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RÉSUMÉ. Ce papier porte sur l’analyse de sensibilité topologique pour un opérateur parabolique.
On considère le problème de Stokes instationnaire comme un exemple de modèle et on donne une
étude de sensibilité décrivant le comportement asymptotique de l’opérateur relativement à une petite
perturbation géométrique du domaine. L’analyse présentée est basée sur une estimation du champ
de vitesse calculée dans le domaine perturbé. Les résultats de cette étude ont servi de base pour
développer un algorithme d’identification géométrique. Pour la validation de notre approche, on donne
une étude numérique pour un problème d’optimisation d’emplacement des injecteurs dans un lac
eutrophe. Des exemples numériques montrent l’efficacité de la méthode proposée.

ABSTRACT. This paper is concerned with a topological asymptotic expansion for a parabolic operator.
We consider the three dimensional non-stationary Stokes system as a model problem and we derive
a sensitivity analysis with respect to the creation of a small perturbation in the fluid flow domain.
The proposed analysis is based on a preliminary estimate describing the velocity field perturbation
caused by the presence of a small obstacle. The obtained theoretical results are used to built a fast
and accurate detection algorithm. Some numerical examples issued from a lake oxygenation problem
show the efficiency of the proposed approach.
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1. Introduction

The topological sensitivity analysis has been derived for various operators ; one can
see [16] for the Laplace equation, [17, 19] for the Stokes system, [20] for the quasi-Stokes
problem, [15] for the elasticity problem, [23, 24] for the Helmholtz equation, [12] for the
acoustic problem, ... etc. However, the most significant contributions in this context have
been focused on problems associated with stationary partial differential equations (PDE).
Until recently, there have been very few investigations dealing with the non-stationary
case. The existing research works for this case (one can see [7] or [11]) have been exa-
mined the shape function variation caused by the presence of a small inhomogeneity (or
a cavity) inside the background domain. In this particular case, the perturbed solution is
defined in the entire domain with a continuity condition on the boundary of the inhomo-
geneity.

In this work, we generalize the topological sensitivity analysis concept for the para-
bolic case. We derive a topological asymptotic expansion for the three dimensional non-
stationary Stokes system. The obtained formula describes the variation of a given shape
function with respect to the presence of a small obstacle inserted in the fluid flow domain.

More precisely, we consider a viscous and incompressible fluid flow in a bounded do-
main Ω with regular boundary Γ = ∂Ω. We assume that the fluid flow is in laminar regime,
in such way that the convection term can be neglected and the Navier-Stokes equations
can be approximated by the Stokes system. Then, the velocityw and the pressure p satisfy
the following problem

∂w

∂t
− ν∆w +∇p = F in Ω×]0, T [,

divw = 0 in Ω×]0, T [,
w = wd on Γ×]0, T [,

w(., 0) = w0 in Ω,

(1)

where ν is the kinematic viscosity coefficient of the fluid, F is a given body force per unit
of mass, wd is a given Dirichlet boundary data and w0 is the initial fluid flow velocity.

Because of the divergence free condition on w, wd must necessary satisfy the compatibi-
lity condition ∫

Γ

wd(x, t).nds(x) = 0, p.p. t ∈]0, T [

where n is the unit outward normal vector along the boundary Γ.

The topological sensitivity analysis method consists in studying the variation of a
shape function j with respect to the creation of a small geometric perturbation in the fluid
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flow domain Ω. In fluid mechanics, the Dirichlet perturbation is described by a small
obstacle of the form Oz, ε = z + εO characterized by its center z, its size ε and its shape
O, with O is a given, fixed, and bounded domain of R3 containing the origin, whose
boundary ∂O is connected and piecewise of class C1.
The topological sensitivity analysis method leads to an asymptotic expansion of the shape
function j on the form

j(Ω \ Oz, ε)− j(Ω) = ρ(ε)δj(z) + o
(
ρ(ε)

)
, ∀z ∈ Ω,

where

− ε 7→ ρ(ε) is a scalar positive function going to zero with ε.

− the function x 7→ δj(x) is defined in Ω and commently called topological gradient
(or topological sensitivity function). It is the leading term measuring the variation of the
shape function j when a small obstacle is inserted in the fluid flow domain.

The first part of this paper is focused on some theoretical results. It starts with a pre-
liminary estimate describing the velocity field variation caused by the presence of the
obstacle. The leading term of the velocity field variation play an important role in the
derivation of the topological gradient expression.

The second part of this paper is concerned with a numerical application issued from
a lake oxygenation problem. In order to treat the water eutrophication phenomena, the
dynamic aeration process consists in inserting some injectors at the bottom of the lake
in order to generate a vertical motion mixing up the water of the bottom with that in
the top, thus oxygenating the lower part by bringing it in contact with the surface air. In
this application, we aim to optimize the injectors location in order to generate the best
fluid flow in the eutrophicated lake. In order to apply the theoretical previous results, each
injector Injk is modeled as a small hole Ok

zk,ε
around a point zk, having an injection

velocity ukinj . The best locations and orientations are the ones for which the cost function
decrease most, i.e. the topological sensitivity function δj is as negative as possible.

