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Abstract
The paper shows how to take advantage of a possible existing linear relationship in an optimization
problem to address the issue of robust design and backward uncertainty propagation lowering as
much as possible the computational effort.
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I INTRODUCTION

The performance of a system designed for given functioning conditions often seriously degrades
when these conditions are modified. Today’s industrial robust design mainly relies on reduced-
order modeling and intelligent sampling [10, 13, 16, 20] which either does not use high-fidelity
simulations during design or uses lower accuracy than what would be affordable in a single-
point optimization.

By robust design we mean a proposition which ensures similar performances over a given op-
eration range. We will discuss the implication of this requirement on the moments of the per-
formance functional. Our aim is to propose a methodology which permits to design a system
having similar performances over a given range of its operating condition or functioning pa-
rameters. From a practical point of view, we would like this to be achieved modifying as less
as possible an existing single-point optimization platform. In particular, we would like to avoid
replacing the high-fidelity ingredients of the platform by low-complexity solvers. Finally, we
would like the parallel time-to-solution to remain comparable to the single-point situation. We
will show that our direct optimization algorithm permits to achieve such a task.

We address the solution of robust moment-based optimization problems after a multi-point re-
formulation. The first four moments are considered (i.e. mean, variance, skewness and kurtosis)
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going beyond classical engineering optimization based on the control of the mean and variance.
In particular, the impact on the design of a control of the third and fourth moments is discussed.
The multi-point formulation leads to discrete expressions for the moments. linking moment-
based and multi-point optimizations. The linearity of the sums in the discrete moments permits
an easy evaluation of their gradients with respect to the design variables. Optimal sampling
issues are analyzed and a procedure is proposed to quantify the confidence level on the robust-
ness of the design. The proposed formulation is fully parallel and the parallel time-to-solution
is comparable to single-point situations.

The literature on multi-point optimization is vast and exhaustive referencing is out of our scope.
This formulation has been used, in particular, to extend single-point optimization to account for
additional operating conditions.

Forward and backward uncertainty propagation are obviously of great importance with a huge
literature dedicated to uncertainty quantification (UQ) [7, 8, 21]. Forward propagation aims at
defining, for instance, a probability density function (PDF) for a functional J knowing those
of optimization variables [2, 3, 11]. This can be done, for instance, through Monte Carlo
simulations or a separation between deterministic and stochastic features using Karhunen-Loeve
theory (polynomial chaos theory belongs to this class) [5, 14, 16, 19]. Backward propagation
aims at reducing models bias or calibrating models parameters knowing the PDF of J [4, 6, 9].
This can be seen as a minimization problem and Kalman filters [1] give, for instance, an elegant
framework for this inversion assimilating the uncertainties on the observations.

We particularly discuss one aspect of UQ where the target state u∗ used in an inverse problem
is uncertain. This is the case, for instance, minimizing J(u(x), u∗) = ‖u(x) − u∗‖ to reduce
the distance between a model state u(x) and observations or target u∗.

Targeting uncertain data is a realistic situation as the acquired data are usually uncertain. It is
therefore interesting to be able to quantify the impact of this uncertainty on the inversion results.
An important information will be the sensitivity of the design to a given level of uncertainty on
the data at some location. Indeed, if this sensitivity is low, this would be an indication that a
more accurate acquisition there is unnecessary.

Considering the target as uncertain is also interesting because we do not always have existence
of a solution for an inversion problem as u∗ is not necessary solution of the state equation
making an exact or deterministic inversion pointless. Also, the approach permits to go beyond
inversions based on least-squares minimization involving a mean state target.

The uncertainty in measurements is also an interesting way to account for the presence of vari-
ability in the state. More generally, as a model or numerical procedure is by nature imperfect
and partial, we can consider this uncertainty as a representation and estimation of these im-
perfections. These imperfections are even more present in inverse problems where one cannot
afford the same level of resolution than for a single simulation. We therefore need to be able
to quantify the impact of these weaknesses. Being able to handle uncertain targets in inverse
design is therefore also useful to account for epistemic uncertainties related to possible model
or solution procedures deficiencies.

The paper also addresses the issue of backward uncertainty propagation through the estimation
of the covariance matrix of the optimization variables. Two procedures for the estimation of
this matrix are presented taking advantage of the existence of local linear relations between the
target state u∗ and the optimization variables x.
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We present the different ingredients of the paper in the context of a linear problem for load
distribution optimization with the objective of achieving a target deformation or displacement of
a shape. The state equations we consider are those of linear elasticity and we would like to take
advantage, as much as possible, of the linear relationship between the optimization variables
(e.g loads) and the state variables (e.g the displacements) in the solution of the problem and the
different uncertainty quantifications.

