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Abstract
The extension rule first introduced by G. TSEITIN is a simple but powerful rule that, when added
to resolution, leads to an exponentially stronger proof system known as extended resolution(ER).
Despite the outstanding theoretical results obtained with ER, its exploitation in practice to improve
SAT solvers’ efficiency still poses some challenging issues. There have been several attempts in
the literature aiming at integrating the extension rule within CDCL SAT solvers but the results are
in general not as promising as in theory. An important remark that can be made on these attempts is
that most of them focus on reducing the sizes of the proofs using the extended variables introduced
in the solver. We adopt in this work a different view. We see extended variables as a means
to enhance reasoning in solvers and therefore to give them the ability of reasoning on various
semantic aspects of variables. Experiments carried out on the 2018 and 2020 SAT competitions’
benchmarks show the use of the extension rule in CDCL SAT solvers to be practically beneficial
for both satisfiable and unsatisfiable instances.
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I INTRODUCTION

The Boolean satisfiability problem (SAT) consists in deciding whether a given propositional
logic formula — generally expressed in conjunctive normal form or CNF — admits a model
or not. There have been tremendous advances in its resolution during the last two decades and
nowadays, SAT solvers are used in industry to solve several challenging problems. The key of
this great success lies in a very subtle combination of several features within the so-called CDCL
(Conflict-Driven Clause Learning) [6–8, 10] SAT solvers. The latter include conflicts analysis
with clause learning, efficient unit propagation through watched literals, dynamic branching/po-
larity heuristics and sporadic restarts. SAT has also attracted theoreticians since it was the first
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problem proved to be NP-complete [3]. Hence, the existence or non-existence of an efficient
algorithm for SAT will definitely give the answer to the question P =? NP which is one of the
seven millennium prize problems stated by the Clay Mathematics Institute for which an award
of 1 Million USD is given to anyone solving one of them.

Despite their current great efficiency, there are still some instances that are out of the reach of
current CDCL SAT solvers. The increasing quest of efficiency is achieved by equipping solvers
with new techniques and heuristics but the latter are limited from a theoretical perspective.
Indeed, CDCL SAT solvers can be formalized as proof systems and it has been shown that the
resulting proof system is p-equivalent to general resolution [13, 17] which is known to have an
exponential lower bound [5]. This means that CDCL SAT solvers cannot do better than what
can be done with general resolution and in particular, that exponential lower bounds known
for resolution hold for CDCL SAT solvers as well. To overcome this limitation, a promising
research direction is to equip solvers with proof systems that are stronger than resolution. One
such proof system is extended resolution (ER) which makes use of the extension rule.

Several work aiming at integrating the extension rule within CDCL SAT solvers exist in the
literature [15, 16]. Most of them focus on the use of the extension rule as a means to reduce the
size of the proofs produced by solvers using extended variables introduced in the latter. Seen
like that, it might appear that the extension rule is only beneficial for unsatisfiable formulas.
However, extended variables introduced in the solver can be seen as a means to increase the
level of abstraction and hence enhance reasoning in the solver so that it helps improve the
resolution of both satisfiable and unsatisfiable formulas.

We are interested in this work in designing a new integration scheme of the extension rule within
CDCL SAT solvers in order to enhance their reasoning capabilities by the use of the extension
rule.

The main contributions of this paper are the following: (1) we design a new integration scheme
of the extension rule within CDCL SAT solvers called Extended CDCL (ECDCL in short)
aiming at enhancing solvers’ reasoning. (2) We prove that the substitution of extended literals
performed on an asserting clause does not alter its asserting characteristic nor its asserting level.
(3) We implemented ECDCL on top of a state-of-the-art SAT solver and conducted an empirical
evaluation.

The rest of this paper is organized as follows: Section II presents the necessary background for
understanding the contribution. In Section III we review some related work. Our contribution
is given in section IV and empirically evaluated in Section V. We finally conclude our work in
Section VI while outlining some future research directions.

