
Dynamic resource allocations in virtual
networks through a knapsack problem’s

dynamic programming solution

Vianney Kengne Tchendji∗, Yannick Florian Yankam∗

∗Department of Mathematics and Computer Science
Faculty of Science
University of Dschang
PO Box 67, Dschang-Cameroon
vianneykengne@yahoo.fr, yyankam@yahoo.fr

RÉSUMÉ. La multitude des services à forte valeur ajoutée offert par Internet et améliorés considé-
rablement avec l’intégration de la virtualisation réseau et de la technologie des réseaux définis par
logiciels (Software Defined Networking), suscite de plus en plus l’attention des utilisateurs finaux et
des grands acteurs des réseaux informatiques (Google, Amazon, Yahoo, Cisco, ...); ainsi, pour faire
face à cette forte demande, les fournisseurs de ressources réseau (bande passante, espace de sto-
ckage, débit, ...) doivent mettre en place les bons modèles permettant de bien prendre en main les
besoins des utilisateurs tout en maximisant les profits engrangés ou le nombre de requetes satis-
faites dans les réseaux virtuels. Ce besoin est d’autant plus urgent que les requêtes des utilisateurs
peuvent être interdépendantes, imposant de ce fait au FIP des contraintes de satisfaction mutuelle
des requêtes, ce qui complexifie encore plus le problème. Dans cette optique, nous montrons que
le problème d’allocation des ressources aux utilisateurs en fonction de leurs requetes, se ramène à
un problème de sac à dos et peut par conséquent être résolu de façon efficiente en exploitant les
meilleures solutions de programmation dynamique pour le problème de sac à dos. Notre contribution
considère l’allocation dynamique des ressources comme une application de plusieurs instances du
problème de sac à dos sur des requetes à valeurs variables.

ABSTRACT. The high-value Internet services that have been significantly enhanced with the integra-
tion of network virtualization and Software Defined Networking (SDN) technology are increasingly at-
tracting the attention of end-users and major computer network companies (Google, Amazon, Yahoo,
Cisco, ...). In order to cope with this high demand, network resource providers (bandwidth, storage
space, throughput, etc.) must implement the right models to understand and hold the users’ needs
while maximizing profits reaped or the number of satisfied requests into the virtual networks. This
need is even more urgent that users’ requests can be linked, thereby imposing to the InP some con-
straints concerning the mutual satisfaction of requests, which further complicates the problem. From
this perspective, we show that the problem of resource allocation to users based on their requests
is a knapsack problem and can therefore be solved efficiently by using the best dynamic program-
ming solutions for the knapsack problem. Our contribution takes the dynamic resources allocation as
a multiple knapsack’s problem instances on variable value requests.

MOTS-CLÉS : Réseau virtuel, allocation des ressources, sac à dos, programmation dynamique, four-
nisseur de services, fournisseur d’infrastructures

KEYWORDS : Virtual network, ressource allocation, knapsack, dynamic programming, service provider,
infrastructure provider

Special issue CARI 2018 
Nabil Gmati, Eric Badouel, Bruce Watson, Eds. 

ARIMA Journal, vol. 31 (2020), pp. 23-44



1. Introduction
The limits of the Internet (security, architectural rigidity due to IP protocol, ...) like

its resistance to the adoption of new services (such as VOD, telephony over IP, etc) ge-
nerally known as the phenomenon of Internet ossification [3, 4], led to rethink its archi-
tecture. This is how network virtualization was proposed, the idea being the maximum
exploitation of physical resources through their sharing and reusability in order to meet
the dynamic needs of users ; the integration of the Software Defined Networking (SDN)
[2] allowed to better face this resources allocation challenge (known as virtual network
embedding problem [10]) through a central equipment called controller, which defines
the management policies of the network. This resource allocation is a subproblem of a
most global one, commonly known as the Virtual Network Embedding (VNE), which is
NP-hard to solve [5] because of the number of constraints involved.

Nowadays, since the network virtualization involves the Internet operators to be di-
vided into infrastructure providers (InP) who hold the physical resources and the service
providers (SP) who exploit these resources to offer services, both parts must setup appro-
priate techniques to match their resources allocation with the varied requests of end-users
[5]. Thus, techniques such as auctions or game theory [7] can be used to allocate these
resources, although they do not always make it possible to decide in all cases. [6] pro-
poses a resource allocation method also based on this auction approach, but this method
focuses on the satisfaction of the interests of resource providers rather than customers. In
order to take into account the multiple constraints related to the allocation, [13] proposes
a technique of energy allocation based on the knapsack problem with restrictions on the
power quantity. But, this approach only offers approximate solutions that are not close
to optimal. In addition, [7, 6, 13] does not consider the dependency between the users’
requests. In fact, the users’ requests can be either totally independent (exclusive request
for storage space or bandwidth or throughput), or dependent on each other (storage and
bandwidth, computing capacity and storage, etc.). The main motivation of this paper is to
improve the resources allocation process in the virtual network by providing some solu-
tions to the drawbacks cited above concerning the works [7, 6, 13]. So, our contribution
in this paper is to propose a 0-1 knapsack-based resource allocation approach both in pre-
sence of independent and dependent requests. We describe our contribution through four
points :

– a modeling of the dynamic resources allocation problem as a 0-1 knapsack problem.
We exploit a dynamic programming solution of the 0-1 knapsack problem to propose a
solution for the dynamic resources allocation one in the case of independent requests ;

– the identification of the possible types of dependencies between the users’ requests
and the proposition of a method for building dependency graphs modeling the interdepen-
dence between the users’requests. We distinguish dependency graphs with one or more
connected components ;

– the proposition of the solutions to the different dependency cases on the basis of the
dynamic programming solution used above to face independent requests.