The paper starts with the description of our single-point optimization problem to illustrate the
situation where the solution of the inverse problem can be explicitly expressed thanks to the
mentioned linearity. Then we address robust parametric optimization and its solution through
moment-based and multi-point formulations. The paper ends with two low-complexity ap-
proaches for backward uncertainty propagation and estimation of the covariance matrix of the
optimization variables.

II STATE EQUATIONS AND SINGLE-POINT OPTIMIZATION PROBLEM

Let us start with the single-point optimization problem of interest. We are interested by inverse
problems where the functional typically measures a distance to a target solution.

We consider a generic state equation with a linear state equation and also linear dependency
between the optimization variables x (controlling in our case the loads distribution) and the
state variable u: F(u(x)) = f(x), where u is therefore a function of x.

Our single-point optimization problem reads:

min
x∈Oad

J(u(x), α) under the constraint that F(u) = f(x). (1)

Where α represents the other independent variables of the problem such as geometry entities
or operating conditions [4, 23]. Here, for simplicity we do not mention all dependencies in u,
such as the spatial dependency and so forth. In what follows, α is the target solution u∗ which
we consider as uncertain and the functional measures the least-square misfit between the state
and this target.

In single-point optimization α is fixed in opposition to multi-point or robust optimizations where
α components will no longer be fixed but given either through intervals or more sophisticated
probability density functions.

The source term f(x) containsN loads expressed as xiδ(si) where δ(si) is a spatial localization
function in space variable s. One would like to optimize:

f(x) =
N∑
i=1

xiδ(si). (2)

The optimization variable is then x = (x1, ..., xN) ∈ (IR+)N .

The inverse problem of interest aims at making the solution u as close as a target α over the
calculation domain Ω, or some subset of it. Using a least-squares formulation over the domain
with spatial integration, this reads:

J(u(x), α = u∗) =
1

2

∫
Ω

(u(x)− u∗)2ds. (3)
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Taking advantage of the linear dependency between x and the solution u and using the super-
position principle, the solution can be expressed through projections over N + 1 elementary
solutions:

u = u0 +
N∑
i=1

xiui,

In this decomposition, u0 is the homogeneous solution (the zero load situation together with
non-homogeneous boundary conditions) and the other elementary solutions ui=1,...,N are ob-
tained respectively with x = (0, ..., 0, 1, 0, ..., 0) with 1 at the ith position. The elementary
solutions are obtained with homogeneous Dirichlet boundary conditions.

Once the homogeneous and elementary solutions known, the optimization variable x is solution
of a linear system:

Ax = b(α = u∗), (4)

of size N derived from first order optimality condition for J ,∇xJ(u(x), α) = 0, with:

Ai,j =< ui , uj > and bi(α = u∗) =< (u0 − u∗) , ui >, for i, j = 1, ..., N,

where < v , w >=
∫

Ω
v(s)w(s) ds.

A fundamental remark now is that the cost of this inversion is negligible compared to the cost of
calculating the elementary solutions. Also, it is important to notice that the matrix A does not
depend on α. Therefore, any numerical transformation necessary for its inversion is made only
once. Uncertainty quantification is situation where the target solution α is uncertain becomes
therefore feasible at low cost as it will not require any extra solution of the state equations. In
the sequel we will discuss different ways to handle this problem.

2.1 3D elasticity

We will illustrate the ingredients of the paper on a 3D problem where the state equation F(u) =
f(x) is the elasticity system whose solution is given using the Cast3M [22] industrial solver
on tetrahedral meshes which we consider as a black-box. Something which is made possible
thanks to the formulation of the optimization problem and this is one strength of the approach.

Briefly speaking, Cast3M is a finite element software for structural and fluid mechanics de-
veloped by the French Alternative Energies and Atomic Energy Commission (CEA). Cast3M
provides a mesh generation tool, partial differential equations simulation modules coupled with
visualization tools.

The 3D problem we consider consists of a geometry of an elastic piece represented in a (10m×
10m × 1m) concrete slab with hollow bodies [12] , supported by point supports at the four
corners modeled by homogeneous Dirichlet boundary conditions for the displacement. The
mechanical characteristics of the concrete considered are E = 30GPa for Young’s modulus
and ν = 0.2 for Poisson’s ratio. This is a complex problem and a full 3D calculation is quite
time consuming. The present solution based on the use of elementary 3D solution is therefore
quite adapted for the optimization of load distributions for such a cases as the state equations
calculations can be carried out independently from the optimization problem and in a fully
parallel way. The hollow bodies involve complex mesh generation issues as shown in Figure 1.
The 3D mesh has about 14400 grid points.
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Figure 1: Example of a complex mesh generated by Gmsh [18] taking into account the presence of
hollow bodies.

