
A Calculus of Interfaces For Distributed
Collaborative systems:

The Guarded Attribute Grammar Approach

Eric Badouel(a,c) and Rodrigue Aimé Djeumen Djatcha(b,c)

(a) Inria Rennes-Bretagne Atlantique, Irisa, University of Rennes I,
Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
(b) Faculty of Sciences, University of Douala, BP 24157 Douala, Cameroon
(c) LIRIMA — FUCHSIA team lirima.inria.fr/ project.inria.fr/fuchsia/
eric.badouel@inria.fr djeumenr@yahoo.fr
This work was partially supported by ANR Headwork.

ABSTRACT. We address the problem of component reuse in the context of service-oriented program-
ming and more specifically for the design of user-centric distributed collaborative systems modelled
by Guarded Attribute Grammars. Following the contract-based specification of components we de-
velop an approach to an interface theory for the components of a collaborative system in three stages:
we define a composition of interfaces that specifies how the component behaves with respect to its
environement, we introduce an implementation order on interfaces and finally a residual operation on
interfaces characterizing the systems that, when composed with a given component, can complement
it in order to realize a global specification.

RESUME. Nous abordons le problème de la réutilisation des composants dans le contexte de la pro-
grammation orientée services et plus spécifiquement pour la conception de systèmes collaboratifs
distribués centrés sur l’utilisateur modélisés par des grammaires attribuées gardées. En suivant la
démarche de la spécification contractuelle des composants, nous développons une approche de la
théorie des interfaces pour les composants d’un système collaboratif en trois étapes: on définit une
composition d’interfaces qui spécifie comment le composant se comporte par rapport à son environ-
nement, on introduit un ordre d’implémentation sur les interfaces et enfin une opération de résidus sur
les interfaces qui caractérise les systèmes qui, lorsqu’ils sont composés avec un composant donné,
peuvent le compléter afin de réaliser une spécification du système global.

KEYWORDS : Component Based Design, Service Oriented Programming, Interface, Role, Collabo-
rative System, Guarded Attribute Grammars

MOTS-CLES : Conception à base de composants, Programmation orientée services, Interface, rôle,
systèmes collaboratif, grammaires attribuées gardées

Special issue CARI 2018
Nabil Gmati, Eric Badouel, Bruce Watson, Eds.

ARIMA Journal, Vol. 31 (2020), pp. 59-74

1. Introduction
We address the problem of component reuse in the context of service-oriented pro-

gramming and more specifically for the design of user-centric distributed collaborative
systems. The role of a specific user is given by all the services he or she offers to the envi-
ronment. A role can be encapsulated by a module whose interface specifies the provided
services the module exports and the required external services that it imports. Usually
the modules in a service-oriented design are organized hierarchically. In contrast, mod-
ules in a distributed collaborative systems would often depend on each other (even though
cyclic dependencies between services should be avoided). Moreover services that are cur-
rently activated can operate as coroutines and a service call can activate new services in
a way that may depend on the user’s choice of how to provide the service. We thus need
a richer notion of interface for roles in a distributed collaborative system. In this paper
we consider a very simple extension of the concept of interface obtained by adding a bi-
nary relation on the set of services indicating for each of the provided services the list of
services that are potentially required to carry it out. This relation gives only potential de-
pendencies because a user can provide a service in various ways and relying on a variety
of external services. We motivate our presentation in the context of systems modelled by
Guarded Attribute Grammars [4]. Some extensions of the model are also introduced to
take into account non-determinism or certain qualitative aspects related to uncertainty or
time constraints. These extended models can provide finer descriptions of the behaviour
of a module in a Guarded Attribute Grammar specification.

Even if the objectives differ (service-oriented design versus verification) as well as the
models used (user-centric collaborative systems versus reactive systems) we are largely
inspired by the works that have been carried out on behavioural interfaces of communi-
cating processes. Three main ingredients have been put forward in these studies which
will serve as our guideline.

First, an interface is mainly used to formalize a contract-based reasoning for compo-
nents. The idea is that a component of a reactive system [5] is required to behave correctly
only when its environment does. The correctness of composition is stated in terms of a
contract given by assume-guarantee conditions: the component should guarantee some
expected behaviour when plugged into an environment that satisfies some properties. The
principle of composition is however made subtle by the fact that each component takes
part in the others’ environment [1]. Safety and liveness properties, which are not relevant
in our case, are crucial issues in this context and largely contribute to the complexity of
the resulting formalisms. The underlying models of a component range from process cal-
culi [2] to I/O automata and games [3]. These interface theories have also been extended
to take some qualitative aspects into account (time and/or probability).

Second, an interface is viewed as an abstraction of a component, a so-called be-
havioural type. Thus we must be able to state when a component satisfies an interface,
viewed as an abstract specification of its behaviour. A relation of refinement, given by
a pre-order I1 ≤ I2, indicates that any component that satisfies I2 also satisfies I1. In
the context of service-oriented programming we would say that interface I2 implements
interface I1.

Third, a notion of residual specification has also proved to be useful. The problem
was first stated in [6] as a form of equation solving on specifications. Namely, given a
specification G of the desired overall system and a specification C of a given component
we seek for a specification X for those systems that when composed with the component

60 ARIMA - Volume 31 - 2020

satisfies the global property. It takes the form of an equation C ./ X ≈ G where ./
stands for the composition of specifications and ≈ is some equivalence relation. If ≈ is
the equivalence induced by the refinement relation the above problem can better be for-
mulated as a Galois connection [9] G/C ≤ X ⇐⇒ G ≤ C ./ X stating that the
residual specificationG/C is the smallest (i.e. less specific or more general) specification
that when composed with the local specification is a refinement of the global specifica-
tion. Since C ./ − is monotonous (due to Galois connection) it actually entails that a
component is an implementation of the residual specification if and only if it provides an
implementation of the global specification when composed with an implementation of the
local specification .

2. Roles in Collaborative Systems
A collaborative system, as any complex system, combines various viewpoints includ-

ing its organization and structure, its processes, and its interactions both internally and
externally (behaviors). Therefore, the proper functioning of such a system requires an
explicit framework for collaboration that clearly specify what the system expects from
users, but also what a user can get from the system. It should also prevent users from be-
ing overwhelmed by information (or tasks) that are not directly useful. These information
can be gathered to explicit the role of an agent in a collaborative system. In many respects
the specification of roles can be viewed as a particular aspect of the system. And indeed
a role-based approach can be reduced to techniques of separation of concerns [12, 21] in
the context of business process design. Nonetheless role can be implemented in differ-
ent manners. For instance starting from an analysis of system processes one can specify
respectively its basic activities (the processes steps) and the control flow that includes
the coordination of activities. It is this approach that one finds in business process or-
chestration [17, 20] or in UML(Unified Modeling Language) collaboration and activities
diagrams. In these contexts a role is a named specific behavior of an entity in a particular
context [18]. But from an interaction viewpoint, a role can also be a semantic construct
forming the basis of a policy, as the access control policy in RBAC (Role Based Access
Control) [13, 19]. Finally in an organizational viewpoint a role would be used to select
suitable skills to perform a given task.