The rest of this paper is organized as follows. In section 2, we present the formula-
tion of the problem. The main theoretical results are summarized in Section 3. In Section
3.1, we discuss the velocity field variation due to the presence of the geometry perturba-
tion Oz,ε in the fluid flow domain Ω. In Section 3.2, we derive a topological sensitivity
analysis for the non-stationary Stokes system valid for a large class of shape functions.
We present in Section 3.3, three particular examples of shape functions. The Section 4
is devoted to the mathematical justifications of the main results. As a numerical appli-
cation, we consider in Section 5 the optimization problem of the injectors location in an
eutrophicated lake.
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2. Formulation of the problem

Let us consider a shape function j of the form

j(Ω \ Oz, ε) =

∫ T

0

Jε(wε(., t)) dt,

where Jε is a given cost function defined in H1(Ω \ Oz, ε) and wε is the velocity field
solution to the non stationary Stokes problem in the perturbed fluid flow domain Ωz, ε =
Ω \ Oz, ε 

∂wε

∂t
− ν∆wε +∇pε = F in Ωz, ε×]0, T [,

divwε = 0 in Ωz, ε×]0, T [,
wε = wd on Γ×]0, T [,
wε = 0 on ∂Oz, ε×]0, T [,

wε(., 0) = w0 in Ωz, ε.

(2)

In the absence of any obstacle (i.e. ε = 0), we have Ω0 = Ω and the shape function j is
given by

j(Ω) =

∫ T

0

J0(w0(., t)) dt,

with (w0, p0) is solution to
∂w0

∂t
− ν∆w0 +∇p0 = F in Ω0×]0, T [,

divw0 = 0 in Ω0×]0, T [,
w0 = wd on Γ×]0, T [,

w0(., 0) = w0 in Ω0.

(3)

Next, we will present a mathematical analysis valid for all function Jε verifying the
following assumptions :

Assumptions (A)

i) ∀ε ≥ 0, t 7→ Jε(wε(., t)) ∈ L1(0, T ).

ii) J0 is differentiable in H1(Ω), its derivative being denoted by DJ0(w).

iii) There exist a positive scalar function ρ : R+ −→ R+ and δJ ∈ R such that ∀ε ≥ 0∫ T

0

[
Jε(wε(., t))−J0(w0(., t))

]
dt =

∫ T

0

DJ0(w0(., t))
(
wε(., t)−w0(., t)

)
dt+ρ(ε) δJ+o (ρ(ε)).
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We start our analysis by estimating the velocity perturbation caused by the presence
of a small obstacle Oz, ε inside the fluid flow domain. More precisely, we will derive an
estimate of the velocity field variation wε − w0 with respect to the obstacle size. We will
prove in the next section that the leading term of the velocity variation can be expressed
with the help of the fundamental solution of the stationary Stokes system.

3. The velocity field variation

This section is concerned with the influence of the obstacle on the velocity field. We
will study the behavior of the velocity field variation wε − w0 with respect to ε (the
obstacle size). To this end, we introduce the following auxiliary problem : findU j solution
to the following Stokes exterior problem

−ν∆U j +∇P j = 0 in R3\O,
divU j = 0 in R3\O,

U j −→ 0 at ∞,
U j = −ej on ∂O.

(4)

Here {ej}j=1,2,3 is the canonical basis of R3.

The existence of (U j , P j) can be easily established using a single layer potential (one
can see [13])

U j(y) =

∫
∂O

E(y−x) ηj(x) ds(x), P j(y) =

∫
∂O

Π(y−x) ηj(x) ds(x), ∀y ∈ R3\O,

where E,Π) is the fundamental solution to the Stokes equations in R3

E(y) =
1

8πνr
(I + ere

T
r ), Π(y) =

y

4πr3
∀ y ∈ R3,

with r = ‖y‖, er =
y

r
and eTr is the transposed vector of er.

The function ηj ∈ H−1/2(∂O)3 is a solution to the boundary integral equation∫
∂O

E(y − x) ηj(x) ds(x) = −ej , ∀ y ∈ ∂O. (5)

One can remark that the function ηj is determined up to a function proportional to the
normal n, hence it is unique in the space H−1/2(∂O)3/Rn.

The following theorem gives an estimate of the velocity field variation.
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Theorem 1 There exists a real number c > 0 independent on ε, such that

‖ wε − w0 −W ‖L2(0,T ;H1(Ωz, ε))≤ cε,

where the leading term W = (W 1,W 2,W 3) ∈ H1(Ωz, ε)
3 is defined by

W j(x, t) = U j(
x− z
ε

).w0(z, t), ∀(x, t) ∈ R3\Oz,ε×]0, T [. (6)

The obtained estimate describes the velocity perturbation caused by inserting a small
obstacle. It plays a crucial role in the derivation of the topological asymptotic expansion.