We assume negligible volume forces and consider a situation with a relatively small number
of loads to ease the comparison between the different approaches. Considering higher number
of loads does not pose any supplementary difficulty and only requires parallel calculations of
additional independent elementary solutions.

2.2 Illustration using N = 5 optimization variables

We apply an arbitrary five point loads distribution (i.e. N = 5). Any other combination can be
considered, five is suitable as enough large to illustrate the approach and enough low to show
images of all elementary contributions.

We calculate the elementary displacements ui=1,...,5 obtained after application of unit forces xi.

The total displacement is the sum of these elementary displacements u = u0 +
N=5∑
i=1

xiui where

u0 is the displacement without any forces applied but in the presence of Dirichlet boundary
conditions. In our problem we consider u0 = 0.

Figure 2 shows the elementary and total structural displacements which will be considered as
target deterministic displacement u∗. Uncertainty analysis will take place around this target
displacement.
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u1 u2

u3 u4

u5 u

Figure 2: The 5 first pictures represent elementary displacements ui=1,...,5 and the bottom right picture

shows the total structural displacement u = u0 +
N=5∑
i=1

xiui, where u0 = 0 in this case. The elementary

displacements cannot be retrieved using symmetry considerations from each other.

III ROBUST PARAMETRIC OPTIMIZATION

Consider a cost function involving the optimization variables x in an admissible ensemble Oad

and another parameter α, not considered as a design variable:

min
x∈Oad

J(x, α), α ∈ I ⊂ IRn,Oad ⊂ IRN . (5)

As mentioned, α can be an operating condition or the target solution in an inverse problem.
Both the operating conditions and the target solution can be uncertain and given only through
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probability density functions. Handling the uncertainty on the operating conditions is neces-
sary to achieve robust design and usually requires a multi-point formulation. The number of
operating condition parameters is usually small compared to the size of the optimization prob-
lem. This is a very general context and we previously visited it to address robustness issues in
optimization with respect to x and α in general frameworks [25–27, 30].

3.1 Moment-based optimization

Multi-point optimization can be used to address such optimization problem [24]. The aim is to
remove the dependency in α during optimization. This can be done, for instance, minimizing a
functional J(x) encapsulating this dependency under a constraint on the higher moments of J :

J = µ = IE[J(x, α)], such that σ = IE[(J(x, α)− µ)2] ≤ σ0, (6)

where IE[.] is the expectation operator.

We can go beyond the first two moments and use also the third and the fourth moments. Going
beyond the first two moments is important when the PDF of J deviates from a pure Gaussian
distribution. Indeed, even with interval-based (with uniform PDF) or Gaussian entries there is
no reason for the PDF of the solution of a simulation to remain uniform or Gaussian.

The third and fourth moments, the skewness γ and the kurtosis κ, are defined as:

γ = IE[(
J(x, α)− µ

σ
)3], κ = IE[(

J(x, α)− µ
σ

)4]. (7)

The skewness is an indication of the deviation from symmetry of the PDF and the kurtosis
permits to quantify if it is tall and skinny or short and squat.

One can consider that a robust design should favor symmetry in the distribution which means
a lower absolute value of skewness. This is an assumption and other non-zero values can be
targeted for the absolute value of the skewness. However, the assumption of symmetry appears
reasonable. Indeed, when driving a car on a straight line, one expects the car to have the same
behavior for small and symmetrical disruptions in holding the steering wheel by the driver. In
a Gaussian distribution we have γ = 0. Also, in a normal distribution the mean and median
coincide and if a PDF is not too far from a normal distribution, the median will be near µ−γσ/6.
Therefore, if |γ| → 0 the PDF tends toward a normal distribution. This provides an inequality
constraint on |γ| as γ can be either positive or negative. For an uni-modal PDF a reduction
of the skewness comes when the mean and the mode of the distribution converge toward each
other at given standard deviation.

Robust design means higher density near the mean which means higher kurtosis, but this is more
subtle. Indeed, despite higher kurtosis means concentration of the probability mass around the
mean, it could also imply thicker tails in the PDF. This means that more of the variance is the
result of infrequent extreme deviations. We need therefore to define what we mean by robust
design: acceptance of frequent modest deviations or acceptance of infrequent extreme ones. If
operational security is a major concern the latter should be definitely avoided. We therefore
consider that a reasonable requirement would be to have a design reducing the initial kurtosis
value: κ ≤ κ0 together with a constraint on the variance σ.
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To summarize, robust moment-based optimization can be seen through the following con-
strained minimization problem:

min
x∈Oad

J(x) = µ(x) such that

σ(x)− σ0 ≤ 0, |γ(x)| − |γ0| ≤ 0, κ(x)− κ0 ≤ 0.
(8)

Equality constraints on the moments are particular cases of these. In cases, higher kurtosis are
targeted (see discussion above), the last constraint becomes −κ(x) + κ0 ≤ 0.

