTT1)

µIµV (µE + γ)
.

3 Global stability

In this section, we establish the global stability of the disease-free equilibrium
Q0 and the chronic infection equilibrium Q1.

Theorem 3.1. If R0 ≤ 1, then the disease-free equilibrium Q0 is globally
asymptotically stable, and becomes unstable if R0 > 1.

Proof. Consider the following Lyapunov functional

L0(t) =
T0

1 + α1T0

Φ

(

T

T0

)

+
ρ(T − T0 + E)2

2(1 + α1T0)(µT + µE + γ)T0

+
ρ+ µE + γ

γ
I + E +

µI(ρ+ µE + γ)

kγ
V,

where Φ(x) = x − 1 − ln(x), x > 0. By using the property of fractional
derivatives given in [19], we can compute

DαL0(t) ≤
1

1 + α1T0

(

1−
T0

T

)

DαT +
ρ(T − T0 + E) (DαT +DαE)

2(1 + α1T0)(µT + µE + γ)T0

+
ρ+ µE + γ

γ
DαI +DαE +

µI(ρ+ µE + γ)

kγ
DαV.

Using λ = µTT0, we get

DαL0(t) ≤ −
µT (T0 − T )2

(1 + α1T0) T
+

(1 + α1T )T0f(T, V )

(1 + α1T0) T
V + ρ

(T − T0)E

(1 + α1T0)T

−
ρµT (T − T0)

2

(1 + α1T0)(µT + µE + γ)T0
−

ρ(µE + γ)E2

(1 + α1T0)(µT + µE + γ)T0

+
ρE

(1 + α1T0)T0

(

T0 − T
)

−
µIµV (ρ+ µE + γ)

kγ
V.
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Hence,

DαL0(t) ≤ −
( 1

T
+

ρ

(µT + µE + γ)T0

)µT (T − T0)
2

1 + α1T0
−

ρ(µE + γ)E2

(1 + α1T0)(µT + µE + γ)T0

−
ρ(T − T0)

2E

(1 + α1T0)TT0
+

µIµV (ρ+ µE + γ)

kγ
(R0 − 1)V

−
βT0(α2 + α3T )V

2

(1 + α1T0) (1 + α1T + α2V + α3TV )
.

Since R0 ≤ 1, we have that DαL0(t) ≤ 0. Furthermore, DαL0(t) = 0 if and
only if T = T0, E = 0 and V = 0. From the last equation of (1), we get I = 0.
Consequently, the largest invariant set of {(T, E, I, V ) | DαL0(t) = 0} is
the singleton {Q0}. It follows from LaSalle’s invariance principale [15] that
the free equilibrium Q0 is globally asymptotically stable when R0 < 1.

By a simple computation, the characteristic equation at Q0 is given by

(µT + ξ)
(

ξ3 + a1ξ
2 + a2ξ + a3

)

= 0,

where

a1 = ρ+ γ + µE + µI + µV ,

a2 = µI(ρ+ γ + µE) + µV (ρ+ γ + µE + µI),

a3 = µIµV (ρ+ γ + µE)(1−R0).

Let

P (ξ) = ξ3 + a1ξ
2 + a2ξ + a3 (5)

We have lim
ξ→+∞

P (ξ) = +∞ and P (0) = µIµV (ρ+ γ+µE)(1−R0). If R0 > 1,

then P (0) < 0. So, there exists a ξ0 ∈ (0,+∞) such that P (ξ0) = 0, which
implies that the characteristic equation at Q0 has a positive root when R0 >

1. Consequently Q0 is unstable if R0 > 1.

Theorem 3.2. The chronic infection equilibrium Q1 is globally asymptoti-
cally stable if R0 > 1 and

R0 ≤ 1 +
[µTµIµV (µE + γ) + α2µTλkγ](µE + ρ+ γ) + ρα3kγλ

2

ρµIµV (µE + ρ+ γ)(µT + α1λ)
. (6)
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Proof. Consider the following Lyapunov functional

L1(t) =
(1 + α2V1) T1

1 + α1T1 + α2V1 + α3T1V1

Φ

(

T

T1

)

+
ρ(1 + α2V1)

2(1 + α1T1 + α2V1 + α3T1V1)(µT + µE + γ)T1

(T − T1 + E − E1)
2

+
ρ+ µE + γ

γ
I1Φ

(

I

I1

)

+ E1Φ

(

E

E1

)

+
µI(ρ+ µE + γ)

kγ
V1Φ

(

V

V1

)

.