This work resumes our previous work [1] in which we were only interested in inde-
pendent requests. Here, we removed this assumption by considering a number of constraints
between the requests. This greatly increase the complexity of the problem considered. In
fact, the previous work is only a special case of this one.

24   ARIMA   -   volume 31  -  2020



The rest of this paper is organized as follows : in section 2, we present network vir-
tualization and SDN paradigms. Section 3 firstly presents a formulation of the resource
allocation problem, showing the equivalence with the knapsack one. Secondly, this section
describes the resolution method of an alleged version of the resource allocation problem,
through a dynamic programming solution of to the 0-1 knapsack problem. Section 4 en-
hances our study to the dependent requests, section 5 proposes some resources allocation
solutions for this case and section 6 shows the simulations results. A conclusion ends the
paper.

2. Network virtualization and SDN paradigms
Our work environment is made up of several virtual networks under the supervision

of a network controller. A network controller is a network equipment which defines and
hosts all the network management policies (see figure 2).

2.1. Virtual networks
A virtual network is a set of virtual devices interconnected by virtual links through a

physical infrastructure [4]. In each virtual network, we find components created from a
physical component by a special software called hypervisor : these are virtual machines
[9] (see figure 1a). Thus, the resources used within a virtual network are provided by
the substract network (see figure 1b). Basic physical network resources are provided by
an Infrastructure Provider (InP) (see figure 1b). This InP allocates resources to service
providers (SP) which create virtual networks to exploit them. There are three levels of
resource allocation : virtual network, SP and InP ; all of these levels are under the su-
pervision of the controller which can initiate cooperation requests with other InPs when
needed. Without this controller, it would not be easy to manage resources with a large
virtual network instances.

2.2. The Software Defined Networking solution
Software Defined Networking (SDN) is a new network architecture paradigm where

the control plane is completely decoupled from the data plane for each network equipment
[11]. The control plane is a part of network which permits to calculate the network topo-
logy or to exchange routing information, while data plane or forwarding plane is a part of
network where the packets are commutated. A network controller who have the control
plane, defines the network management policies (routing, bandwith allocation, topology
discovery,...) and assign it to the equipments (see figure 2). This decoupling allows to
deploy a monitoring plane on standard servers with flexible computing capabilities [12],
compared to conventional switches. Thus it opens the opportunity to design an efficient
centralized control plane. In addition, the creation of a standardized API (Application
Programming Interface) between the control plane and the data plane allows developing
network services. The control plane is capable of injecting states in the network elements.

Dynamic resource allocations in virtual networks through a knapsack problem's dynamic programming solution   25



(a) Virtual machines.

(b) A network virtualization environment.

Figure 1 – Virtualization principles.

3. The resource allocation problem

3.1. Problem description
Intuitively, resource allocation is a problem of finding the best way to satisfy the most

important parts of possible requests from a given set, taking into consideration several
constraints involved [6]. It can also consist in satisfying a less important range of requests
submitted with the same constraints. There are several problem formulations for virtual
network provision [6, 8]. However, these different formulations focus on the allocation of
virtual links and bandwidth [8] in a restricted virtual network ; these formulations would
be more general if the storage space, computing capacity and a set of virtual networks
were also considered. Another work [13] proposes in the context of the Internet of Things,
a power allocation knapsack-based model which approaches the optimal solution, whe-

26   ARIMA   -   volume 31  -  2020



Figure 2 – The SDN paradigm.
reas ours allows to reach it using the dynamic programming solution for our resource
allocation problem. In this work we look at this allocation problem as a sharing problem,
that is, a problem from which we have resources to share among multiple users. The SDN
controller ensure the monitoring and the provision of that resources to the end-users ; this
controller can also initiate and manage some cooperation between Infrastructure Providers
(InP) to get the resources matching the users’constraints. It is therefore an optimization
or decision problem that takes as input :

– a set of n applicants. In our context we associate it to the term of user ;
– limited common resource (s) ;
– a common language for expressing preferences and preferences of n users on the

resource (s) ;
– a set of constraints on the possible resources to be allocated ;
– an optimization or decision criterion.
As output, we have a resource allocation model, matching the constraints and optimize

the criterion. Note that shared resources can be continuous (split), indivisible, discrete or
mixed, though in this paper, we consider divisible and shareable resources. This means
that a supplier can divide the resources in its basket before sharing them. In this light,
resource allocations can be defined and characterized in the following ways :

Definition 1 : Let be a population P = p1, p2, ..., pn of n requests and a set of m
resourcesR = r1, r2, ..., rm owned by a resource provider. A resource allocation between
these n applicants is a list of n baskets containing the resources ri ⊆ R obtained by each
applicant, matching the following properties : ∪i∈{1,2,..m}ri = R and ∩i∈{1,2,..m}ri = φ.

We define the physical infrastructure provider network as an undirected graph G =
(N,L) where N is a set of nodes and L is a set of links. Similarly, the virtual network
of a service provider is defined as a graph G

′
= (N

′
, L

′
) in which N

′
and L

′
are the

nodes and virtual links built on the substrate network of an InP. Since each resource is
associated with a constraint, at each node n ∈ N we also associate a constraint CN (n)
and with each link l ∈ L a constraint CL(l). These constraints can represent at the level
of nodes, constraints on the portion of resources available for packets process and delay
constraints at the link level.

Dynamic resource allocations in virtual networks through a knapsack problem's dynamic programming solution   27



At the request of a user (see figure 3), the SP submits a request composed of a set of
resources that it wants to get from the InPk. This request consists of a matrix in which
the SP specifies its needs.

Figure 3 – Ressource allocation process.