In this work we favor a more transversal notion of role, in the sense that it integrates
the different viewpoints of a collaborative system. This approach is thus similar to the
concept of role agent model [14, 15, 16], an extension of agent system where users resolve
tasks by making decisions on the basis of their knowledge of the overall system. Then
a role is viewed as a set of capabilities together with an expected behavior. It is treated
as an independent concept of the considered collaborative system. The main difference
between this approach and ours is that in the agent approach, work organization is purely
hierarchical and statically defined, while our approach, based on GAGs, offers a more
flexible organization as it is required e.g. in plateforms for crowdsourcing or coworking.

3. Collaborative System Modelled by a Guarded Attribute
Grammar

Guarded Attribute Grammars (GAG) [4] is a user-centric model of collaborative work
that puts emphasis on task decomposition and the notion of user’s workspace. We assume

A Calculus of Interfaces for Distributed Collaborative Systems: The Guarded Attribute Grammar Approach 61

that a workspace contains, for each service offered by the user, a repository that contains
one artifact for each occurrence of a service call (that initiates a so-called case in the
system). An artifact is a tree that records all the information related to the treatment of the
case. It contains open nodes corresponding to pending tasks that require user’s attention.
In this manner, the user has a global view of the activities in which he or she is involved,
including all relevant information needed for the treatment of the pending tasks.

Each role (played by some users) is associated with a grammar that describes the
dynamic evolution of a case. A production of the grammar is given by a left-hand side,
indicating a non-terminal to expand, and a right-hand side, describing how to expand this
non-terminal. We interpret a production as a way to decompose a task, the symbol on
the left-hand side, into sub-tasks associated with the symbols on the right-hand side. The
initial tasks are symbols that appear in some left-hand side (they are defined) but do not
appear on right-hand side of rules (they are not used). They correspond to the services
that are provided by the role. Conversely a symbol that is used but not defined (i.e it
appears on some right-hand side but on no left-hand side) is interpreted as a call to an
external service. It should appear as a service provided by another role. Symbols that are
both used and defined are internal tasks and their names are bound to the role.

p1 : A→ ε
p2 : A→ BC
p3 : B → ε
p4 : B → D

Figure 1. A grammar for a role that provides a service A and uses the external services
C and D. B is an internal task, bound to the role, and whose name can henceforth be
changed.

In order to solve a task A, that appears as a pending task in his workspace, the user
may choose to apply production p1 (which corresponds to a certain action or activity) and
this decision ends the performance of task A (since the right-hand side is empty). Alter-
natively production p2 may be chosen. In that case, two new (residual) tasks of respective
sort B and C are created and A will terminate as soon as B and C have terminated.

The GAG model also attach (inherited and synthesized) information to a task as well
as a guard (condition bearing on the inherited information) that specifies when the pro-
duction is enabled. In this paper we restrict our attention to the dynamic evolution of tasks
(the grammar) and forget about extra information and guards.

Definition 3.1. A Grammar G = (S, P) is given by a set of grammatical symbols and
a set of productions P ⊆ S × S∗. We let relation →⊆ S∗ × S∗ be given by w → w′

iff exist u1, u2 ∈ S∗ and (X,u) ∈ P such that w = u1 · X · u2 and w′ = u1 · u · u2;
and we let→∗, the derivation relation, be its reflexive and transitive closure. A symbol is
said to be used, respectively defined when it appears in the right-hand side, respectively
left-hand side of some production. We let •G and G• denote respectively the set of used
but not defined symbols, and the set of defined but not used symbols respectively.

Our purpose is to define some abstraction of the grammar, called its interface, whose
aim is to specify what services are provided, which external services are required to carry
them out and an over-approximation of the dependencies between required and provided
services (the potential dependencies). In particular the interface disregards internal tasks.

62 ARIMA - Volume 31 - 2020

As a first attempt one considers that the provided service A potentially relies on external
service B if a derivation A→∗ u exists where word u contains an occurrence of B.

Definition 3.2. The interface of a grammar G = (S, P) is I(G) = (•G,R(G), G•)
where R(G) = {(A,B) | ∃u ∈ S∗ B →∗ u ∧]B(u) 6= 0} and]B(u) denotes the
number of occurrences of symbol B in word u.

Figure 2. An interface

The interface of the role given in Figure 3 is relation
R = {(C,A) , (D,A)}. It is an over-approximation of
the dependencies since it may happen that A uses none
of the services C and D (using derivation A →∗ ε) or
only C (using derivation A →∗ C). But an external user
invoking service A does not know how the service will be
carry out and therefore he must assume the availability of
all external services that may potentially be used.

We shall nonetheless assume that the grammar is re-
duced.

Definition 3.3. A grammar is reduced if (i) every symbol is accessible:

(∀B ∈ S) (∃A→∗ u) A ∈ G• ∧]B(u) 6= 0

and (ii) for every symbol A exists a derivation A →∗ u leading to a word u all of whose
symbols are in •G.

Recall that we interpret a production as an action that is performed in order to (par-
tially) solve the taskA in its left-hand side, and the symbols in its right-hand side represent
the residual tasks that should in turn be solved in order to get a full completion ofA. Thus
a derivationA→∗ u is interpreted as a process (a partially ordered set of actions) directed
towards the resolution of task A, and this process is complete if u is the empty word. The
process is conditionally complete if u contains only external services (symbols in •G)
since its completion is then conditioned by the complete execution of these services by its
environment. If •G = ∅, i.e. the grammar represent a standalone application that relies on
no external services, and if the grammar is reduced then every partial resolution of a task
can be extended in order to reach completion. This property is called soundness. One
can define a relative notion of conditional soundness stating that any provided service
can indeed be rendered using external services irrespective of the way the computation
started. The soundness property that can easily be checked by a fixed point computation
is nonetheless undecidable for guarded attribute grammars due to fact that data attached
to services can dynamically restrict the set of potentially applicable productions [4]. Note
moreover that the soundness of its underlying grammar is neither a sufficient nor a neces-
sary condition for the soundness of a guarded attribute grammar due to the non-monotony
of this property arising from the combination of a universal and an existential quantifier
in its definition:

∀A→∗ u ∃u→∗ ε

Definition 3.4. Let Ω denote a fixed set of services. An interface (•R,R,R•) consists of
a finite binary relation R ⊆ Ω× Ω and disjoint subsets •R and R• of Ω, such that •R =
R−1(Ω) = {A ∈ Ω | ∃B ∈ Ω (A,B) ∈ R} andR•⊇ R(Ω) = {B ∈ Ω | ∃A ∈ Ω (A,B) ∈ R}.
The set R• stands for the services provided (or defined) by the interface and •R for the
required (or used) services. The relation (A,B) ∈ R indicates that service B potentially

A Calculus of Interfaces for Distributed Collaborative Systems: The Guarded Attribute Grammar Approach 63

depends upon service A. Thus A ∈ R• \ R(Ω) is a service provided by the interface
that requires no external services. An interface is closed (or autonomous) if relation R
(and thus also •R) is empty. Thus a closed interface is given by the set of services that it
(autonomously) provides.

Note that since •R is the domain of relation R, the set of required services may be
left implicit. The same is not true for the set of provided services since it can strictly
encompass the codomain of the relation. Still, we shall by abuse of notation use the same
symbol to denote an interface and its underlying relation.

4. Relations and Interfaces
The theory of interfaces that we consider is mainly a calculus of relations [8] even

though we put stress on the (concurrent) composition rather than on the usual (sequential)
composition of relations. As a result we shall introduce a residuation operation for the
concurrent composition in place of the usual left and right residuals for sequential com-
position. Similarly our implementation order will mostly be given by the set-theoretical
inclusion of relations.

In order to ease notations and computations we shall use the following conventions.
First we shall identify a relation R ⊆ Ω × Ω such that R(Ω) ∩ R−1(Ω) = ∅ with
the interface (•R,R,R•) such that •R = R−1(Ω) and R• = R(Ω). We also iden-
tify a set X ⊆ Ω with the restriction of the identity relation to set X , i.e., the diago-
nal
{

(A,A) ∈ Ω2 | A ∈ X
}

. By doing so, one can for instance express the condition
B ∈ Y ∧ (∃C ∈ X (A,C) ∈ R ∧ (C,B) ∈ Y) for R,S ⊆ Ω × Ω and X,Y ⊆ Ω as
(A,B) ∈ R;X;S;Y where R1;R2 denote the usual (sequential) composition of rela-
tions: R1;R2 =

{
(A,C) ∈ Ω2 | ∃B ∈ Ω (A,B) ∈ R1 ∧ (B,C) ∈ R2

}
. Note moreover that

with this convention one has X ∩ Y = X;Y for X and Y subsets of Ω.

We extend the following operations on binary relations to similar operations on interfaces:
The empty interface that renders no service at all is ∅ = (∅, ∅, ∅) .
The sequential composition R1;R2 of two interfaces R1 and R2 is defined when

•R1 ∩ R•2 = ∅ and is then given by the composition of their underlying relations with
•(R1;R2) = R−1

1 (•R2) ⊆ •R1 and (R1;R2)• = R2(R•
1) ⊆ R•

2.
The restriction R � O of interface R to O ⊆ Ω is given by

R�O = {(A,B) ∈ R | B ∈ O }, i.e. R � O = R; 0, and (R�O)• = O ∩R• and
•(R�O) = R−1(O ∩R•). Note that •(R�O) may be a strict superset of the image of the
underlying relation of the restriction.

5. The Composition of Interfaces
The union of interfaces is an interface if none of the services defined by an interface

is used by another one. In the general case R = (∪i•Ri,∪iRi,∪iR•i) satisfies the con-
ditions in Definition 3.4 but •R ∩ R• = ∅. If relation R is acyclic we say that it is a
quasi-interface since it induces an interface given by the following definition.

64 ARIMA - Volume 31 - 2020

Definition 5.1. If R = (•R,R,R•) is a quasi-interface, i.e. R is an acyclic relation,
•R = R−1(Ω) and R• ⊇ R(Ω), then we let 〈R〉 = R∗ ∩ (I ×O), where I = •R \ R•
and O = R•. It is an interface with •〈R〉 = I and 〈R〉• = O.

Figure 3. Interface induced
by a quasi-interface

For instance if R1 = (∅, ∅, {A}) is the au-
tonomous interface that provide service A and R2 =
({A} , {(A,B)} , {B}) uses A to define another service
B, then they jointly provide an autonomous interface
〈R1 ∪ R2〉 = (∅, ∅, {A,B}) that provides services A
and B. Note that the information that B requires A is
lost: the meaningful information is that the interface ex-
ports A and B and has no imports. If we assume that
interface R1 rather produces service A from B, namely

R1 = ({B} , {(B,A)} , {A}), then the computation of the composition would also give
〈R1 ∪ R2〉 = (∅, ∅, {A,B}) even though these two interfaces when combined together
cannot render any service. This is the rationale for assuming that a quasi-interface must
be acyclic. More specifically, what this later example shows is the (simplest) illustration
of two grammars that are reduced but whose union is not. This is due to the cycle cre-
ated when we put them together. It is immediate that the union of two reduced grammars
whose union of interfaces is acyclic is also reduced. Our objective is to be able to present
an autonomous grammar as the gathering of subgrammars. The global grammar will thus
be reduced (and therefore sound) if each of the subgrammars is reduced and if the opera-
tion of union (whose associativity we will seen below) preserves this property. Hence the
importance of this acyclicity hypothesis, even though it is somewhat pessimistic. In a way,
this assumption imposes a constraint on how to break down a system into sub-modules,
i.e. how to structure our specification. In practice, as we have experienced in our previ-
ous studies [7], these constraints are reasonable. Nevertheless, if we give ourselves finer
abstractions of grammars, which will be done further by introducing non-deterministic
interfaces, we can end up with less constrained forms of composition.

Definition 5.2. Two interfacesR1 andR2 are said to be composable if their unionR1∪R2

is an acyclic relation and R•1 ∩R•2 = ∅. Then we let R1 ./ R2 = 〈R1 ∪R2〉 denote their
composition.

Figure 4. The composition
of two interfaces.