From Theorem 1, we deduce the following Corollary. It gives an estimate of the velocity
field in the perturbed fluid flow domain Ω \ Oz, ε.

Corollary 1 The perturbed velocity field satisfies the estimate

wε(x, t) = w0(x, t) +
3∑

j=1

[U j(
x− z
ε

).w0(z, t)]ej +O(ε), x ∈ Ωz, ε, t ∈]0, T [.

In the next section, we present the main results of this paper.

4. Topological asymptotic expansion

Our analysis is based on a preliminary estimate describing the leading term of the
velocity field variation. Such an estimate leads to a very simplified mathematical analysis.
Particularly, we will deal with the explicit stationary Stokes fundamental solution instead
of the non stationary one. Based on the previous estimate, we establish an asymptotic
expansion valid for all shape function satisfying the Assumption (A).

4.1. Asymptotic Formula

In order to give the obtained formula, we introduce the matrixMO defined by

MOij = −
∫
∂O

ηji (y)ds(y), 1 ≤ i, j ≤ 3,

where ηj ∈ H−1/2(∂O)3 is a solution to the boundary integral equation (5).

Theorem 2 Let Oz, ε = z + εO be a small obstacle inserted in the fluid flow domain Ω

and let j be a shape function of the form j(Ω \ Oz, ε) =

∫ T

0

Jε(wε(., t)) dt.
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If Jε satisfies the Assumption (A) with ρ(ε) = ε, then the shape function j admits the
following asymptotic expansion

j(Ω \ Oz, ε) = j(Ω) + ε δj(z) + o(ε), (7)

where δj is the topological gradient defined in Ω by

δj(z) =

∫ T

0

w0(z, t).MOv0(z, t)dt+ δJ (z),

with v0 is the solution to the following associated adjoint problem
−∂v0

∂t
− ν∆v0 +∇q0 = −DJ0(u0) in Ω×]0, T [,

div(v0) = 0 in Ω×]0, T [,
v0 = 0 on Γd×]0, T [,

σ(v0, q0). n = 0 on Γn×]0, T [,
v0(., T ) = 0 in Ω.

(8)

In the previous formula, the term δJ (z) depends on the considered cost function Jε.

The particular case of spherical obstacle is discussed in the following Corollary. If
the fixed domain O coincides with the unit ball B(0, 1), the density ηj , solution to the
integral equation (5), can be calculated explicitly and we have

ηj(y) = −3ν

2
ej , ∀y ∈ ∂O, j = 1, 2, 3.

Corollary 2 Assume that we have a spherical geometric perturbationOz, ε = z+εB(0, 1).
Under the same hypothesis of Theorem 2, we have

j(Ω \ Oz, ε) = j(Ω) + ε
[ ∫ T

0

6πνw0(z, t).v0(z, t) dt+ δJ (z)
]

+ o(ε).

4.2. Shape function examples

In this section, we present some useful examples of shape functions satisfying the
assumption (A) and we calculated their variations δJ .

4.2.1. First example

This example is concerned with the L2−norm. We consider the shape function defined
by

j(Ω \ Oz, ε) =

∫ T

0

∫
Ω\Oz, ε

|wε −Wd(., t)|2 dx

withWd ∈ L1(0, T ; H1(Ω)) is a given desired fluid flow state.
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Proposition 1 The cost function Jε defined by

Jε(w) =

∫
Ω\Oz, ε

|w −Wd(., t)|2 dx, ∀w ∈ H1(Ωz, ε),

satisfies the assumption (A) with

DJ0(w0(., t))v = 2

∫
Ω

(w0(., t)−Wd(., t)) v dx, ∀v ∈ H1(Ω),

δJ (z) = 0, ∀z ∈ Ω.

4.3. Second example

Here, we deal with the H1−semi norm. We consider the shape function

j(Ω \ Oz, ε) =

∫ T

0

∫
Ω\Oz, ε

|∇wε −∇Wd(., t)|2 dx

whereWd ∈ L1(0, T ; H2(Ω)) is a given desired state.

Proposition 2 The cost function Jε defined by

Jε(w) =

∫
Ω\Oz, ε

ν |∇w −∇Wd(., t)|2 dx, ∀w ∈ H1(Ωz, ε),

satisfies the assumption (A) with

DJ0(w0(., t))v = 2ν

∫
Ω

(∇w0(., t)−∇Wd(., t))∇v dx , ∀ v ∈ H1(Ω),

δJ (z) = −
∫ T

0

( ∫
∂O

η(y)ds(y)
)
.w0(z, t) dt, ∀z ∈ Ω.