3.2 Discrete expressions

Monte Carlo simulations permit to recover these moments with an error decreasing as σ/
√
M

with M the number of functional evaluations and this with a convergence rate independent of
N . But, for small N , classical numerical integration over-performs Monte Carlo simulations
in term of complexity based on the number of functional evaluations to recover the moments
at a given accuracy. As we are interested by small values of N , this latter may therefore be
preferred.

Both Monte Carlo trials and numerical integration lead to the introduction of weighted sums
[24] over a M -point sampling IM as estimators of the previous moments (denoted with the
same notation):

µ =
∑
αk∈IM

ωkJ(x, αk), σ2 =
∑
αk∈IM

ωk(J(x, αk)− µ)2, (9)

γ =
∑
αk∈IM

ωk(J(x, αk)− µ)3, κ =
∑
αk∈IM

ωk(J(x, αk)− µ)4. (10)

A major difference between Monte Carlo and numerical integration is that in the former the
sampling IM and the weights are chosen according to the PDF of α. In this paper we consider
uniform PDF. We have therefore uniform sampling in each of the dimension of α and ωk ∼
1/M . Unbiased estimates use slightly different coefficients and also introduce corrections. For
instance, one should consider ωk = 1/(M − 1) for σ, ωk = M/((M − 1)(M − 2)) for γ
and κ. However, because we are interested by the gradients of these quantities with respect
to x and gradient-based minimization algorithms, these changes will only have slight impacts
on the amplitude of the gradient with no real incidence on the optimization history, especially
if optimal descent step sizes are used. This discussion also shows that moment-based and
multipoint optimization can be seen as a whole. If different PDFs are targeted than uniform, we
need to redefine the sampling IM and the weights ωk accordingly. But, this is beyond the scope
of this paper.

3.3 Gradients of the moments

The linearity in the sums permits to access to the gradients of the moments with respect to the
optimization variables x from the gradient of the functional at the sampling point αk. We recall
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that we took σ = 1 in Equation (7) to ease this linearization. The different gradients read:

∇xµ =
∑
αk∈IM

ωk∇xJ(x, αk),

∇xσ
2 =

∑
αk∈IM

2ωk(J(x, αk)− µ)∇x(J(x, αk)− µ),

∇xγ =
∑
αk∈IM

3ωk(J(x, αk)− µ)2∇x(J(x, αk)− µ),

∇xκ =
∑
αk∈IM

4ωk(J(x, αk)− µ)3∇x(J(x, αk)− µ).

(11)

Knowing the elementary gradients ∇xJ(x, αk) at sampling points αk brings interesting infor-
mation on the geometry of the problem. Indeed, they can be used to build a vector space and the
analysis of this space provides important information on the complexity of the problem [24–26].

The natural presence of parallelism due to theM independent evaluations of the state, functional
and its gradient is interesting to monitor computational complexity. In addition, as mentioned
earlier for our problem, we notice that only the right-hand-sides bi=1,...,N need to be assembled
after each perturbation of α = u∗. Therefore, the optimality condition mentioned in section II
for J can be extended to µ writing:

∇xµ =
∑
αk∈IM

ωk∇xJ(x, αk) = 0,

which gives the following linear system to solve:

Ax−
∑
αk∈IM

ωkbαk
= Ax−

∑
αk∈IM

ωk < (u0 − u∗) , u >= 0,

with the matrix Ai,j =< ui , uj > unchanged.

In the presence of constraints on moments, we can proceed in the same way to get the gradients
of the moments, again using the nullity of the gradient of the first moment at the optimum:

∇xσ
2 =

∑
αk∈IM

2ωk(J(x, αk)− µ)∇xJ(x, αk)

= C1(x)Ax−
∑
αk∈IM

2ωk(J(x, αk)− µ)bαk
,

∇xγ =
∑
αk∈IM

3ωk(J(x, αk)− µ)2∇xJ(x, αk)

= C2(x)Ax−
∑
αk∈IM

3ωk(J(x, αk)− µ)2bαk
,
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∇xκ =
∑
αk∈IM

4ωk(J(x, αk)− µ)3∇xJ(x, αk)

= C3(x)Ax−
∑
αk∈IM

4ωk(J(x, αk)− µ)3bαk
.