This matrix defines the SP’s needs (resource and quantity) to satisfy the end users. The
physical InP ensures that requested resource quantities do not exceed the total capacity
available at the physical network level. In all cases, for a set of requests to satisfy accor-
ding to given criteria, a set D = d1, d2, ..., dn of n allocation requests to be satisfied, a
quantity of available resources W ∈ N at time t, a quantity pi ∈ N \ {0} of the resource
i wanted through the application di ∈ D and criteria vi ∈ N \ {0} to optimize when
selecting grant requests to satisfy, the problem can be summarized as :

min
n∑

i=1

xipi (1)

or

max
n∑

i=1

xipi (2)

under the constraint :

n∑
i=1

xipi ≤W (3)

where W is the total of available resources.

3.2. Correspondence between knapsack problem and that of
resources allocation

The knapsack problem consists of determining among a set of objects, a selection with
a maximum total value and not exceeding the total permissible weight in the knapsack.
This principle is similar to the resource allocation ones, which consists in finding the
resource price combination that maximizes the supplier’s profits within the limits of avai-
lable resources for a set of expressed demands. That is to say for each resource allocation
problem, there is a knapsack formulation that matches.

Formally, for a set of n demands in resource allocation, we consider a set S of n ob-
jects with weight pi > 0 and values vi > 0. We have to find binary variables x1, x2, ..., xn ∈
{0, 1} such as :

∑n
i=1 xi.pi ≤W , and

∑n
i=1 xi.vi is maximum. For a variable xi, value 1

means the element will be put in the knapsack (ie the resource demand i will be supplied)
and 0 means that it will not be selected.

28   ARIMA   -   volume 31  -  2020



Generally, some constraints are added to avoid singular cases :
–
∑n

i=1 pi > W : we cannot take all the objects (the SP cannot supply all the needs
at the same time) ; that is because in virtual networks, a spare resource must be always
available in the substract network for the network recovery ;

– pi ≤ W, ∀i ∈ {1, 2, ..., n} : no object weight could exceed the knapsack capacity
(each resource demand is less than the total capacity of the knapsack) ;

– vi > 0,∀i ∈ {1, 2, ..., n} : each object has a value and brings a gain (the profit
collected by the supplier for the allocated resources) ;

– pi > 0,∀i ∈ {1, 2, ..., n} : any object has a weight (in ressource allocation, there is
not null request).

So, to sort out an allocation resource problem, we can use some solutions of the knap-
sack problem like the dynamic programming solution.

3.3. Solving the resource allocation problem using a dynamic
programming solution of the 0-1 knapsack’s problem

The dynamic programming resolution method aims at obtaining the optimal solution
to a problem by combining optimal solutions with similar, smaller and overlapping sub-
problems. Using it involves a recurrent formulation of the problem that will be used to
find the optimal solutions. We proceed as follow :

Decomposition of the problem into sub-problems : Let be M(k,w), 0 ≤ k ≤ n and
0 ≤ w ≤ W the maximum cost that can be obtained with objects 1, ..., k of S, and a
maximum load knapsack W (we assume that the pi andw are integers). If we can compute
all the entries of this array, then the array entry M(n,W ) will contain the maximum cost
of objects that can fit into the knapsack, that is, the solution to our problem. The cost
could be the number of requests or the profit collected.

The recursive equation : Now, we recursively define the value of an optimal solution in
terms of solutions to sub-problems. We have two cases :

– we don’t select the object k : in this case, M(k,w) is the maximum benefit by
selecting among the k − 1 first objects with the limit w (M(k − 1, w)) ;

– we select the object k : M(k,w) is the value of the object k plus the maximum
benefit by selecting among the k − 1 first objects with the limit w − pk.

The recursive equation is then :

M(k,w) =


0 if i = 0

M(k − 1, w) if pi > w

max{M(k − 1, w), vk +M(k − 1, w − pk)} else
(4)

This recursive equation result in the dynamic programming algorithm 1 with a space
complexity O(nW ). We choose this algorithm to perform a bottom-up computation (see
figure 4), looking for the optimal solution. This bottom-up computation means that the re-
source evaluation values will increase gradually during computations. The horizontal red
arrows show that calculations are made from left to right ; the vertical red arrow shows that
calculations are also done vertically taking into consideration dependency relationships.

Algorithm 1 provides the optimal solution on a set of objects for the knapsack pro-
blem, and also indicates which subset gives this optimal solution. From line 1 to 15, the

Dynamic resource allocations in virtual networks through a knapsack problem's dynamic programming solution   29



Figure 4 – Bottom-up computation principle.
algorithm computes the maximum requests to satisfy. From line 16 to 21, the algorithm
selects the applicants to provide with resources.

Algorithm 1: knapsack
Data: p,v,n,M
Result: A maximum benefit on objects p

1 Let M [0..n, 0..W ] be a new table ;
2 Let x[1..n] be a new table ;
3 begin
4 for w = 1 to W do
5 M [0, w]=0 ;

6 for k = 1 to n do
7 M [k, 0]=0 ;

8 for k = 1 to n do
9 for w = 1 to W do

10 if p[k] > w then
11 M [k,w] =M [k − 1, w] ;

12 else if M [k − 1, w] > v[k] +M [k − 1, w − p[k]] then
13 M [k,w] =M [k − 1, w] ;

14 else
15 M [k,w] = v[k] +M [k − 1, w − p[k]] ;
16

17 w=W;
18 for k = n to 1 do
19 if M [k,w] ==M [k − 1, w] then
20 x[k] = 0 ;

21 else x[k] = 1 ; w = w − p[k] ;
22 return x ;

Application to resource allocation : Let us consider a total available resources W = 11
in the network. This resource could be the bandwidth, the storage space or throughput.
We also consider a set of k applicants with values vk as the number of requests sent, and
weight pk as the resource quantity corresponding, as given in table 1. Let us assume that
all the requests are about the same resource type and they arrive at the same time.