5. Application : the eutrophication problem

During the warmer months of the year many lakes and reservoirs experience some
degree of thermal stratification. This phenomena inhibits vertical mixing between the sur-
face layer and the bottom water. This can lead to toxic conditions in the lower region.
The lack of oxygen accelerates the eutrophication of the water which is characterized by
a number of damaging effects on its quality.
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Figure 1. The eutrophication problem and the dynamic aeration process
The dynamic aeration process seems to be the most promising remedial technique

to treat the water eutrophication problem. This technique consists in inserting air by the
means of injectors located at the bottom of the lake in order to generate a vertical motion
mixing up the water of the bottom with that in the top, thus oxygenating the lower part by
bringing it in contact with the surface air.

5.1. Optimization problem

The problem that we consider here concerns the optimization of the injectors location
in order to generate the best motion in the fluid with respect to the aeration purpose. Each
injector Injk, 1 ≤ k ≤ m, is modeled as a small hole ωzk,ε = zk + εωk around a point
zk and having an injection velocity ukinj , where ε is the shared diameter and ωk ⊂ R3

are bounded and smooth domains containing the origin. The points zk ∈ Ω, 1 ≤ k ≤ m
determine the location of the injectors. The domains ωk describe the injectors geometries.

Then, in the presence of injectors, the velocity wε and the pressure pε satisfy the
following system



∂wε

∂t
− ν∆wε +∇pε = F in Ω\∪mk=1ωzk,ε×]0, T [,

divwε = 0 in Ω\∪mk=1ωzk,ε×]0, T [,
wε = wd on Γd×]0, T [,

σ(wε, pε).n = 0 on Γn×]0, T [,
wε = ukinj on ∂ωzk,ε, 1 ≤ k ≤ m×]0, T [,

wε(., 0) = 0 in Ω\∪mk=1ωzk,ε.

(9)

where F is the gravitational force, ukinj is the injection velocity of the injector ωzk,ε and
wd is a given boundary data.

The boundaries Γd and Γn are described in Figure 2, where Γd = Γs∪Γw (top surface
and wall) and Γn = Γ1

n ∪ Γ2
n is the free boundary (inlet/outlet). The Dirichlet data wd is

defined as : wd = 0 on the wall Γw (no slip condition) and wd = wwin on the top surface
Γs, where wwin is the wind velocity.
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In the absence of any injector (i.e. ε = 0), the velocity and the pressure satisfy the follo-
wing system 

∂w0

∂t
− ν∆w0 +∇p0 = F in Ω×]0, T [,

divw0 = 0 in Ω×]0, T [,
w0 = wd on Γd×]0, T [,

σ(w0, p0).n = 0 on Γn×]0, T [,
wε(., 0) = 0 in Ω.

(10)

For the optimization criteria, we assume that a “good” lake oxygenation can be described
by a desired velocityWd. Then, the cost function Jε to be minimized is given by

Jε(uε) =

∫
Ωm

|wε −Wd|2 dx, (11)

where Ωm ⊂ Ω is the measurement domain (the top layer, see Figure 2).

Ωm

ΓΓw

Γn
2Γn

Γs

Injectors location 

?
Figure 2. The top layer Ωm, the surface Γs, the wall Γw and the free boundary Γ1

n ∪ Γ2
n

We denote by j the design function defined by

j(Ω\ ∪mk=1 ωzk,ε) = Jε(wε), (12)

where uε is the solution of (9).

Our identification problem can be formulated as a topological optimization problem : find
the optimal location of the injectors ωzk,ε = zk + εωk, 1 ≤ k ≤ m, inside the lake
domain Ω minimizing the discrepancy between the computed velocity and the desired
one :

(Oε)

{
Find z∗k ∈ Ω, 1 ≤ k ≤ m, such that :
j(Ω\ ∪mk=1 ωz∗

k,ε
) = min

ωzk,ε⊂Ω
j(Ω\ ∪mk=1 ωzk,ε).

To solve this optimization problem (Oε) we shall use the topological sensitivity ana-
lysis technique. It consists in studying the variation of the shape function j with respect to
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the presence of a small injector ωzk,ε inside the fluid flow domain Ω. Using the theoretical
results established in Corollary 2 and Proposition 1, one can derive

j(Ω\ωzk,ε)− j(Ω) = ε δjk(z) + o(ε).

with

δjk(z) = 6πν

∫ T

0

[w0(z, t)− ukinj ].v0(z, t)dt, z ∈ Ω.

Next, we present some numerical examples. The first example concerns the identifica-
tion of well separated small injectors in a water reserve. It is the most favourable situation
where there aren’t any interaction between injectors. The second example is devoted to
the detection of an injector line.

5.2. Identification of well separated injectors location

This test concerns the detection of optimal location of well separated small injectors.
In the numerical computation, we have considered the case of three injectors ωk = zk +
εB(0, 1), 1 ≤ k ≤ 3, where ε is the injector size ε = 0.01.