Note that (R1 ./ R2)• = R•1 ∪R•2.
Moreover, since •Ri ∩R•i = ∅ for i = 1, 2 one gets

•(R1 ./ R2) = (•R1 \R•2) ∪ (•R2 \R•1)

It follows also directly from the definition that the com-
position of interfaces is commutative and has the empty
interface as neutral element. Note that we may have
•R1 ∩ •R2 6= ∅, thus both interfaces may require some
common external services. The following example shows
that the composition is not associative if we do not re-
quire that composable interfaces have disjoints outputs. Of
course choosing to have an associative composition oper-
ation of interfaces is a matter of choice. One could alter-

natively have chosen to drop the assumption that composable interfaces have disjoint sets
of outputs and to deal with a non associative composition operation.

A Calculus of Interfaces for Distributed Collaborative Systems: The Guarded Attribute Grammar Approach 65

Exemple 5.3. Let R1, R2, and R3 the three interfaces given in Figure 5. If R1 ./
(R2 ./ R3) = (R1 ./ R2) ./ R3 we would expect this interface to be given by
R = 〈R1 ∪R2 ∪R3〉 hence R = {(A,D), (C,D), (A,E), (B,E), (C,E)}. Note that
service D may be produced by either R1 or R3 so that we find both (A,D) and (C,D)
as dependencies in R. It follows that E potentially depends on both A, B, and C. How-
ever if we compute R1 ./ (R2 ./ R3) we get Rr = {(A,D), (C,D), (B,E), (C,E)}
because in R2 the required service D is no longer an input in R2 ./ R3. Symmetrically
Rl = (R1 ./ R2) ./ R3 = {(A,D), (C,D), (A,E), (C,E)}.

Figure 5. A counter-example showing that associativity of composition does not hold if
interfaces shared some provided services.

Remark 5.4. 〈R〉 = {(A,B) ∈ R∗ | ¬ (∃C ∈ Ω. (C,A) ∈ R)}. Hence any (A,B) ∈
〈R〉 is associated with a path in the graph of R that leads to B ∈ R• and cannot be
extended on the left. Note that such a path is of the form A = A0 → A1 → · · · → An =
B, with A ∈ •R \ R• and ∀1 ≤ i ≤ n (Ai−1, Ai) ∈ R. Note that ∀1 ≤ i ≤ n Ai ∈ R•,
i.e. all elements in this path but the first one, namely A, belongs to R•.

Proposition 5.5. The composition of interfaces is associative. More precisely, if R1 · · ·Rn

are pairwise composable interfaces, then ./ni=1 Ri = 〈R1 ∪ · · · ∪Rn〉.

Proof. Using the commutativity of composition, the proposition follows by induction on
n as soon as it has been verified that (R1 ./ R2) ./ R3 = 〈R1 ∪R2 ∪R3〉 for pairwise
composable interfaces R1, R2 and R3. Hence we have to show 〈〈R1 ∪ R2〉 ∪ R3〉 =
〈R1 ∪ R2 ∪ R3〉 or, more generally, that 〈〈R〉 ∪ R′〉 = 〈R ∪ R′〉 where R ⊆ Ω×Ω is a
finite binary relation with possibly •R∩R• 6= ∅, andR′ is an interface such that (R∪R′)∗
acyclic, andR•∩(R′)• = ∅. First, note that 〈R〉• = R• and (R ∪R′)• = R•∪(R′)• and
thus 〈〈R〉 ∪R′〉• = 〈R ∪R′〉•. By condition R• ∩ (R′)• = ∅ we deduce R ∩ R′ = ∅.
More precisely a transition (A,B) ∈ R ∩ R′ belongs (exclusively) either to R or to
R′ depending respectively on B ∈ R• or B ∈ (R′)•. According to Remark 5.4, let
π = A0 → A1 → · · · → An be a path in R ∪ R′ (i.e. ∀1 ≤ i ≤ n (Ai−1, Ai) ∈
R ∪ R′ and A0 ∈ •(R ∪R′) \ (R ∪R′)•) witnessing that (A0, An) ∈ 〈R ∪ R′〉. Let
π′ = Ai → · · · → Aj be a maximal sub-path of π made of R transitions only (i.e.,
∀i ≤ k ≤ j Ak ∈ R•). Then either Ai = A0 or (Ai−1, Ai) ∈ R′. In both cases
Ai ∈ •R \R• and thus π′ is a path witnessing that (Ai, Aj) ∈ 〈R〉 from which it follows
that π is a path witnessing that (A0, An) ∈ 〈〈R〉 ∪R′〉, showing 〈R ∪R′〉 ⊆ 〈〈R〉 ∪R′〉
and hence 〈〈R〉 ∪R′〉 = 〈R ∪R′〉 since the converse inclusion is immediate.

66 ARIMA - Volume 31 - 2020

The following two cases of composition are noteworthy:

Figure 6. Cascade product and (direct) product

Cascade product If R•1 ∩ •R2 = ∅ we denote R1 o R2 their composition (or R2 n
R1 since this operation as a particular case of ./ is still commutative). Then
•(R1 oR2) = (•R1 \R•2) ∪ •R2, and (R1 oR2)• = R•1 ∪R•2.

(Direct) product If both R•1 ∩ •R2 = ∅ and R•2 ∩ •R1 = ∅ hold we say that the
composition is the product ofR1 andR2, denoted asR1×R2. Note thatR1×R2 =
R1 ∪R1 and thus •(R1 ×R2) = •R1 ∪ •R2 and (R1 ×R2)• = R•1 ∪R•2.

Remark 5.6. The underlying relation of the wreath product is given by

R1 oR2 = (I1 ×R2) ; (R1 ×O2)

where I1 = •R1 \R•
2 and O2 = R•

2 \ •R1.

Definition 5.7. R1 is a component of R, in notation R1 v R, if there exists an interface
R2 such that R = R1 ./ R2. R1 is a strict component of R, in notation R1 < R, if there
exists an interface R2 such that R = R1 ×R2.

6. Implementation Order
An environment for an interface is any component that provides all the services re-

quired by the interface and uses for that purpose only services that are provided by it.

Definition 6.1. An interface E is an admissible environment for an interface R if the two
interfaces can be composed and the resulting composition is a closed interface, namely
•(R ./ E) = ∅. We let Env(R) denote the set of admissible environments of interface R.

Definition 6.2. An interface R2 is an implementation of interface R1, in notation R1 ≤
R2, when R•2 = R•1 and R2 ⊆ R1.

Thus R2 is an implementation of R1 if it renders the same services as R1 using only
services already used by R1 and with less dependencies. 1 The following proposition
shows that R2 is an implementation of interface R1 if and only if it can be substituted to
R1 in any admissible environment for R1.