30   ARIMA   -   volume 31  -  2020



k weight(pk) cost(vi)
1 1 1
2 2 6
3 5 18
4 6 22
5 7 28

Table 1 – Request sets to an InP for 5 simultaneous arrivals.
Looking for the optimal solution (the maximum requests satisfied by the InP which

have resources) with the bottom-up computation, we obtain table 2. M is the different
amounts of available resources. Each n-uplet {ai1, ai2, ..., ain} represents the fact that
the element ain have dependencies with the previous elements ai1, ai2, ..., ain−1 ; this
means that according to the recursive equation 4, the resource computation for ain is
linked to those of ai1, ai2, ..., ain−1. For example, to obtain the cost for M [4, 11] which
is also written {1,2,3,4}, the computations made are :
M [4, 11] = max{M [4−1, 11], v4+M [4−1, 11−p4]} = max{M [3, 11], 22+M [3, 11−
6]} = max{25, 22 + 18} = max{25, 40} = 40.

M 0 1 2 3 4 5 6 7 8 9 10 11
∅ 0 0 0 0 0 0 0 0 0 0 0 0

{1} 0 1 1 1 1 1 1 1 1 1 1 1
{1,2} 0 1 6 7 7 7 7 7 7 7 7 7

{1,2,3} 0 1 6 7 7 18 19 24 25 25 25 25
{1,2,3,4} 0 1 6 7 7 18 22 24 28 29 29 40

{1,2,3,4,5} 0 1 6 7 7 18 22 28 29 34 35 40

Table 2 – Bottom-up costs evaluation.

Table 2 shows that the maximum request numbers could be up to 40 UoC (Unit of
Cost) with this example. Then, the optimal solution is {4,3} based on algoritm 1 and the
applicants number 3 and 4 would be satisfied by the InP firstly ; the provided resources
will be used during a time before they are allowed to other applicant. Within this period of
time, other applicant requests are saved in a waiting mode. When the previously allocated
resources are totally or partially released, other applicant requests could be satisfied. For
each allocation game, the dynamic programming solution is used with various data at
different times. This allocation process is presented in figure 5.

Depending on the objectives targeted by the InP (maximizing the number of requests
fulfilled, maximizing the economic benefit derived from the allocation of resources), the
previous example can be adapted. More detailed examples can be found in the appendix.

4. Interdependent requests and their constraints
Two interdependent requests refer to requests whose satisfaction of one directly or

indirectly influences that of the other. As a result, we can distinguish several types of
dependencies : strict bijections, partial bijections and non-bijections (injections).

Strict bijections : Given two requests p1 ∈ P and p2 ∈ P . We say that there is a strict
bijection between p1 and p2 if the request p1 depends on p2 and p2 depends on p1. In this

Dynamic resource allocations in virtual networks through a knapsack problem's dynamic programming solution   31



Figure 5 – Gannt chart for a set of five applicants for resources.
bijection case, if the resource required by p1 is assigned to the user (SP), then it will be
the same for the request p2. This suggests that :

– any allocation is total and not partial ;
– a dependence concerns resources of the same nature as those of different natures.
For example, you may need the bandwidth to store. In this case, if p1 is the bandwidth

request and p2 that of the storage capacity, we will not be able to provide bandwidth and
not satisfy the need for storage space as well as providing storage space and does not
provide the bandwidth needed to store.
Notation 1 : The strict bijection between two requests p1 and p2 will be noted p1 ↔ p2.

Non-bijections (injections) : We talk about non-bijection between two requests p1 and p2
when p1 depends on p2, but the reverse is not true. As a result, if the resource requested
by p1 is assigned to it, then the one requested by p2 must be allocated as well ; on the
other hand, the satisfaction of p2 does not induce that of p1.
Notation 2 : The non-bijection between two requests p1 and p2 will be noted p1 → p2.

Partial bijections : Consider three requests p1, p2, p3 ∈ P . We say that there is a partial
bijection between these three requests if there exists at least one strict bijection between
two of these requests or cyclic injections between these three requests. These different
cases can result in one of the following situations :

1) p1 ↔ p2 → p3 : p1 depends on p2, p2 depends on p1 and p3 ;
2) p1 → p2 ↔ p3 : p1 depends on p2, p2 depends on p3 and p3 depends on p2 ;
3) p1 → p2 → p3 → p1 : p1 depends on p2, p2 depends on p3 and p3 depends on

p1. This is a cyclic injection which can be also qualified as a group bijection, that is to say
a set of requests mutually dependent.

5. Solution Modeling
In this section, we present our solution for the dynamic resource allocation problem in

the case of interdependent requests. To do this, let us consider the following assumptions :
– all requests sent contain dependent requests ;
– requests are related to a maximum of two resources.

32   ARIMA   -   volume 31  -  2020



5.1. General principle of our approach
Our approach is initially to set up a request dependency graph from the various re-

quests received by the FIP. Next, we use this dependency graph to extract all the connected
components that will be used to build new requests. These new requests will be provide
later to the resource allocation process described in [1]. These new requests highlight
the different dependency relationships that exist between users’ original requests, in or-
der to better manage them during the resource allocation process. Figure 6 summarizes
our approach to solve the problem of dynamic resource allocation for the interdependent
requests.

Figure 6 – Our resource allocation approach for interdependent requests.