We see that these are four vectors involving a same matrix A and elementary contributions bαk

with different weightings and scaling C1, C2 and C3 which are defined by:

C1(x) =
∑
αk∈IM

2ωk(J(x, αk)− µ),

C2(x) =
∑
αk∈IM

3ωk(J(x, αk)− µ)2,

C3(x) =
∑
αk∈IM

4ωk(J(x, αk)− µ)3.

3.4 Controlling the moments

A classical approach to improve robust design in engineering is to control the first moment
under the constraint of leaving unchanged or even reduce the second one. An easy way to adapt
this concept to our situation is to consider the following descent direction orthogonal to the
gradient of the variance:

d = −
(
∇xµ− < ∇xµ,

∇xσ

‖ ∇xσ ‖
>
∇xσ

‖ ∇xσ ‖

)
,

where ∇xσ/ ‖ ∇xσ ‖ is the unit vector along ∇xσ. Unfortunately, this formulation does not
permit anymore to get the optimal solution directly inverting a linear system as it is the case
in the single-point or even when minimizing solely the first moment. An iterative procedure is
then necessary using some descent algorithm. We will see examples of these below.

One can generalize the previous construction to the case of more than two moments using a
Gram-Schmidt orthonormalization procedure. Let us organize the four vectors in the following
order:

(∇xκ,∇xγ,∇xσ
2,∇xµ). (12)

To reduce the impact of the solution of the first order optimality condition for the first moment
on the higher moments, we require the descent direction to be orthogonal to the subspace gener-
ated by the the gradients of these moments. This can be easily achieved using a Gram-Schmidt
orthonormalization which extracts from the set of the vectors above a new set of orthonormal
vectors vi=1,...,4:

(v1, v2, v3, v4).

The descent direction we use in minimization is defined by:

d = −‖∇xµ‖ v4.
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In this way, we make sure the descent direction is orthogonal to the subspace generated by
moments 2, 3 and 4. The organization of the vectors as given in (12) is important to make
sure the direction monitoring optimization is the one given by the first moment. Once this is
achieved, this descent direction can be used in an iterative procedure which is again necessary
as the constrained optimality condition cannot simply be cast into a single linear system.

The examples below show that this choice of search direction leads to a reduction of the second
and the fourth moments as well. This is positively surprising from a robust optimization view
point as one would have actually expected the higher moments to be rather conserved.

3.5 Multi-point optimization for a quadratic functional

Let us illustrate our ingredients on a simple example. The functional involves a least-squares
minimization:

J(x, α) =
1

2

N∑
i=1

(xi − α)2, −0.5 ≤ α ≤ 0.5, −5 ≤ xi=1,...,N ≤ 5, N = 40. (13)

Let us solve problem (8) with a gradient method. Here, α is a scalar and for a given α the
optimality condition for J(x, α) gives obviously x∗ = (α, ..., α) ∈ IRN . This would be the
solution of a single-point optimization. Here α has a uniform PDF and we use a uniform sam-
pling IM with M = 40. Minimizing the mean µ without any constraint on the other moments
still produces a non robust optimum as the performance has large variability over the range of
the operating condition α. On the other hand, asking for the first moments to decrease under
constraints on the other three produces a much flatter functional over the range of α. Figure 3
shows the histograms of J(x∗, αk=1,...,M) for these minimization. In particular, one sees how
controlling more moments affects the left peak and the distribution of the frequencies.

3.6 Application to our 3D elastic problem

We now illustrate the multi-point discussion with moments on our 3D elasticity problem pre-
sented in section 2.1 where target displacement u∗ is assumed uncertain with its Probability
Density Function (PDF) known. The target is a large vector with a size given by the number
of the 3D mesh points. We consider centered Gaussian perturbations of u∗ with a standard
deviation of 10%.

In our elasticity optimization problem, Oad = (IR+)N . This means that each of the optimization
variable needs to be positive. This brings additional constraints to those expressed earlier on
the moments. This also means that one cannot solve anymore the single-point optimization
by a sole inversion of a linear system and that, for instance, a projected gradient algorithm is
necessary. This can be easily included during the iterations when minimizing the first moment
under constraints on the other three.