The derivative of L1(t) along the positive solutions of (1) satisfies:

DαL1(t) ≤

(

1−
f(T1, V1)

f(T, V1)

)

DαT

+
ρ(1 + α2V1)(T − T1 + E − E1)

(1 + α1T1 + α2V1 + α3T1V1) (µT + µE + γ) T1
(DαT +DαE)

+
ρ+ µE + γ

γ

(

1−
I1

I

)

DαI +

(

1−
E1

E

)

DαE

+
µI(ρ+ µE + γ)

kγ

(

1−
V1

V

)

DαV.

By applying λ = µTT1 − f(T1, V1)V1 − ρE1 = µTT1 − (γ + µE)E1,

µI = γE1

I1
and µV = k I1

V1

, we get

DαL1(t) ≤

(

1−
f(T1, V1)

f(T, V1)

)

DαT

+
ρ(1 + α2V1)(T − T1 + E − E1)

(1 + α1T1 + α2V1 + α3T1V1)() (µT + µE + γ) T1
(DαT +DαE)

+
ρ+ µE + γ

γ

(

1−
I1

I

)

DαI +

(

1−
E1

E

)

DαE +
µI(ρ+ µE + γ)

kγ

(

1−
V1

V

)

DαV

≤

(

1−
f(T1, V1)

f(T, V1)

)

(−µT (T − T1) + ρ(E − E1)− f(T, V )V + f(T1, V1)V1)

+(1−
E1

E
)

(

f(T, V )V −
f(T1, V1)V1

E1

E

)

+
ρ+ µE + γ

γ

(

1−
I1

I

) (

γE −
γE1

I1

)

+
µI(ρ+ µE + γ)

kγ

(

1−
V1

V

)(

kI −
kI1

V1

)

+
ρ(1 + α2V1)[(T − T1) + (E −E1)](−µT (T − T1)− (µE + γ)(E − E1))

T1(1 + α1T1 + α2V1 + α3T1V1)(µE + γ + µT )
.
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Thus,

DαL1(t) ≤
−µT (1 + α2V1)(T − T1)

2

TT1(1 + α1T1 + α2V1 + α3T1V1)

(

(µTT1 − ρE1) +
ρµTT

µE + γ + µT

+ ρE

)

−
ρ(1 + α2V1)(µE + γ)(E − E1)

2

T1(1 + α1T1 + α2V1 + α3T1V1)(µE + γ + µT )

+f(T1, V1)V1

(

5−
f(T1, V1)

f(T, V1)
−

EI1

E1I
−

f(T, V )

f(T1, V1)

E1V

EV1

−
IV1

I1V
−

f(T, V1)

f(T, V )

)

−
f(T1, V1)(1 + α1T1)(α2 + α3T )(V − V1)

2

(1 + α1T1 + α2V1 + α3T1V1)(1 + α1T + α2V + α3TV )
.

Since the arithmetic mean is greater than or equal to the geometric mean, it
follows that

5−
f(T1, V1)

f(T, V1)
−

EI1

E1I
−

f(T, V )

f(T1, V1)

E1V

EV1
−

IV1

I1V
−

f(T, V1)

f(T, V )
≤ 0.

Therefore, DαL1(t) ≤ 0 if ρE1 6 µTT1. It is not hard to show that ρE1 6

µTT1 is equivalent to (6). Further, DαL1(t) = 0 if and only if E = E1,

V = V1 and f(T1,V1)
f(T,V1)

= EI1
E1I

= IV1

I1V
, which implies that I = I1 and T =

T1. By the LaSalle’s invariance principale, we conclude that Q1 is globally
asymptotically stable.

Since

lim
ρ→0

[µTµIµV (µE + γ) + α2µTλkγ](µE + ρ+ γ) + ρα3kγλ
2

ρµIµV (µE + ρ+ γ)(µT + α1λ)
= ∞,

lim
γ→∞

[µTµIµV (µE + γ) + α2µTλkγ](µE + ρ+ γ) + ρα3kγλ
2

ρµIµV (µE + ρ+ γ)(µT + α1λ)
= ∞,

we have the following result.

Corollary 3.3.