5.2. Building the dependency graph

5.2.1. Building principle of the dependency graph
Let P be the set of the requests received from the supplier F . Let D be the set of de-

pendencies between the requests pi, i ∈ {1, 2, .., n}. Let R be the set of resources consi-
dered and Ci, i ∈ {1, 2, .., n} the available quantity of the resource ri. The dependency
graph is created by building an arc between any pair of requests that have a dependency.
Algorithm 2 describes in more detail the construction process of this graph.

Algorithm 2: Building the dependency graph
Data: A set of requests P
Result: A dependency graph G

1 Let b be a boolean ;
2 foreach request pi ∈ P do
3 b← 0 ;
4 foreach pk ∈ P \ {pi} do
5 if (pipk ∈ D) then
6 b← 1 ;
7 add pipk into G ;

8 if (b = 0) then
9 add b into G ;

5.2.2. Different graph possibilities
The algorithm 2 for building the dependency graph can give rise to several types of

dependency graphs, the main ones being :

Dynamic resource allocations in virtual networks through a knapsack problem's dynamic programming solution   33



1) A graph composed of several connected components : in this case, the received
requests do not make it possible to obtain a single global connected component grouping
all the requests at the end of the construction process. To illustrate it, consider the 12 re-
quests pi, i = {1, 2, .., 12} and the set of dependencies D = {p1 → p2, p3 ↔ p7, p4 →
p5, p2 ↔ p6, p8 ↔ p9, p10, p11, p12}. The exploitation of algorithm 2 provide the depen-
dencies graph of the figure 7 whose construction process is illustrated in figure 8.

Figure 7 – Disconnected dependency graph.

Figure 8 – Disconnected dependency graph construction process.

2) A graph consisting of a single connected component grouping all requests :
Figure 9a gives an illustration of this case. This figure comes from the application of the
algorithm 2 on the requests pi, i = 1, 2, .., 12 with the set of dependencies D = {p1 →
p2, p3 ↔ p7, p4 → p5, p2 ↔ p6, p8 ↔ p9, p10, p11, p12, p1 → p4, p4 → p10, p10 →
p11, p10 → p8, p8 ← p12, p12 ← p7, p2 → p7, p2 → p3, p3 ↔ p4}. This type of graph
can be obtained in the presence of interdependent requests from one and the same user,
because the requests from different users are not interdependent.

3) A graph of singletons : this type of graph correspond to [1]. An example is
presented in figure 9b.

34   ARIMA   -   volume 31  -  2020



(a) Connected dependency graph. (b) A graph of singletons.

Figure 9 – Connected dependency graph and graph of singletons.
5.3. Generating new requests from the dependency graph

The new requests are obtained from the dependency graph built on the basis of the
users’ requests.

Given a dependency graph G, the construction of new requests consist to extract from
the dependency graph all connected components as Gi groups (or tuplets) of dependency
Di, such as

⋃n
i=1Gi = G. A dependency group Gi is composed of dependencies Di

(which are either strictly bijective, injective or partially bijective) and original requests
that have no dependency (such as requests p11 and p12 of the figure 7).

Case of graphs composed of several connected components : we consider the case of
figure 7. In this case, there is no cyclic dependence (i.e. if a depends on b and b depends
on c, then we do not have c depends on a). The generation of the new requests gives the
groups G1 = {p1, p2, p6}, G2 = {p3, p7}, G3 = {p4, p5}, G4 = {p8, p9}, G5 = {p10},
G6 = {p11} and G7 = {p12} of the figure 10. In a group that contains dependencies,
constituent requests can be related to different resources. For example, in the group G1,
p1 can be related to the computing power while p2 is related to the storage capacity.

Figure 10 – New requests from the connected components of the graph.

Case of graphs composed of a single connected component grouping all original re-
quests : this is the case of the figure 9a. The set of dependencies D produces here a single
connected graph from which we can extract directly only one dependency group (or tu-
plet), in opposition to the case of the figure 7. This dependency group is the entire graph.

Dynamic resource allocations in virtual networks through a knapsack problem's dynamic programming solution   35



Case of the singletons graphs : each group Gi is composed of a singleton request.

5.4. Assigning weights to new requests

5.4.1. Our approach
Each request sent by the user has a certain weight w which is associated with a cost v

and relates to a certain resource. In [1], this weight is used to determine the best solutions
through the calculation of the maximum cost by the bottom-up evaluation method (see
figure 4) applied to the equation 4.

Since new requests Gi, i = 1, 2, ..., n are generated here using the user’s original
requests, new weights must be assigned to these requests as well as an appropriate cost.
We assume that all the resources are comparable independently of their respective unit,
that is to say that their quantity, in their respective units, can be translated to a fictional
unit named UoC. In other words, 1 MB of storage is supposed be equivalent to 1 UoC
and 1 kbit/sec of bandwidth is also supposed be equivalent to 1 UoC. Thus, in a Gi group
of dependencies, we have the value of weight wi =

∑m
k=1 wk. It is the same for the cost

vi =
∑m

k=1 vk.
However, this allocation can not remain at this level, since the type of dependence is

not taken into account. For example, we should distinguish a bijection (case of the depen-
dence between the p6 and p2 requests of G1) from an injection (case of the dependency
between the requests p1 and p2 of G1). Indeed, the main difference between these two
types of dependencies is the fact that, there is no possibility of mutual exclusion between
the requests during the allocation in a bijection, which is the case with the injection. For
example, in the group G1, the set consisting of p6 and p2 can constitute a single request
(since if we allocate the resource to p6 we are obliged to do the same with p2 and vice
versa) ; this is not necessarily the case with the injection between p1 and p2. Either we
provide the resources to p1 and p2, either we provide it to p2 and we reject p1. A choice
must be made between these two possibilities, hence exclusion.