The wanted velocity field Ug is reconstructed using a synthetic data. It is chosen as
solution to the non stationary Stokes problem (9) in the presence of the exact injectors
ωz∗

k
= z∗k + 0.02B(0, 1), 1 ≤ k ≤ 3. The exact locations z∗k and the injection velocities

ukinj are described in table 5.2.

Injector Location z∗k Injection velocity ukinj
Injector 1 x=-1.599, y=-0.765, z=-1.041 ux = -0.3, uy = 0.0, uz = -0.4
Injector 2 x=-0.035, y=-0.058, z=-1.565 ux = 0.0, uy = 0.0, uz = 0.5
Injector 3 x=1.596, y=0.800, z=-1.023 ux = -0.2, uy = 0.0, uz = 0.4

Table 5.2 : The exact locations z∗k, 1 ≤ k ≤ 3 and their associated injection velocities.

We propose here a fast and accurate identification procedure. It is a one iteration algo-
rithm.

Algorithm 1 :
− compute u0, solution to the non stationary Stokes equations (10),
− compute v0, solution to the associated adjoint problem,
− deduce the topological sensitivity δjk(z), ∀z ∈ Ω, 1 ≤ k ≤ 3.

The injector Injk is likely to be located at zone where the topological sensitivity δjk is
most negative. The results of this test are presented in Figures 3-7.
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In Figure 3, we present the initial flow. The wanted flow is shown in Figure 4. The
isovalues of the topological sensitivity are plotted in Figure 5. We present for each injector
the exact location and the local minimum of the topological sensitivity. One can observe
that the local minima of the obtained topological sensitivity δjk coincides with the exact
location of the injector Injk described in table 5.2. The obtained optimal locations are
shown in Figure 6.

Figure 3. The initial flow Figure 4. The wanted velocity : a 2D cut
on each injector

At each local minimum, we introduce a point-wise Dirichlet condition (an inserted
injector) and a new resolution of (9) is performed. The obtained velocity is shown in
Figure 7. Since we have detected the exact location, the obtained velocity is identical to
the wanted one.

5.3. Identification of an injector line

The aim here is the detection of an injector line Σ. It is approximated by a sequence of
non separated small injectors having a constant injection velocity uinj . In order to detect
Σ, we propose here an iterative process based on the following algorithm.

Algorithm 2 :
• Initialization : choose Ω0 = Ω, and set k = 0.
• Repeat until target is reached :

− solve (14) and (15) in Ωk,
− compute the topological sensitivity δjk,
− determine the set σk = {z ∈ Ωk, δjk(z) ≤ ck < 0},

where ck is chosen in such a way that the cost function decreases,
− prescribe the velocity at each mesh node of σk : u(z) = uinj ,∀z ∈ σk,
− set Ωk+1 = Ωk\σk,
− k ←− k + 1.
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a- 2D cut on y = −0.765. b- 2D cut on x = −1.599.

The location of the injector Inj1

a- 2D cut on y = −0.058. b- 2D cut on x = −0.035.

The location of the injector Inj2.

a- 2D cut on y = 0.8. b- 2D cut on x = 1.596.

The location of the injector Inj3.

Figure 5. 2D cuts of the topological sensitivity showing the exact location (black dots) and
the local minima of δjk (red zones).

Figure 6. Obtained injectors location. Figure 7. The obtained velocity : a 2D cut
on each injector.
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At the kth iteration, the topological gradient δjk is given by :

δjk(z) = 6πν

∫ T

0

(wk(z, t)− uinj) .vk(z, t)dt ∀z ∈ Ωk, (13)

where wk and vk are, respectively, solution to{
∂wk

∂t
− ν∆wk +∇pk = 0 in Ωk×]0, T [

∇.wk = 0 in Ωk×]0, T [,
(14)

{
−∂vk
∂t
− ν∆vk +∇qk = −2 (uk − Ug)χΩm in Ωk×]0, T [

∇.vk = 0 in Ωk×]0, T [,
(15)

where χΩm is the characteristic function of the measurement domain Ωm.

The injector Σ is detected iteratively, Σk+1 = Σk ∪ σk, with Σ0 = ∅. As described in
the last algorithm, the set σk is defined by a level set curve of δjk

σk = {z ∈ Ωk, δjk(z) ≤ ck < 0} .

The constant ck depends on the most negative value of δjk. In our numerical computation,
we have used ck = 0.8 δk with δk = minz∈Ωk

δjk(z).

We have obtained an interesting result in only three iterations. We present in Figure
8(b) the obtained fluid flow created by the detected injector. It is nearly identical to the
wanted one (see Figure 8(a)). In Figure 9 we plot the isovalues of δjk showing the detected
zone σk (where δjk is most negative) during the optimization process.

a) The wanted fluid flow. b) The obtained fluid flow after 3 iterations.

Figure 8. The wanted and obtained fluid flow.