1. In practice an interface used as an implementation may define additional services: R2 is a weak
implementation of interface R1, in notation R1 ≤w R2, if R•

2 ⊇ R•
1 and R1 ≤ R2�(R•

1). However the
additional services provided by R2 should be hidden so that they cannot conflict with services of any
environment compatible with R1.

A Calculus of Interfaces for Distributed Collaborative Systems: The Guarded Attribute Grammar Approach 67

Proposition 6.3. R1 ≤ R2 if and only if Env(R1) ⊆ Env(R2).

Proof. We first show that the condition is necessary. For that purpose let us assume
R1 ≤ R2 (which means that R•2 = R•1 and R2 ⊆ R1) and prove that any admissible
environment E for R1 is an admissible environment for R2. Since E can be composed
with R1 we get R•1 ∩ E• = ∅ and E ∪ R1 is acyclic. Then we also have R•2 ∩ E• = ∅
and E ∪ R2 is acyclic since R•2 = R•1 and R2 ⊆ R1. Hence E can be composed
with R2. Moreover, for the same reasons, •(E ./ R2) = (•E \ R•2) ∪ (•R2 \ E•) ⊆
(•E \ R•1) ∪ (•R1 \ E•) = •(E ./ R2) = ∅. Henceforth E ∈ Env(R2). We show
that the condition is sufficient by contradiction. Since R1 ≤ R2 implies R•2 = R•1 one
has to construct E ∈ Env(R1) \ Env(R2) under the assumption that R1 6⊇ R2. Let
(A,B) ∈ R2 \ R1 then the interface we are looking for is E such that •E = {B},
E• = •R2, and E = {(B,A)}. Indeed, E can be composed with R1 but not with R2

because of the cycle B → A→ B in (R1 ∪ {(B,A)})∗. Moreover the composition of E
with R1 gives a closed interface.

7. Residual Specification
Proposition 7.1. If R1 v R then R = R1 o (R↙R1) where R↙R1, called the strict
residual of R by R1, is given as the restriction of R to R• \ R•1. If R = R1 o R2 then
R�R•2 = R↙R1 = R2 and R = (R↙R2)× (R↙R1).

Proof. One has to show that if R1 and R2 can be composed and R = R1 ./ R2 then
R = R1oR↙R1 andR = (R↙R1)×(R↙R1) whereR↙Ri = R�R•j for {i, j} = {1, 2}.
By remark 5.4 R1 ./ R2 is the (unique) 2 solution of the system of equations

R1 ./ R2 = (A ∪ I1);R1 ∪ (B ∪ I2);R2

where I1 = •R1 \R•2
I2 = •R2 \R•1
O1 = R•1 ∩ •R2

O2 = R•2 ∩ •R1

A = (B ∪ I2);R2;O2

B = A ∪ I1);R1;O1

Then it is immediate (see Figure 7) that R1 o (R1 ./ R2)�R•2) is solution of the same
system of equations and thus the two relations coincide. The same system of equations is
associated with (R↙R2)× (R↙R1) as shown in Figure 8.

It remains to show that if R = R1 oR2 then R↙R1 = R�R•2 coincides with R2, and
indeed R�R•2 = ((•R1 \R•2) ∪R2) ; (R1 ∪ R•2)�R•2 = ((•R1 \R•2) ∪R2)�R•2 = R2 by
Remark 5.6 and because R•1 ∩R•2 = ∅.

Corollary 7.2. If R• = O1 ∪ O2 with O1 ∩ O2 = ∅ then R = (R�O1) × (R�O2) and
R�Oi = R↙(R�Oj) for {i, j} = {1, 2} and the following conditions are equivalent:

1) R1 is a strict component of R: ∃R2 · R = R1 ×R2,

2) R1 is a left component in a cascade decomposition of R: ∃R′ · R = R′ oR2,

2. Uniqueness comes from the fact that only finite paths are considered due to acyclicity.

68 ARIMA - Volume 31 - 2020

Figure 7. R = R1 o (R↙R1) when R = R1 ./ R2

Figure 8. (R↙R2)× (R↙R1)

3) R1 is a restriction of R: R1 = R�(R•1), and

4) R1 is a strict residual of R: ∃R2 · R1 = R↙R2.

Now we state the residual property that relies on the two following lemmas.

Lemma 7.3. R1 ≤ R2 implies R ./ R1 ≤ R ./ R2 whenever R1 and R2 are both
components of R.

Proof. By Remark 5.4 (A,B) ∈ R ./ Ri if and only if there exists a finite sequence
A0, . . . , An such that A = A0 ∈ •R \ R•i ∪ •Ri \ R•, (Ak−1, Ak) ∈ R ∪ Ri for all
1 ≤ k ≤ n, and B = An ∈ R• ∪ R•i . Monotony of R ./ − then follows from the fact
that R•1 = R•2.

Lemma 7.4. R1 ≤ R2 implies R1↙R ≤ R2↙R whenever R is a component of both R1

and R2.

Proof. R1 ≤ R2 means that R•1 = R•2 and R2 ⊆ R1. Then R1↙R = R1�(R•1 \ R•) ≤
R2�(R•2 \R•) because R•1 \R• = R•2 \R• and R2 ⊆ R1.

Proposition 7.5. If R1 is a component of R and R′ is an interface then

R↙R1 ≤ R′ ⇐⇒ R ≤ R1 oR′.

Proof. By Proposition 7.1 and Lemma 7.3 we get R↙R1 ≤ R′ =⇒ R = R1 o (R↙
R1) ≤ R o R′. The converse direction follows by Lemma 7.4 and Proposition 7.1:
R ≤ R1 oR′ =⇒ R↙R1 ≤ (RoR′)↙R1 = R′.

By Corollary 7.2 the above proposition implies that an implementation of a strict residual
R↙R1 is a strict component of R and therefore it cannot capture all the components of
an implementation of R, i.e. all interfaces R′ such that R ≤ R1 ./ R

′. For that purpose
we need to add in the residual all the dependencies between the respective ouputs of the
component and of the residual that do not contradict dependencies in R:

Definition 7.6. If R1 v R the residual R/R1 of R by R1 is given by
(R/R1)• = R• \R•1 and R/R1 = R↙R1 ∪R↗R1 where

R↗R1 =
{

(A,B) ∈ R•1 × (R• \R•1)
∣∣ R−1({A}) ⊆ R−1({B})

}
.