Since it is quite complex to express the constraints of mutual exclusion of variables in
combinatorial analysis, we can distinguish here two approaches to assign weights to new
requests :

1) We consider an injection as a bijection : in this case, the weight of the new
request is wi =

∑m
k=1 wk, k = 1, 2, ...,m ; this approach groups the situations of strict

bijections (groupsG4 andG2 of figure 10), simple injections (groupG3) and injections by
transitivity (as p1 which depends on p6 by transitivity in groupG1). Thus, each connected
component of the graph will induce only one request ;

2) We distinguish the bijection from the injection : this situation requires taking
into account the mutual exclusion of resources. For some injection cases, we propose the
creation of new requests to isolate singletons of requests that do not have dependencies
with others, following the model of the figure 11. Indeed, suppose the existence of a
request pn such that we have the injection p6 → pn. The weight assignment engine
creates a new request G

′

1 which is a singleton containing the request pn independent of
all other requests of G1 with respect to the injection, as well as a request G1 that includes
all the requests of the connected graph. In general, the singletons are requests that do not
have an outgoing link in an injection.

36   ARIMA   -   volume 31  -  2020



Figure 11 – Injection treatment.
5.4.2. The overflow capacity risk of a group weight or the global
dependency graph weight

The methods of constructing the dependency graph and assigning weight to new re-
quests can give rise to several situations that deserve special attention when allocating the
resource :

1) The total weight in a group exceeds the total weight of all available resources :
For example, suppose we have 10 MB of storage and 12 kbits/sec of bandwidth. A user
requests w1 = 12 MB and w2 = 13 kbits/sec, provide a weight wk = 25, k = 1, 2 which
exceeds the total weight W = 10 + 12 = 22 of available resources. In such a case, the
requests must not be processed, since they have individual weights that exceed those of
the available resources.

2) The total weight in a group does not exceed the total weight of all available
resources, but the weight of one or more requests individually exceeds the amount of a
resource type : Considering 10 MB of storage and 12 kbits/sec of bandwidth as before,
suppose a user requests w1 = 8 MB and w2 = 13 kbits/sec. We have a weight wk =
21, k = 1, 2 that does not exceed the total weight of available resources W = 10 +
12 = 22. Since requests are dependent here, such groups must be excluded before starting
the resource allocation process. The requests of these excluded groups are eventually
considered in the next allocation round when the quantity of available resources (released
by the users and added to the actual available resources) is enough to handle it.

Apart from the above cases, we can be sure because of the resources type heteroge-
neity within each group that, by summing the weights of the different requests of the
group, we do not obtain a weight that exceeds the total sum of available resources ; if ne-
cessary, this overflow could be explained by the fact that a request weight already exceeds
the total quantity available for the type of the requested resource.

5.5. Resource allocation for new requests
Once the weights and costs are assigned to each group of requests, we obtain a formu-

lation of the resource allocation problem similar to that of [1]. The algorithm used in this
work can be launched on this set of new requests in order to choose the best solutions to
satisfy within the limits of available resources.

For the case of the first approach where we do not distinguish the bijection from the
injection, only the groups obtained at the end of the process of building new requests (see
figure 10 for example) are moved to allocation engine.

With regard to the second approach, if during the allocation process a group Gi and
its singleton G

′

i are part of the optimal solution, then only G
′

i will be selected because of

Dynamic resource allocations in virtual networks through a knapsack problem's dynamic programming solution   37



the optimal solution studied. The other will be returned to the list of candidate requests
for the next resource allocation instance.

In both weight allocation approaches, the resource allocation engine produces solu-
tions that are each composed of one or more connected components. The resource allo-
cated to a group is distributed to all of the requests included in this group, as described in
the figure 12.

Figure 12 – Derivation process of the final solution.

Our resource allocation problem studied in this paper bears some resemblances to the
knapsack problem with neighbor constraints described in [14] and [15]. As our approach,
[14] mentions the different types of dependencies (injections, bijections, cycles, ...), sug-
gests some formulations and proposes approaches to solve them. In addition, [14] and [15]
use a dependencies graph to analyze the dependencies between the items, even if [15] li-
mits the study on dependency graphs that are in-arborescences. Moreover, the allocation
and reallocation process is not discussed in [14], while it is the case in our approach (we
recall that we are studying the dynamic resource allocation problem, which involves mul-
tiple instances of a 0-1 knapsack problem). No algorithm about this reallocation process
is discussed in [14]. The exclusions between the potential solutions in the particular case
of the injections are not discussed in [14] while it is the case in our approach.

6. Simulations results
Our resource allocation approaches for the interdependent requests have been simu-

lated in the discrete event network simulator OMNET++. This network simulator is well
known for its high flexibility in the network topology customization even when the simu-
lation is running, which meets the needs of our study. The simulations have been done
in a computer with the following configuration : Core i5 2.40GHz, 4.00 GB RAM, and
12 MB cache. We ran our simulations on two networks : network1 (5 nodes and 7 links)
and network2 (60 nodes and 90 links). The objectives of our simulations was to compare
our both approaches of weight allocations to the new requests (the approach which do
not distinguish a bijection from an injection, and the second one which distinguish bi-
jection from injection), in order to select the best one. This comparison aimed to focus
on the number of allocations done during the simulations and not the transmission delays
of packets. During the simulation, the bandwidth and storage have been considered as
the resources to allocate to the users. The requests were collected permanently from the
controller and the allocations done during each period of time t = 1sec. In order to visua-

38   ARIMA   -   volume 31  -  2020



lize the allocations made, we were interested in the sudden variations of packets routing
delays related to bandwidth variations.