6. Concluding remarks

In this work, we have derived a topological asymptotic expansion for the non-stationary
Stokes system with respect to the presence of a small obstacle in the fluid flow domain.
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First iteration.

Second iteration.

Third iteration.

Figure 9. Isovalues of δjk showing the detected zone σk (red zone) during the optimization
process : a vertical cut (left), an horizontal cut (right).

The proposed approach is based on a preliminary estimate describing the velocity field
perturbation caused by the presence of a small obstacle in the fluid flow domain. The ob-
tained theoretical results are used to built a fast and accurate detection algorithm. Some
numerical examples issued from a lake oxygenation problem show the efficiency of the
topological sensitivity method. The developed technique is general and can be adapted
for various non-stationary partial differential equations (PDE).

7. Proofs

This section is devoted to the mathematical justifications of the derived theoretical
results.
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7.1. Proof of Theorem 1

In this paragraph, we present the proof of the estimate established in Theorem 1. It
consists in studying the influence of the presence of an obstacle on the velocity field wε.

Let Q be the pressure field associated to the velocity field W :

Q(x, t) =
1

ε
P (
x− z
ε

).w0(z, t) =
1

ε

3∑
j=1

P j(
x− z
ε

)wj
0(z, t),

where P j is the pressure field associated to the velocity field U j solution to (4).

Setting

zε = wε − w0 −W and sε = pε − p0 −Q. (16)

From (1), (17) and (4), one can check that (zε, sε) is solution to
∂zε
∂t
− ν∆zε +∇sε = −∂W

∂t
in Ωz, ε×]0, T [,

div zε = 0 in Ωz, ε×]0, T [,
zε = −W on Γ×]0, T [,
zε = −w0(x, t) + w0(z, t) on ∂Oz, ε×]0, T [,.

(17)

The last boundary condition follows from the fact that U j = −ej on ∂O.

Let R > 0 be such that Oz, ε ⊂ B(z,R) and B(z,R) ⊂ Ω. Using trace Theorem, one
can obtain

‖zε‖L2(0,T ;H1(Ωz, ε)) ≤ c
(
‖∂W
∂t
‖L2(0,T ;L2(Ωz, ε)) + ‖W‖L2(0,T ;H1(ΩR))

+‖w0(x, t)− w0(z, t)‖L2(0,T ;L2(Ωz, ε))

)
, (18)

where ΩR = Ω\B(z,R).

Using (6) and the change of variable x = z + εy, one can derive

‖∂W
∂t
‖L2(0,T ;L2(Ωz, ε)) = ‖∂w0

∂t
(z, .)‖L2(0,T )‖U(

x− z
ε

)‖L2(Ωz, ε)

= ε3/2‖∂w0

∂t
(z, .)‖L2(0,T )‖U‖L2((Ωz, ε)/ε).
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Similarly, we have

‖W‖L2(0,T ;H1(ΩR)) ≤ ‖w0(z, .)‖L2(0,T )(‖U(
x− z
ε

)‖L2(ΩR) + ‖∇xU(
x− z
ε

)‖L2(ΩR)),

≤ ‖w0(z, .)‖L2(0,T )(ε
3/2‖U‖L2((ΩR)/ε) + ε1/2‖∇yU‖L2(ΩR)/ε)).

It is proved in [20] (see also [17]) that the velocity field U j , solution to the exterior Stokes
problem, satisfies the estimates

‖U j‖L2((ΩR)/ε) ≤ cε−1/2 and ‖∇yU
j‖L2(ΩR)/ε) ≤ cε1/2

Then, using the smoothness of w0 and the previous estimates, one can deduce

‖∂W
∂t
‖L2(0,T ;L2(Ωz, ε)) ≤ cε and ‖W‖L2(0,T ;H1(ΩR)) ≤ cε. (19)

Now, we examine the third term in (18). Expandingw0(x, t) = w0(z, t)+ε∇w0(ξy, t)y
with ξy ∈ Oz, ε and using the fact that∇w0 is uniformly bounded, then it follows that

‖w0(x, t)− w0(z, t)‖L2(0,T ;L2(Ωz, ε)) ≤ cε. (20)

Finally, combining (19) and (20), we obtain

‖zε‖L2(0,T ;H1(Ωz, ε)) ≤ cε.

which the desired estimate. �

7.2. Asymptotic analysis

In this section, we present the proofs of the asymptotic expansions established in Sec-
tion 4. To this we will introduce some notations and we will establish some preliminary
estimates.

7.2.1. Preliminary calculus

Let j be a shape function of the form

j(Ω \ Oz, ε) =

∫ T

0

Jε(wε(., t)) dt,

with Jε is a given function defined in H1(Ω \ Oz, ε) and satisfying the Assumption (A).