A Calculus of Interfaces for Distributed Collaborative Systems: The Guarded Attribute Grammar Approach 69

Lemma 7.7. If R1 is a component of R then R1 ./ (R/R1) = R

Proof. Since (R/R1)• = R• \ R•1 = (R↙R1)• and R/R1 ⊇ R↙R1 one has R/R1 ≤
R↙R1 and by Lemma 7.3 R1 ./ (R/R1) ≤ R1 ./ (R↙R1) = R1 o (R↙R1) = R.
We are left to prove that R1 ./ (R/R1) ⊆ R. Let (A,B) ∈ R1 ./ (R/R1) then by
Remark 5.4 there exists a sequence A0, . . . , An such that A = A0 ∈ • (R1 ./ (R/R1)),
B = An ∈ (R1 ./ (R/R1))

•
= R•, and (Ai−1, Ai) ∈ R1 ∪ (R/R1) for all 1 ≤ i ≤ n.

One has • (R1 ./ (R/R1)) = •R1 \ (R• \ R•1) ∪ •(R/R1) \ R•1. Thus A ∈ •R because
•R1 and •(R/R1) are subsets of •R. There are three possibilities for each transition
(Ai−1, Ai): (i) (Ai−1, Ai) ∈ R1 if Ai ∈ R•1, (ii) (Ai−1, Ai) ∈ R↙R1 if Ai ∈ R• \ R•1
and Ai−1 ∈ •R \ R•1, or (iii) (Ai−1, Ai) ∈ R↗R1 if Ai ∈ R• \ R•1 and Ai−1 ∈ R•1,
Note that if the sequence contains no transition of the latter category then it witnesses
that (A,B) ∈ R due to the fact that R1 ./ (R↙R1) = R1 o (R↙R1) = R. We’re
going to gradually eliminate all transitions of type (iii). For doing so let us consider the
leftmost transition of this latter category if it exists. Thus i is the smallest index such that
(Ai−1, Ai) ∈ R↗R1. Since R•1 is a subset of R• and thus is disjoint of •R we deduce
that Ai−1 6= A and thus i− 1 ≥ 1. Now the sequence σ : A = A0 → · · · → Ai−1, which
contains only transitions of types (i) or (ii), witnesses that A ∈ R−1({Ai−1}). Since
(Ai−1, Ai) ∈ R↗R1 we deduce that A ∈ R−1({Ai}). Thus by replacing sequence σ by
transition (A,Ai) we get a sequence with one less transition in R↗R1 and thus we end
up with a sequence with no transition in R↗R1 witnessing that (A,B) ∈ R.

Lemma 7.8. If R1 and R2 can be composed then (R1 ./ R2)/R1 ≤ R2.

Proof. Let R1 and R2 interfaces that can be composed, in particular R•1 ∩ R•2 = ∅, and
R = R1 ./ R2. Then (R/R1)

•
= (R•1 ∪ R•2) \ R•1 = R•2. (A,B) ∈ R2 \ (R↙R1) =

R2 \ (R�R2) if and only if (A,B) ∈ R2 (hence B ∈ R•2, and A ∈ •R2 ∩ R•1. Then
necessarily R−1({A}) ⊆ R−1({B}) and therefore (A,B) ∈ R↗R1. It follows that
R/R1 = R↙R1 ∪R↗R1 ⊇ R2 and thus R/R1 ≤ R2.

Lemma 7.9. R1 ≤ R2 implies R1/R ≤ R2/R whenever R is a component of both R1

and R2.

Proof. Recall that Ri↗R =
{

(A,B) ∈ R• × (R•i \R•)
∣∣ R−1({A}) ⊆ R−1({B})

}
and Ri/R = Ri↙R ∪ Ri↗R. R1 ≤ R2 means that R•1 = R•2 and R2 ⊆ R1 from which
it follows that R• × (R•1 \R•) = R• × (R•2 \R•) and thus R2↗R ⊆ R1↗R. The result
then follows from Lemma 7.4 and (R1/R)• = R•1 \R• = R•2 \R• = (R2/R)•.

Proposition 7.10. If R1 is a component of R and R′ is an interface then

R/R1 ≤ R′ ⇐⇒ R ≤ R1 ./ R
′.

Proof. By Lemma 7.7 and Lemma 7.3 we get R/R1 ≤ R′ =⇒ R = R1 ./ (R/R1) ≤
R ./ R′. The converse direction follows by Lemma 7.9 and Lemma 7.8: R ≤ R1 ./
R′ =⇒ R/R1 ≤ (R ./ R′)/R1 ≤ R′.

Hence the residual R/R1 characterizes those interfaces that, when composed with R1,
produce an implementation of R.

70 ARIMA - Volume 31 - 2020

8. Non-deterministic Interfaces
The notion of interface presented so far is still a somewhat rough abstraction of the

roles described by a GAG specification. In particular, we would like to be able to take into
account the non-determinism that results from the choices offered to the user on how to
solve a task. For that purpose we replace relationR ⊆ Ω×Ω by a mapR : Ω→ ℘(℘(Ω))
that associates each service A ∈ Ω with a finite number of alternative ways to carry it out,
and each of these with the set of external services that it requires.

Definition 8.1. A non-deterministic quasi interface on a set Ω of services is a map R :
Ω → ℘(℘(Ω)). We let R• = {A ∈ Ω | R(A) 6= ∅} and •R = ∪{R(A) | A ∈ Ω}. It is
a non-deterministic interface when •R ∩R• = ∅.

Definition 8.2. The non-deterministic interface of a grammar G = (S, P) is the function
R = NI(G) : Ω → ℘(℘(Ω)) where Ω = •G ∪ G• (i.e. grammatical symbols that
correspond to internal tasks are abstracted) andR(A) = {π(u) ⊆ •G | A→∗ u} where
π(u) = {A ∈ S |]A(u) 6= 0} is the set of grammatical symbols that occur in word u.
Thus a set of symbols is in R(A) if and only if it is the set of symbols of a word in (•G)∗

that derives fromA. Note that if the grammar is reduced one has •R = •G andR• = G•.

This new representation of interfaces is richer than its deterministic counterpart. It
is more precise and might indeed been considered too much precise in some situations
since it requires to handle more information. Nonetheless non-deterministic interfaces
are in many respect more easy to handle than deterministic interfaces and they lead to
simplified definitions and easier proofs as shown next. In particular, and by contrast with
deterministic interfaces, both sets •R and R• can be left implicit. This is due to the
fact that services A provided by a non-deterministic interface that requires no external
services are now explicitly given as those such that R(A) = {∅} (which should not be
confused with R(A) = ∅ which corresponds to A 6∈ R•). Thus the following operations
can straightforwardly be defined for non-deterministic quasi-interfaces.