The analysis of the variation of packet routing delays following the allocation of the
bandwidth in the network1 allows us to obtain the data of the figure 13. The peaks obser-
ved in this figure represents the drop in packet routing delay due to bandwidth allocation
to certain nodes. The approach considered is the first which does not distinguish the bi-
jection from the injection.

Figure 13 – End-to-end delays variations after resource allocation in network1 with me-
thod1.

For the different allocation peaks, the requests of the different nodes selected tend to
form groups around some allocation zones (at times t = 0 to t = 1, t = 5 to t = 7,
t = 13.5 to t = 15, ...) as part of a single request. This can be explained by the principle
of method 1 which constructs groups of requests that do not take into account the particu-
larity of each of them. On the other hand, groupings of satisfied requests are less frequent
with method2 (see figure 14), which is much more likely to show isolated peaks. This
certainly translates to the presence of singleton nodes in the allocation process. Moreover,
there is a better distribution of resources in method2, which involves the majority of nodes
in each allocation. Indeed, we observe that the allocations are more regular in method2
between the set of four nodes considered than in method1. This prove that the allocations
trough the dependencies types, try to involve each time, the maximum number of users in
the game. On the other hand, there are less latency times without allocation compared to
method1. For example, with method1, the latency times of allocation found are between
t = 1 and t = 2, t = 7 and t = 9, t = 10 and t = 11, while with method2, there is almost
no latency. This means that method2 manage allocations better than method1.

Large-scale simulations (network2 of 60 nodes) provide us the result of the figure 15.
It can be seen that method2 makes it possible to achieve on average more allocations
than method1. This data was obtained by estimating the average variations of the packets
transmission delays over all the 60 nodes.

The results obtained in the small and large networks, show that the method2 of assi-
gning the weights to the requests in order to manage the injections, is better than that of

Dynamic resource allocations in virtual networks through a knapsack problem's dynamic programming solution   39



Figure 14 – End-to-end delays variations after resource allocation in network1 with me-
thod2.

Figure 15 – End-to-end delays variations after resource allocation in network1 with me-
thod2.
method1 which does not distinguish the bijection from the injection. But, the gap between
both method is not very significative.

7. Conclusion
In this paper, we have presented a knapsack-based dynamic resource allocation mo-

del that allows Infrastructure Providers (InP) in a network virtualization environment to
select the most suitable users’ requests meeting the aims of this InP. Our aim was to
provide an efficient decision mechanism to face challenging difficulties encountered by

40   ARIMA   -   volume 31  -  2020



the InP with the multiple requests of end-users or Service Providers. We propose a so-
lution based on a knapsack dynamic programing solution to choose the most suitable
users to satisfy both in case of interdependent and non-interdependent requests. We ma-
naged dynamic allocations as multiple resource allocation instances occurring at different
times. To manage the dependencies between the requests, an approach has been proposed.
This approach consisting of generating a dependency graph based on the users’ requests,
extracting from that dependency graph a set of new requests whose weights and costs
depends on the initial dependencies. The simulations showed that our method improve
significantly the quality of services in the virtual networks.

In an upcoming future, we intend to work on a decision mechanism taking into consi-
deration important constraints as the fidelity of the user to an InP. It would not be suitable
that a new customer, even providing a good profit to an InP, is chosen in replacement of
an older and regular customer.

8. Bibliographie

[1] Vianney Kengne Tchendji, Kerol Roussin Donteu Djoumessi, Yannick Florian Yankam, « Dy-
namic resource allocations in virtual networks through a knapsack problem’s dynamic program-
ming solution », Proceedings of CARI 2018, Vol. 31, p. 120-131, Stellenbosch, South Africa,
October 2018.

[2] Jain Raj, Paul Sudipta, « Network virtualization and software defined networking for cloud
computing : a survey », Mobile Networks and Applications, Vol. 51, No 11, p. 24-31, 2013.

[3] Niebert Norbert, El Khayat, Baucke Stephan, Keller Ralf, Rembarz René, Sachs Joachim,
« Network virtualization : A viable path towards the future internet », Wireless Personal Com-
munications, Vol. 45, No 4, p. 511–520, 2008.

[4] N.M. Mosharaf Kabir Chowdhury, RRaouf Boutaba, « A survey of network virtualization »,
Elsevier, IEEE, Vol. 54, p. 862-876, 2010.

[5] Haider Aun, Potter Richard, Nakao Akihiro, « Challenges in resource allocation in network
virtualization », 20th ITC Specialist Seminar, Vol. 18, No 2009, 2009.

[6] Mohamed Said Seddiki, « Allocation dynamique des ressources et gestion de la qualité de
service dans la virtualisation des réseaux », PhD thesis, Université de Lorraine, 2015.

[7] Amraoui Asma, Benmammar Badr, Krief Francine, Bendimerad Fethi Tarik, « Négociations à
base d’Enchères dans les Réseaux Radio Cognitive », Nouvelles Technologies de la répartition-
Ingénierie des protocoles NOTERE/CFIP 2012, 2012.

[8] Zhu Yong, Ammar Mostafa H, « Algorithms for Assigning Substrate Network Resources to
Virtual Network Components », INFOCOM, Vol. 1200, No 2006, p. 1–12, 2006.

[9] Popek G. J., Goldberg R. P, « Formal requirements for virtualizable third generation architec-
tures », Communications of the ACM, Vol. 17, July, 1974.

[10] Fischer Andreas, Botero Juan Felipe, Beck Michael Till, De Meer Hermann, , Hesselbach
Xavier, « Virtual network embedding : A survey », IEEE Communications Surveys & Tutorials,
Vol. 15, No 4, p. 1888–1906, 2013.