To describe the variation of j with respect to the presence of a small obstacle Oz, ε at
an arbitrary point z ∈ Ω, we introduce the weak formulation of the problem (17). Using
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Green formula, one can easily check that the velocity field can be interpreted as the unique
solution to the following variational problem Find wε ∈ Vε such that

Bε(wε, v) = Lε(v), ∀v ∈ Vε,
wε(., 0) = 0, in Ωz, ε.

where the functional space Vε, the bilinear form Bε and the linear form Lε are defined by

Vε =
{
w ∈ H1(0, T ; H1

0 (Ωz, ε)), div w = 0 in Ωz, ε

}
,

Bε(w, v) =

∫ T

0

∫
Ωz, ε

∂w

∂t
v dx dt+ ν

∫ T

0

∫
Ωz, ε

∇w∇v dx dt, ∀w, v ∈ Vε,

Lε(v) =

∫ T

0

∫
Ωz, ε

F v dx dt , ∀v ∈ Vε.

Using the assumption (A), the variation of the shape function can be written as

j(Ω \ Oz, ε)− j(Ω) =

∫ T

0

Jε(wε(., t)) dt−
∫ T

0

J0(w0(., t)) dt

=

∫ T

0

DJ0(w0(., t))
(
wε(., t)− w0(., t)

)
dt+ ρ(ε) δJ + o (ρ(ε))

= B0(w0 − wε, v0) + ρ(ε) δJ + o (ρ(ε)), (21)

where v0 is the solution to the following adjoint problem
Find v0 ∈ V0, such that

B0(u, v0) = −
∫ T

0

DJ0(w0)(u)dt, ∀u ∈ V0,

v0(., T ) = 0 in Ω.

(22)

In (21), the function wε is extended by zero inside the domain Oz, ε.

Next, we present the proof of Theorem 2 describing the leading terms of the shape
function variation. It consists in studying the variation of the term B0(w0 − wε, v0) with
respect to ε (see (21)).
Then, due to Green formula and the fact that wε = 0 in Oε, one can derive

B0(w0 − wε, v0) = ν

∫ T

0

∫
Ωz, ε

∇(w0 − wε)∇v0 dx dt+

∫ T

0

∫
Ωz, ε

∂(w0 − wε)

∂t
v0 dx dt

+ ν

∫ T

0

∫
Oz, ε

∇w0∇v0 dx dt+

∫ T

0

∫
Oz, ε

∂w0

∂t
v0 dx dt.
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Using the fact that w0 and v0 are smooth near z, one can deduce that

ν

∫ T

0

∫
Oz, ε

∇w0∇v0 dx dt+

∫ T

0

∫
Oz, ε

∂w0

∂t
v0 dx dt = O(εd).

By Green formula and the fact that v0 = 0 on Γ×]0, T [, it follows

ν

∫ T

0

∫
Ωz, ε

∇(w0−wε)∇v0dxdt+

∫ T

0

∫
Ωz,ε

∂(w0 − wε)

∂t
v0dxdt = −

∫ T

0

∫
∂Oz, ε

σ(wε−w0, pε−p0)nv0dsdt.

Consequently, the shape function variation can be rewritten as

j(Ω \ Oz, ε)− j(Ω) =

∫ T

0

∫
∂Oz, ε

σ(wε − w0, pε − p0)nv0dsdt+ ρ(ε) δJ + o (ρ(ε))(23)

The asymptotic behavior, with respect to ε, of the last integral terms will be examined in
the next section.

7.2.2. Proof of Theorem 2

From the definition of (zε, sε) and the change of variable x = z + ε y, we have∫ T

0

∫
∂Oz, ε

σ(wε − w0, pε − p0).n v0 ds dt =

∫ T

0

∫
∂Oz, ε

σ(zε, sε)n v0dsdt

+ε

∫ T

0

w0(z, t).
(∫

∂O
σ(U, P )(y)n(y) v0(z + ε y, t)ds(y)

)
dt,

where σ(U, P )n is the 3× 3 matrix defined by

(σ(U, P )n)ij = (σ(U j , P j)(y)n(y))i, 1 ≤ i, j ≤ 3.

By trace theorem, Theorem 1 and the fact that v0 is smooth in Oz, ε, we derive∫ T

0

∫
∂Oz, ε

σ(zε, sε)n v0dsdt ≤ ‖zε‖L2(0,T ;H1(Ωz, ε))‖v0‖L2(0,T ;H1(Oz, ε)) = o(ε).

Making the change of variable x = z + ε y, expanding v0(z + ε y, t) = v0(z, t) +
ε∇v0(ξy, t)y with ξy ∈ Oz, ε and using the fact that∇v0 is uniformly bounded, it follows
that∫ T

0

∫
∂Oz, ε

σ(wε − w0, pε − p0)n v0dsdt = ε

∫ T

0

w0(z, t).
(∫

∂O
σ(U, P )(y)nds(y)

)
v0(z, t)dt

+ε

∫ T

0

w0(z, t).
(∫

∂O
σ(U, P )(y)n(y)[v0(z + ε y, t)− v0(z, t)]ds(y)

)
dt+ o(ε).
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Due to the jump condition of the single layer potential, we have

σ(U j , P j)n = −ηj + σ(V j , Sj)n,

where (V j , Sj) is the solution to the associated interior problem −ν∆V j +∇Sj = 0 in O,
divV j = 0 in O,

V j = U j on ∂O.