Figure 4 shows the distribution of the ratio of the functional J(x∗, αk) to the Young modulus
for M = 1000. One sees that the uncertainty on u∗ brings large variations in J . This variabil-
ity shows the importance of a robust optimization approach for this problem. The impact of
considering the variability during minimization through moment based functional can be easily
demonstrated looking at the moment-based solutions of the minimization versus the solution of
the single-point optimization for the target u∗ which corresponds to the deterministic situation.
Table 1 features the solution of the optimization variables for this comparison. We see that
the results are clearly different. Also the histograms in Figure 4 show that controlling all four
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j (x*,α)

α

j (x*,α) j (x*,α)

Figure 3: Upper: functional J(x∗, α) given by Equation (13) vs. α for single-point optimization, mean-
based and with constraints on moments two, three and four. Lower: histograms of J(x∗, αk=1,...,M ) for
a single-point minimization and when controlling one and then all first four moments.

moments greatly reduces the variability of the functional and therefore improves the robustness
of the design. This can be confirmed considering the 4 moments showing the variability of the
functional induced by the variability of the target displacement, considered as uncertain, for the
single-point optimal solution and for the different optimal solutions obtained when controlling
respectively the first, second and eventually all four moments. The first column in Table 2 show
the first moment for J(x, α)/E and the other columns show the second, third and fourth mo-
ments for (J(x, α)−µ)/E. By extension, we denote these µ(J(x, α)/E), σ((J(x, α)−µ)/E),
γ((J(x, α) − µ)/E) and κ((J(x, α) − µ)/E). The first column indicates that the third first
designs give about the same average behavior while controlling all four moments clearly pro-
vide a different, and actually better, solution. Robustness improvements can be seen from the
evolution of the second and fourth moments where again controlling all four moments is rec-
ommended. Also, the final density functions are slightly less symmetric when controlling more
moments. However, one regain symmetry when controlling 4 moments instead of only two. As
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we expressed in section 3.1, symmetric distributions should be preferred in robust designs.

Single-point 1 moment 2 moments 4 moments

x1 (KN) 5500 5496 5266 7035

x2 (kN) 4000 4000 3917 9262

x3 (KN) 6000 5994 5518 6834

x4 (KN) 4500 4503 4330 0

x5 (KN) 4999 5005 5594 1772

Table 1: Optimization variables for minimization using the deterministic target u∗ (the single-point case)
and when controlling 1, 2 and all 4 moments of J . The solutions are clearly different showing the impact
of moment-based optimization. The robustness achieved with more moments accounted for in the design
is well illustrated through the histograms in Figure 4.

µ(J/E) σ((J − µ)/E) γ((J − µ)/E) κ((J − µ)/E)

single point 74.980 0.938 -0.005 2.422

1 moment 74.940 0.865 -0.018 2.180

2 moments 74.144 0.840 0.094 2.146

4 moments 64.138 0.765 0.032 1.685

Table 2: Distributions of the different moments for the optimal solutions obtained after a single-point
optimization and when controlling first, second and eventually all four moments. This final design is
superior both in performance and robustness.
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(j(x*,αk) � μ)/E  (j(x*,αk) � μ)/E  

(j(x*,αk) � μ)/E  (j(x*,αk) � μ)/E  

Figure 4: Relative frequency histogram of (J(x∗, αk=1,...,M ) − µ)/E with M = 1000. Controlling
all four moments reduces the variability of the functional and therefore improves the robustness of the
design.
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IV LINEAR MODELS AND BACKWARD UNCERTAINTY PROPAGATION: COVARI-
ANCE MATRIX OF THE OPTIMIZATION VARIABLES

We showed how to quantify the impact of target state uncertainties in inverse design through
multi-point analysis and showed how it can be monitored through the moments of the functional.
But the multi-point analysis requires a sampling of a large dimensional space. Something which
is a burden when this dimension is large. To avoid a sampling we would like to see if an alter-
native low-complexity approach based on the existence of a local linear relationship between
the target state u∗ and the optimization variables x can be applied to estimate the covariance
matrix Cov2

x of the optimization variables. We compare this construction to a reference Cov1
x

construction where a sampling is necessary.

As previously, we assume the PDF of the target solution u∗ known and therefore its covariance
matrix Covu∗ . Also, we assume u∗ is admissible and that there exists a set of optimization
variables realizing the target.

As mentioned in (1), in our problem of interest the state equation is linear and to simplify the
notation, and without any loss of generality, we consider the source term f(x) = x considering
that x and u have a same dimension. In our implementation, however, we use spatial localization
terms given in (2) in order to reduce the size of x.

The construction can be applied in several useful situations. Let us describe two of them.

4.1 Cov1
x when a linear model L1u = x is available

This is typically our case, for instance, with the elasticity equation and the optimization vari-
ables acting on the right-hand-side of the equation. In this case, we can express Cov1

x with
u ∼ u∗, through:

Cov1
x = IE

(
(x− x)(x− x)>

)
= L1 IE

(
(u∗ − u∗)(u∗ − u∗)>

)
L>

1

= L1 Covu∗ L
>
1
.

But, in our case, the solver is a black-box and we do not have L1 in hand. In these cases, a
linear model can be built through a machine learning approach using a database of simulation
scenarios couples of (x− u) we denote by (X −U) generated by this code. This procedure can
be applied in nonlinear situations as well. In these cases, as the uncertainty analysis is aimed to
take place around a given/optimal solution, it is enough for the surrogate model to have a local
domain of validity.