[11] Kreutz Diego, Ramos Fernando MV, Verissimo Paulo Esteves, Rothenberg Christian Esteve,
Azodolmolky Siamak, Uhlig Steve, « Software-defined networking : A comprehensive survey »,
Proceedings of the IEEE, Vol. 103, No 1, p. 14–76, 2015.

[12] Kim Hyojoon , Feamster Nick, « Improving network management with software defined net-
working », IEEE Communications Magazine, Vol. 51, No 2, p. 114–119, 2013.

Dynamic resource allocations in virtual networks through a knapsack problem's dynamic programming solution   41



[13] Morimoto Naoyuki, « Power allocation optimization as the multiple knapsack problem with
assignment restrictions », 2017 8th International Conference on the Network of the Future
(NOF), IEEE, p. 40–45, 2017.

[14] Glencora Borradaile, Brent Heeringa , Gordon Wilfong, « The knapsack problem with neigh-
bour constraints », Journal of Discrete Algorithms, Elsevier, Vol. 16, p. 224–235, 2012.

[15] David S. Johnson , K.A. Niemi, « On knapsacks, partitions, and a new dynamic programming
technique for trees », Mathematics of Operations Research, INFORMS, Vol. 8, No 1, p. 1–14,
1983.

A. A practical example of resource allocation with succeeding
request arrivals of 8 applicants to the InP

In this example, we suppose that the applicant requests reach the InP at different times.
So, those requests are satisfied successively. When new requests occur from another ap-
plicant, preceding allocated resources can be divided to provide the other ones.

let us assume a total available resourcesW = 10 in the InP network. We also consider
a set of k applicants with values vk as in the previous example, as given in table 3. Let
us assume that all the requests are concerned with the same resource type and they arrive
successively according to time.

k weight(pk) cost(vi) Arrival time
1 5 10
2 4 40 0
3 6 30
4 5 50 6
5 4 60
6 3 80 13
7 5 20 16
8 7 30

Table 3 – Request sets to an InP for 8 applicants.

We suppose that requests from the applicants number 1, 2 and 3 come first. The com-
putation of the maximum satisfied requests will be 70 UoC (see table 4). This means that
the optimal solution is {3,4}. In case of competition, applicants 3 and 4 would be selected
before the others.

M 0 1 2 3 4 5 6 7 8 9 10
∅ 0 0 0 0 0 0 0 0 0 0 0

{1} 0 0 0 0 0 10 10 10 10 10 10
{2} 0 0 0 0 40 40 40 40 40 50 50
{3} 0 0 0 0 40 40 40 40 40 50 70

Table 4 – Bottom-up costs evaluation with applicants coming at the time 0.

When other applicant requests will reach the InP, another computations will be made
to choose the most suitable user to provide with resources. Table 5 illustrates the computa-
tions done for the requests coming at the time 6, and result in a maximum of 110 requests

42   ARIMA   -   volume 31  -  2020



that could be satisfied by the InP. The applicant numbers 1 and 2 correspond respectively
to numbers 3 and 4 in table 3.

M 0 1 2 3 4 5 6 7 8
∅ 0 0 0 0 0 0 0 0 0

{1} 0 0 0 50 50 50 50 50 50
{2} 0 0 60 60 60 110 110 110 110

Table 5 – Bottom-up costs evaluation with applicants coming at the time 6.

with regards to what is stated above, the results of table 6 are obtained for applicants
number 7 and 8 coming at the time 16.

M 0 1 2 3 4 5 6 7 8 9
∅ 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 20 20 20 20 20
2 0 0 0 0 0 0 0 30 30 30

Table 6 – Bottom-up costs evaluation with the applicants coming at the time 16.

Gant chart of the figure 16 presents the resource allocation order of all different appli-
cants, mapping with their requests. It considers that the running time of each applicant is
proportional to its weight pk.

Figure 16 – Gannt chart for 8 sequential arrivals.

B. An enhanced example of resource allocation with 24
applicants and 150 UoC of resources to the InP

In this example, we enhance the resource allocation scenario presented in appendix A.
let us assume a total available resources W = 150 in the InP network. We also consi-

der a set of k = 24 applicants with values vk as given in table 7. The column A.t. (t) is the
arrival time represented as t. Let us assume that all the requests are concerned with the
same resource type and they arrive successively according to time t. Such configuration

Dynamic resource allocations in virtual networks through a knapsack problem's dynamic programming solution   43



provide a maximum of 420 satisfied requests with the following provision scheme for the
users at t = 0 : users’ requests 2, 3 and 5 will be satisfied firstly, then users 4 and 1. In
the same way, at time t = 20, users’ requests 11 and 13 will be satisfied before 12, resul-
ting a maximum requests number of 808. At t = 30, the maximum satisfied requests is
543 and the resource allocation process will consider the users 18 and 19 before user 20.
These maximum satisfied requests are computed using the algorithm 1. In each period of
the allocation process, this maximum request number can be increased with the running
requests of the preceding period. The Gannt chart is provided by the figure 17.

k weight(pk) cost(vi) A.t. (t) k pk vi A.t. (t) k pk vi A.t. (t)
1 103 200 9 62 120 18 17 90 210 27
2 30 101 10 45 138 18 16 187
3 54 174 0 11 35 350 19 107 356 30
4 101 250 12 92 670 20 20 88 231
5 46 145 13 110 750 21 42 199 33
6 22 80 13 14 63 680 21 22 61 225
7 6 20 16 15 102 110 23 23 115 165 38
8 14 30 16 87 220 25 24 84 194

Table 7 – Request sets to an InP for 24 applicants.

Figure 17 – Gannt chart for 24 sequential arrivals.

44   ARIMA   -   volume 31  -  2020