From the fact that div σ(V j , Sj) = ν∆V j −∇Sj = 0 in O, we have∫
∂O

σ(V j , Sj)(y)nds = 0.

Then, it follows∫ T

0

∫
∂Oz, ε

σ(wε−w0, pε−p0)n v0 ds dt = −ε
∫ T

0

w0(z, t).
(∫

∂O
η(y)ds(y)v0(z, t)

)
dt+o(ε).

Consequently, the shape function j admits the following asymptotic expansion

j(Ω \ Oz, ε) = j(Ω) + ε
[ ∫ T

0

w0(z, t).MOv0(z, t)dt+ δJ
]

+ o(ε),

whereMO is the matrix defined by

MOij = −
∫
∂O

ηji (y)ds(y), 1 ≤ i, j ≤ 3.
�

7.2.3. Proof of Proposition 1

Since the desired fluid flow stateWd ∈ L(0, T ;H1(Ω)), the function J0 is differen-
tiable at w0(., t) and we have

DJ0(w0(., t))(v) = 2

∫
Ω

(
w0(., t)−Wd(., t)

)
v dx, ∀v ∈ H1(Ω).

The variation of the associated shape function j is given by

j(Ωz, ε)− j(Ω) =

∫ T

0

∫
Ωz, ε

|wε −Wd|2 dx dt−
∫ T

0

∫
Ω

|w0 −Wd|2 dx dt

=

∫ T

0

DJ0(w0)(wε − w0) dt+

∫ T

0

∫
Ωz, ε

|wε − w0|2 dx dt

+

∫ T

0

∫
Oz, ε

|w0|2 dx dt−
∫ T

0

∫
Oz, ε

|Wd|2 dx dt.
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From the smoothness of w0 andWd in Ω, one can derive∫ T

0

∫
Oz, ε

|w0|2 dx dt = o(ε) and
∫ T

0

∫
Oz, ε

|Wd|2dx dt = o(ε).

Using the decomposition (16), it follows∫ T

0

∫
Ωz, ε

|wε − w0|2 ≤ 2
(∫ T

0

∫
Ωz, ε

|zε|2dxdt+

∫ T

0

∫
Ωz, ε

|W |2dxdt
)
.

Using Theorem 1 and the change of variable, one can check∫ T

0

∫
Ωz, ε

|zε|2dxdt = o(ε) and
∫ T

0

∫
Ωz, ε

|W |2dxdt = o(ε).

Therefore the function Jε satisfies the assumption (A) with

DJ0(w0(., t)) (v) = 2

∫
Ω

(w0(., t)−Wd(., t)) v dx, ∀ v ∈ H1(Ω),

δJ (z) = 0, ∀z ∈ Ω. �

7.2.4. Proof of Proposition 2

The function J0 is differentiable at w0(., t) and we have

DJ0(w0(., t))(v) = 2 ν

∫
Ω

(∇w0(., t)−∇Wd(., t))∇v dx, ∀ v ∈ H1(Ω).

The variation of the associated shape function j is given by

j(Ωz, ε)− j(Ω) =

∫ T

0

DJ0(w0)(wε − w0) dt− ν
∫ T

0

∫
Oz, ε

|∇Wd|2 dx dt (24)

+ ν

∫ T

0

∫
Oz, ε

|∇w0|2 dx dt+ ν

∫ T

0

∫
Ωz, ε

|∇wε −∇w0|2 dx dt.

Thanks to the regularity of w0 andWd in Oz, ε, one can derive∫ T

0

∫
Oz, ε

ν|∇w0|2 dx dt = o(ε) and
∫ T

0

∫
Oz, ε

ν|∇Wd|2dx dt = o(ε).

Using Green formula, the last term in (24) can be written as∫ T

0

∫
Ωz, ε

ν|∇wε −∇w0|2 dx dt =

∫ T

0

∫
∂Oz, ε

σ(zε, sε).nw0 ds dt.
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By an adaptation of the technique used in the proof of Theorem 1, one can derive∫ T

0

∫
∂Oz, ε

σ(zε, sε).nw0 ds dt = ε
[ ∫ T

0

w0(z, t).MOw0(z, t)dt
]

+ o(ε).

Therefore, the function Jε satisfies the assumption (A) with

DJ0(w0(., t)) (v) = 2 ν

∫
Ω

(∇w0(., t)−∇Wd(., t))∇v dx, ∀ v ∈ H1(Ω),

and δJ (z) =

∫ T

0

w0(z, t).MOw0(z, t)dt, ∀z ∈ Ω. �
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