L1 is solution of the first-order optimality condition for a functional J(L1):

∇L1
J(L1) = 0⇔ UU>L>

1
= UX>,

where U and X gather the scenarios of simulations available in the database for u and x and
we look for the best linear relation X> = U>L>

1
linking the scenarios in U to those in X and,

actually, vice versa. L>
1

, and therefore L1 , can be found as solution of a least-squares problem:

J(L1) = (X> − U>L>
1
, X> − U>L>

1
) = (X,X)− 2(XU>, L1) + (L1 , L1)UU> .
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The only requirement is for U to have full rank in order for UU> to be positive definite such
that the scalar product (L1 , L1)UU> ≥ 0. Our formulation presented in section II, and based
on the introduction of a database of elementary solutions, can be seen as a particular case of
machine learning taking advantage of the linearity to express x = A−1b(u∗). We recall that the
components of A and b for i, j = 1, ..., N are given by:

Ai,j =< ui , uj > and bi(u
∗) =< (u0 − u∗) , ui > .

Again, the covariance matrix of the optimization variables reads:

Cov1
x = IE

(
(x− x)(x− x)>

)
= A−1 IE

(
(b(u∗)− b(u∗))(b(u∗)− b(u∗))>

)
A−>

= A−1 Covb(u∗) A
−>, (14)

where it is easy to estimate Covb(u∗) knowing Covu∗ . The elementary ui and the homogeneous
solutions are deterministic. The covariance matrix of b(u∗) measures the covariance of the
projection of the deviation between the uncertain target function u∗ from the homogeneous
solution u0 on the elementary solutions ui:

(Covb(u∗))ij = IE
(

(bi(u
∗)− bi(u∗)) (bj(u

∗)− bj(u∗))>
)

= IE
(
(< (u∗ − u∗) , ui >) (< (u∗ − u∗) , uj >)>

)
.

One interest of this formulation is that the size of this matrix is now five, the number of the
optimization variables, instead of 14400, the number of the mesh grid points for Covu∗ . Also,
if the perturbation on u∗ are centered, u∗ is the deterministic target solution.

4.2 Cov2
x when a linear model L2x = u is available

This is not directly the situation in this paper as the optimization variables intervene in the
left-hand-side. However, this analysis is powerful when the state equation is linear, or if the
Jacobian of the state with respect to the optimization can be estimated which is our situation
where indeed the Jacobian is explicitly available knowing the elementary solutions as described
in section (II).

After a deterministic optimization when the state is close to the target (u ∼ u∗), we assume
the covariance matrix of u close to the covariance matrix of u∗. Using the linear relationship
L2x = u we can write:

Covu∗ = IE
(

(u∗ − u∗)(u∗ − u∗)>
)

= IE
(
L2 (x− x)(x− x)> L>

2

)
= L2 IE

(
(x− x)(x− x)>

)
L>

2

= L2 Cov2
x L>

2
.

Unlike the previous situation, to getCov2
x we need to invert this expression. In cases where exact

inversion is impossible a least-squares formulation can be used looking for Cov2
x minimizing:

1

2
< L2 Cov2

x L>
2
, L2 Cov2

x L>
2
> − < Covu∗ , L2 Cov2

x L>
2
> .
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First-order optimality condition with respect to Covx gives:

L>
2
L2 Cov2

x L>
2
L2 − L>2 Covu∗ L2 = 0,

which leads to
Cov2

x = (L>
2
L2)

−1 L>
2
Covu L2 (L>

2
L2)

−1,

and eventually, to

Cov2
x = L−1

2
Covu∗ L

−>
2

=
(
L>

2
Covu∗

−1 L2

)−1
. (15)

Therefore, knowing Covu∗ one can access Cov2
x if a linear relationship, even locally valid,

is available between x and u. In practice, Covu∗ is diagonal as the target uncertainties are
often assumed independent. The inversion of Covu∗ is therefore straightforward. The second
expression only requires the inversion of a N ×N matrix in our case. This expression in (15) is
also interesting because it involves the inversion of a square matrix giving a least-squares sense
to the inversion of rectangular matrix. An interesting application of this construction is using
the state sensitivity with respect to optimization variables or the Jacobian J = (∂u/∂x) in a
first-order linear relationship J δx = δu. This permits to estimate the covariance matrix of
the optimization variables perturbations even in the absence of a direct linear model linking x
and u. Actually, in situations where the state equation is linear (our case) we have L2 = J .
In situations where there are only a few optimization variables, the Jacobian can simply be
estimated by a finite differences approach approximating the ith line of the Jacobian by:

Ji=1,...,N =∼ (u(xei + ε)− u(xei − ε))
2ε

,

with ei=1,...,N the canonical basis of IRN in our case and 0 < ε << 1. But, we have seen in
section II that u has a direct expression with respect to x components xi through:

u = u0 +
N∑
i=1

xiui.