– Sequential composition: R1;R2(A) = {∪iXi | {A1, . . . , An} ∈ R2(A) and Xi ∈ Ai }.
– Restriction: R�O(A) = R(A) if A ∈ O and R�O(A) = ∅ otherwise.
– Union: (∪iRi)(A) = ∪iRi(A).
– Transitive closure: R∗(A) = ∪∞i=1R

i(A) where Rn+1 = Rn;R. Note that R∗ =
R if R is an interface.

– Composition: R1 ./ R2 = 〈R1∪R2〉where 〈R〉(A) = R∗(A)∩℘(℘(Ω\R•)) is the
non-deterministic interface induced by the non-deterministic quasi-interface R. Note that
(R1 ./ R2)• ⊆ R•1∪R•2 and •(R1 ./ R2) ⊆ (•R1 \R•2)∪ (•R2 \R•1). A quasi-interface
R is said to be reduced when •〈R〉 = •R and •〈R〉 = •R. We say that two interfaces R1

andR2 are safely composable 3 when their union (the quasi-interfaceR1∪R2) is reduced.
Two interfaces R1 and R2 are safely composable if and only if (R1 ./ R2)• = R•1 ∪ R•2
and •(R1 ./ R2) = (•R1 \R•2) ∪ (•R2 \R•1).

It is readily shown that the composition of non-deterministic quasi-interfaces is associa-
tive and one does not need to require that the individual components have disjoint output

3. Safely composability is the natural extension to the non-determinstic case of the composability
of deterministic interfaces. However since we here first defined the operation of composition of non-
deterministic (quasi-) interfaces we felt obliged to add this qualifying term.

A Calculus of Interfaces for Distributed Collaborative Systems: The Guarded Attribute Grammar Approach 71

sets to ensure that property. Thus non-deterministic quasi-interfaces equipped with this
composition operation is a commutative monoid (whose neutral element is the empty in-
terface). Moreover R ./ R = 〈R〉 and since 〈R〉 = R when R is an interface, we deduce
that the composition of interfaces is idempotent.

The natural extension of the implementation order in the non-deterministic case is to let

R1 ≤ R2 ⇐⇒ (∀A ∈ Ω) (∀X ∈ R1(A)) (∃Y ∈ R2(A)) · Y ⊆ X

expressing that anything that R1 can do R2 can do better (namely, it can do the same
using fewer external services). This is a pre-order (reflexive and transitive relation) where
two non-deterministic interfaces are equivalent when their images for each A have the
same sets of minimal elements (for set inclusion) or equivalently have identical upward
closures. Say that an interface is saturated if R(A) is upward-closed for every A ∈ Ω.
And it is reduced when for every A ∈ Ω any two elements of R(A) are incomparable.
Thus any non-deterministic interface is equivalent to its upward-closure (a saturated inter-
face) and to its restriction to its set of minimal elements (a reduced interface). The order
relation on saturated interfaces is simply given by the pointwise set-theoretic inclusion:

R1 ≤ R2 ⇐⇒ (∀A ∈ Ω) R1(A) ⊆ R2(A)

Thus their least upper bounds are given by pointwise set-theoretic union: (
∨

iRi)(A) =⋃
iRi(A) and their greatest lower bounds by pointwise set-theoretic intersection:

(
∧

iRi)(A) =
⋂

iRi(A). The following properties then immediately follow:
– distributivity:

∨
i

∧
j Ri,j =

∧
j

∨
iRi,j .

– (
∨

iRi)
• =

⋃
iR
•
i but also (

∧
iRi)

• =
⋂

iR
•
i because the sets Ri(A) are upper

closed sets and thus all those which are not empty contain Ω and thus have non empty
intersection.

Note that the greatest lower bound of an arbitrary set of (saturated and non-deterministic)
interfaces is also given by (

∧
iRi)(A) = {∪iXi | ∀i Xi ∈ Ri(A)}.

Lemma 8.3. The composition commutes with joins: R ./ (
∧

iRi) =
∧

i(R ./ Ri).

Proof. The operation ./ is monotonic in each of its argument and thus R ./ (∧iRi) ≤
∧i(R ./ Ri). We are left to prove the converse relation. By definition of the sequen-
tial composition of relations and the greatest lower bound of interfaces it follows that
R; (∧iRi) = ∧i(R;Ri), and thus ∧iRn

i = (∧iRi)
n by induction on n. Hence ∧iR∗i =

∧i(∨nRn
i) = ∨n(∧iRn

i) = ∨n(∧iRi)
n = (∧iRi)

∗. It follows that 〈∧iRi〉(A) =
(∧iRi)

∗(A) ∩ ℘(℘(Ω \ (∧iRi)
•)) = (∩iR∗i (A)) ∩ ℘(℘(Ω \ ∩iR•i)) = (∩iR∗i (A)) ∩

℘(℘(∪i(Ω \ R•i))) ⊇ (∩iR∗i (A)) ∩ (∩i℘(℘(Ω \ R•i))) = ∩i〈Ri〉(A) i.e. 〈∧iRi〉 ≥
∧i〈Ri〉. Thus R ./ (∧iRi) = 〈R ∨ (∧iRi)〉 = 〈∧i(R ∨ Ri)〉 ≥ ∧i〈R ∨ Ri〉 = ∧i(R ./
Ri).

Since we can compute the least upper bound of an arbitrary family of (saturated and
non-deterministic) interfaces, one can directly define the residual operation as:

Definition 8.4. The residual of two interfaces is given by: R/R1 =
∧
{R′ | R ≤ R1 ./ R

′ }

which satisfies (almost by definition!) the required property of residuals:

72 ARIMA - Volume 31 - 2020

Proposition 8.5. R/R1 ≤ R′ ⇐⇒ R ≤ R1 ./ R
′.

Proof. R ≤ R1 ./ R
′ ⇒ R/R1 ≤ R′ by definition of the residual. Conversely let us

assume that R/R1 ≤ R′ then by monotony R1 ./ R/R1 ≤ R1 ./ R
′. By lemma 8.3

R1 ./ R/R1 = R1 ./ ∧{R′′ | R ≤ R1 ./ R
′′ } = ∧{R1 ./ R

′′ | R ≤ R1 ./ R
′′ } ≥ R

(since R is a lower bound of the given set). Hence R ≤ R1 ./ R
′.