(i) The chronic infection equilibrium Q1 is globally asymptotically stable if
R0 > 1 and ρ is sufficiently small. In particular for ρ = 0.

(ii) The chronic infection equilibrium Q1 is globally asymptotically stable if
R0 > 1 and γ is sufficiently large.
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4 Numerical simulation

In this section, we present some numerical simulations in order to illustrate
our analytical results. The initial conditions of system (1) are T (0) = 800
cells mm−3, E(0) = 100 cells mm−3, I(0) = 24 cells mm−3, and V (0) = 8000
virions mm−3.

First, we choose Λ = 10, µT = 0.0139, β = 0.000024, α1 = 0.1, α2 = 0.01,
α3 = 0.00001, ρ = 0.01, γ = 1.1, µI = 0.29, µE = 0.0350, k = 600 and
µV = 3. By calculation, we have R0 = 0.1568 < 1. It follows from Theorem
2.2 that system (1) has a disease-free equilibrium Q0(719.4245, 0, 0, 0). By
Theorem 3.1, we see that Q0 is globally asymptotically stable which means
that the virus is cleared and the infection die out. Figure 1 illustrates this
result.
Next, we choose β = 0.0005 and we keep the other parameter values. We
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Figure 1: Stability of the disease-free equilibrium Q0.

have R0 = 3.2673 and

1 +
[µTµIµV (µE + γ) + α2µTλkγ](µE + ρ+ γ) + ρα3kγλ

2

ρµIµV (µE + ρ+ γ)(µT + α1λ)
= 107.2121

Hence, the condition (6) is satisfied. From Theorem 2.2, the chronic infec-
tion equilibrium Q1(242.4, 5.842, 22.16, 4232) is globally asymptotically sta-
ble, which means that the virus persists in the host and the infection becomes 
chronic. This result is confirmed by Figure 2.
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Figure 2: Stability of the chronic infection equilibrium Q1.

Finally, we choose µI = 0.27, µE = 0.0347, β = 0.0084, γ = 0.01, k = 200
and we keep the other parameter values. We have R0 = 3.7397 and

1 + [µTµIµV (µE+γ)+α2µT λkγ](µE+ρ+γ)+ρα3kγλ
2

ρµIµV (µE+ρ+γ)(µT+α1λ)
= 1.4443. Hence the dynamics of

HIV infection converges to steady state Q1, but the condition (6) is not
satisfied. Therefore, the condition (6) is not necessary for the global stability
of Q1 (see Figure. 3).

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

Days

U
ni

nf
ec

te
d 

C
D

4+
 T

−c
el

ls
 (

T
)

 
0 20 40 60 80 100 120 140 160 180 200

100

200

300

400

500

Days

U
np

ro
du

ct
iv

e 
ce

lls
 (

E
)

 

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Days

P
ro

du
ct

iv
e 

in
fe

ct
ed

 c
el

ls
 (

I)

 
0 20 40 60 80 100 120 140 160 180 200

0

1000

2000

3000

4000

5000

6000

7000

Days

V
iru

s 
(V

)

 

α=0.3 α=0.5 α=0.8 α=1 α=0.3 α=0.5 α=0.8 α=1

α=0.3 α=0.5 α=0.8 α=1 α=0.3 α=0.5 α=0.8 α=1

Figure 3: Dynamics of HIV infection with the condition (6) not satisfied.
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5 Conclusion

In this work, we have proposed a fractional-order model to describe the dy-
namics of HIV infection by taking into account the cure of infected cells in
eclipse stage. We first proved that the proposed model is mathematically
and virologically well-posed. In addition, we have proved that the disease-
free equilibrium Q0 is globally asymptotically stable if the basic reproduction
number R0 ≤ 1, which mean that the HIV particles are eradicated. When
R0 > 1, Q0 becomes unstable and there occurs the HIV infection equilibrium
Q1 which is globally asymptotically stable provided that the condition (6)
is satisfied. In this case, the HIV particles persist in the host. Numerically,
we see that the condition (6) is not necessary (see Figure 3). So, it will be
interesting to prove it mathematically in future work. From our analytical
and numerical results, we conclude that the fractional order has no effect on
the asymptotic properties of the equilibria, but it may affect the time for ar-
riving at these equilibria. In addition, the fractional-order models presented
in [1–4] are extended and improved.
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