Therefore, the finite difference formula reduces to:

Ji=1,...,N ∼
(u(xei + ε)− u(xei − ε))

2ε
= ui.

This is another advantage of our direct formulation for the inversion as it makes evaluating J
straightforward, not requiring any extra calculation. In addition, the Jacobian is exact in this
case and is not affected by the finite differences approximation and the choice of ε. Actually,
the Jacobian would be exact even using first order finite differences. This is because we recover
the exact gradient expression in this case. Therefore, this second covariance estimation is well
adapted to our situation and would be interesting if it gives nearly the same answer than the first
construction where a sampling of the state variable variation domain is necessary.

Figure 5 shows the comparison of this two estimations of Covx. We see that the matrices are
very close and especially the signs of all components agree.

Further comparisons are given in Figure 3 through different distances between the two covari-
ance matrices versus the distance between the covariance matrices and a diagonal matrix with
the diagonal given by mean values of the covariance matrices components (i.e. 1

2N2

∑N
i,j=1(Cov1

x+

Cov2
x)i,j). This is to provide an estimation of how close the two covariance matrices are versus

a third fixed one.
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Figure 5: Covariance Matrix Cov1
x and Cov2

x (in Newton2) Visualization, left: Cov1
xfrom (14), right:

Cov2
x from (15).

Distance d d(Cov1
x, Cov

2
x) d(Cov1

x, CIN) d(Cov2
x, CIN)

Kullback distance 0.334 165.589 166.682

Euclidean distance 1.674 17.020 16.123

Log Euclidean distance 0.737 7.193 7.469

Riemannian distance 0.811 7.193 7.469

Wasserstein distance 0.389 4.098 4.097

Log-det distance 0.286 2.00 2.086

Table 3: Different estimations of distances between the two covariance matrices. where C =
1

2N2

∑N
i,j=1(Cov

1
x + Cov2

x)i,j is the mean values of the covariance matrices components and IN is the
N th identity matrix. One notices that, regadless of the considered distance, Cov1

x and Cov2
x are about

at the same distance of CIN . Also, Cov1
x are Cov2

x are at a distance about ten times less except for the
Kullback distance where two matrices are seen much closer. This is very interesting as this distance is
particularly suitable for the comparison between probability density functions and covariance matrices.
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V CONCLUDING REMARKS

Robust parametric optimization has been addressed through the control of the moments of the
functional. Moments have been estimated using a multi-point formulation. This permits to ad-
dress situations where operating parameters are not anymore single valued but defined through
their PDF. Hence, the first four moments of the functional have been considered to go beyond
the classical mean-variance based optimization. Subtleties of what should be the target for the
skewness and the kurtosis of the probability density function of the performance of the system
for a robust design have been discussed.

It has been shown that controlling second, third and fourth moments drastically improves the
design while the time to the solution remains comparable to the single-point situation as all the
extra calculations can be carried out in a fully parallel and independent manner. The cost is
also reduced thanks to our construction of the optimal solution taking advantage of the presence
of the linearity between the optimization variables and the solution of the state equation. As a
consequence, the approach requires quite small additional coding and computational effort.

Low-complexity solutions for backward propagation of aleatory uncertainty in target data has
also been presented. Derivation of the covariance matrix of the optimization parameters has
been discussed through two formulations. These provide uncertainty quantification analysis for
the inversion solution with confidence margins on the design parameters in very large design
spaces. It has been shown that taking again advantage of existing linear relationships between
the target state u∗ and the optimization variables x, samplings of the design and the target
solution spaces can be avoided drastically reducing the computational cost of the approach.

We recall that the approach is especially suitable in situations where linear dependencies exist
between the state and the optimization variables. However, if this is not the case, for instance if
the thickness distribution is the optimization variable, the approach can still be applied to the lin-
earized problem around a given optimization variable distribution. Indeed, consider a particular
set of optimization variable x∗, and u∗(x∗) solution of a nonlinear equation F (u∗(x∗)) = 0.
The linearized problem reads F (u∗(x∗) + v) ∼ F (u∗(x∗)) + DxF (u∗(x∗)) v = 0 giving
DxF (u∗(x∗))v = −F (u∗(x∗)) and what presented in the paper can be applied as v linearly
depends on the right-hand-side. As a consequence, the outcome of the analysis presented here
can be seen as stability analysis for this particular design.
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