9. Conclusion
This work is a first attempt to develop an interface theory for distributed collabora-

tive systems in the context of service-oriented programming. We defined a notion of
interface in order to explicit how a module can be used in a given environment using an
assume/guarantee approach: we describe the set of services that can be provided by the
module under the assumption that some other services are available in its environment.
We have then defined a residual operation on interfaces characterizing the systems that,
when composed with a given component, can complement it in order to realize a global
specification. We intend to use residuation to define and structure the activities of crowd-
sourcing system actors. The residual operation can be used to identify the skills to be
sought in the context of existing services in order to achieve a desired overall behaviour.
Such a system can be implemented by Guarded Attribute Grammars and interfaces can be
used to type applications.

We have mainly worked with basic (deterministic) interfaces. We have nonethe-
less shown how to extend the approach to non-deterministic interfaces. In the non-
deterministic case it becomes possible to define an additional operation, namely an opera-
tion that gives the co-restrictionR�I of an interfaceR to a set of services I ⊆ Ω by letting
(R�I)(A) = {X ⊆ I | X ∈ R(A)}. That operation states how a role can be used when
the set of services actually provided by the environment is known (to be I). This opera-
tion can be used to identify the usefulness of a component given by its interface knowing
which services are actually available in the environment. Note that one can define the
corresponding operation on grammars with NI(G�I) = NI(G)�I: G�I by deleting all
productions whose right-hand side contains a grammatical symbol in •G \ I .

On that basis one can enrich the information to take qualitative information into ac-
count to cope with uncertainty or time constraints. Actually it might be possible that we
have only a partial knowledge of the set of available services in the environement in the
form of a believe function [10] or a possibilistic distribution [11]. The interface should
then allow us to quantify the possibility of realizing a service given this information on
the environment. Similarly information can also be added on time execution, for instance
by limiting behaviour to ensure that services are delivered within certain time constraints..

10. References

[1] MARTÍN ABADI, LESLI LAMPORT, “Composing Specifications”, ACM Transactions on Pro-
gramming Languages and Systems, vol. 15, 1993:73–132.

[2] MARTÍN ABADI, GORDON D. PLOTKIN, “A logical view of composition”, Theoretical Com-
puter Science, vol. 114, 1993:3–30.

[3] LUCA DE ALFARO, THOMAS A. HENZINGER, “Interface Automata”, Foundation of Software
Engineering (ESEC/FES-9), 2001: 109–120.

A Calculus of Interfaces for Distributed Collaborative Systems: The Guarded Attribute Grammar Approach 73

[4] ERIC BADOUEL, LOÏC HÉLOUËT , GEORGES-EDOUARD KOUAMOU, CHRISTOPHE MOR-
VAN , ROBERT FONDZE JR. NSAIBIRNI, “Active Workspaces; Distributed Collaborative Sys-
tems based on Guarded Attribute Grammars”, ACM SIGAPP Applied Computing Review,
vol. 15, num. 3, 2015:6–34.

[5] DAVID HAREL, AMIR PNUELI, “On the development of reactive systems”, Logics Models of
Concurrent Systems, NATO ASI Series, vol. F13, Springer Berlin, 1984: 477–498.

[6] PHILIP M. MERLIN, GREGOR VON BOCHMANN, “On the construction of submodule speci-
fications and communication protocols”, ACM Transactions on Programming Languages and
Systems, vol. 5, 1983:1–25.

[7] ROBERT FONDZE JR NSAIBIRNI, ERIC BADOUEL, GAËTAN TEXIER , GEORGES-EDOUARD

KOUAMOU, “Active Workspace: A Dynamic Collaborative Business Process Model for Disease
Surveillance Systems”, Health Informatics and Medical Systems, Las Vegas, USA, 2016: 58–
64.

[8] VAUGHAN R. PRATT, “Origins of the Calculus of Binary Relations”, IEEE Logic in Computer
Science (LICS’92), Santa Cruz, California, USA, 1992: 248–254.

[9] JEAN-BAPTISTE RACLET, “Residual for Component Specifications”, Electronic Notes in The-
oretical Computer Science, vol. 215, 2008:93–110.

[10] GLENN SHAFER, A mathematical theory of evidence, Princeton University Press, 1976.

[11] LOFTI ZADEH, “Fuzzy Sets as the Basis for a Theory of Possibility”, Fuzzy Sets and Systems,
vol. 1, 1978:3–28.

[12] ARTUR CAETANO, ANTONIO RITO SILVA, JOSÉ TRIBOLET, “ Business Process Decompo-
sition - An Approach Based on the Principle of Separation of Concerns ”, Enterprise Modelling
and Information Systems Architectures, Vol 5, num 1, 2010: 44–57.

[13] DAVID FERRAIOLO, RICHARD KUHN, “ Role-Based Access Control ”, In 15th NIST-NCSC
National Computer Security Conference, 1992: 554–563.

[14] O. KAZIK, “ Role-based Approaches to Development of Multi-Agent Systems: A Survey ”,
WDS’10 Proceedings of Contributed Papers, 2010: 19–24.

[15] H. ZHU, “ Role mechanisms in collaborative systems ”, International Journal of Production
Research, Vol 44, Num 1, 2006: 181–193.

[16] HAIBIN ZHU, “ A role agent model for collaborative systems ”, In International Conference
on Information and Knowledge Engineering, Las Vegas, Vol 2, 2003:438–444

[17] MIKE WINTERS, “ BPMN and Microservices Orchestration, Part 1 of 2: Flow Languages,
Engines, and Timeless Patterns”, https://zeebe.io/blog/2018/08/bpmn-for-microservices-
orchestration-a-primer-part-1/, 2018.

[18] ALAIN WEGMANN, GUY GENILLOUD, “ The Role of "Roles" in Use Case Diagrams”,
EPFL-DSC CH-1015 Lausanne, Tech. Report num DSC/2000/024, 2000.

[19] RAVI S. SANDHU, EDWARD J. COYNE, HAL L. FEINSTEIN , CHARLES E. YOUMAN, “
Role-Based Access Control Models”, Computer, Vol 29, Num 2, 1996: 38–47.

[20] BERND R"UCKER, “ The Microservices Workflow Automation Cheat Sheet
”, https://blog.bernd-ruecker.com/the-microservice-workflow-automation-cheat-sheet-
fc0a80dc25aa, 2018.

[21] KRZYSZTOF CZARNECKI , ULRICH W. EISENECKER, “ Generative programming-methods,
tools and applications ”, Addison-Wesley, 2000.

74 ARIMA - Volume 31 - 2020