II BACKGROUND

A Boolean variable is one that domain is {true, false}. A literal is either a Boolean variable
x or its negation ¬x. A clause c is a finite disjunction of literals (c = l1 ∨ ... ∨ lk) and a CNF
formula F is a finite conjunction of clauses (F = c1 ∧ · · · ∧ cn). A CNF formula can be also
seen as a set of clauses where each clause is thought of as a set of literals. In this way, we
can use set operators on CNF formulas and clauses. An interpretation I of a CNF formula
F is a function that maps each variable in F to a truth value in {true, false}. A clause is
said to be satisfied under an interpretation I if at least one of its literals is satisfied under I.
A CNF formula is said to be satisfied under an interpretation I if all its clauses are satisfied
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under I. A CNF formula F is satisfiable if there can be found an interpretation under which
it is satisfied; otherwise it is unsatisfiable. Given a CNF formula F and a literal l, we write
F|l = {c|c ∈ F , {l,¬l} ∩ c = ∅} ∪ {c\{¬l}|c ∈ F ,¬l ∈ c and l /∈ c}. F|l denotes the
simplified formula obtained from F by removing all clauses c ∈ F such that l ∈ c and ¬l from
clauses containing it. This simplification can be extended to a set of literals {l1, · · · lk}; thereby
F|{l1,··· ,lk} is the formula obtained from F by successively applying the previous simplification
rule on l1, l2, · · · and lk i.e. F|{l1,··· ,lk} = (...(F|l1)|l2 ...)|lk . Unit propagation is the application of
the rule F|x for each unit clause {x} ∈ F until a clause in F is falsified or F does not contain
unit clauses anymore.

The Boolean satisfiability problem (SAT) consists in deciding whether a given CNF formula is
satisfiable or not. The latter definition, which considers only formulas in the CNF representa-
tion, is not a restriction since every propositional logic formula can be efficiently translated into
an equisatisfiable CNF formula [2].

The most widespread algorithm today for solving SAT is known as CDCL (Conflict-Driven
Clause Learning) [6–8, 10]. The principle of CDCL can be summarized as follows: the algo-
rithm performs a sequence of unit propagations until a fixed point is reached (i.e. no further
unit propagation can be made) or a conflict is found (i.e. a clause is falsified). If no conflict was
found, the algorithm proceeds by making a decision and subsequently increases the decision
level. Each assigned variable is associated to a decision level and a literal l is said to be of level
k if it is the kth decision literal or is deduced by unit propagation after setting the kth decision
literal. If a conflict is found, then procedure analyze is invoked to examine it in order to produce
an asserting clause (i.e. a clause that is falsified under the interpretation being constructed and
that contains only one literal of the conflicting decision level) as well as the decision level at
which the solver must backtrack in order to continue the search. Afterward, the solver learns the
asserting clause and backtracks accordingly. From time to time, the algorithm performs restarts
which consist in backtracking at decision level zero and begin a new search while keeping some
information of the previous round (such as learned clauses, variable activities, etc.) which might
help speed up the new search.

We formally characterize the state of a CDCL SAT solver by the tuple (F ,∆, δ) where F is
the formula being solved, ∆ the learned clause database and δ the partial interpretation being
constructed by the solver. We denote the level of a literal x relatively to a solver state S by
level(x). Given an asserting clause c w.r.t. a state S, its asserting literal is the literal with the
highest decision level and its asserting level is the second highest decision level of literals in c.
In this paper, the state should be clear from the context when not explicitly specified.

A propositional proof system is a polynomial time algorithm V , such that for every propo-
sitional formulas F , F is unsatisfiable iff there exists a string P (a proof of unsatisfiability or
refutation of F) such that V accepts the input (F , P ). In the rest of this paper, we omit the word
propositional and refer to propositional proof system simply as proof system. Given two proof
systems V1 and V2, V1 p-simulates V2 iff there exists a polynomial-time computable function
f such that V2 accepts (F , P ) iff V1 accepts (F , f(P )). Two proof systems are p-equivalent if
they p-simulate each other. The size of the proof from a given formula is defined as the number
of inference steps in the proof. A well-known proof system is resolution (also referred to as
general resolution) which makes use of the resolution rule [1] as inference rule. The strength
of resolution can be further increased by adding the extension rule.

The extension rule first introduced by TSEITIN [2] allows the use of literals as abbreviation for
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longer formulas. Concretely, let F be a CNF formula, {x, l1, l2} be a set of literals such that
neither x nor ¬x appears in F . The extension rule allows to introduce definitions of the form
x↔ l1 ∨ l2 by adding the clauses ¬x∨ l1 ∨ l2; x∨¬l1 and x∨¬l2 to F . This rule when added
to resolution, turns it to an exponentially stronger proof system known as extended resolution
(ER). A typical example of formulas that are hard for resolution are pigeonhole formulas which
do not admit any short (i.e. polynomial size) resolution proof [5]. However, short proofs of
pigeonhole formulas exist when using the extension rule [4]. The challenge when using the
extension rule is to determine which variables to choose for extension so as to produce short
proofs. Even with the right variable choices, the resolution steps that should be performed to
achieve this goal still constitute an important issue.

III RELATED WORK

There have been several work attempting to integrate the extension rule within CDCL SAT
solvers. AUDEMARD et al. [15] argued that significant advances in SAT solving must come
from implementation of stronger proof systems since exponential lower bounds are known for
resolution [5, 20]. They used a restriction of ER called Local Extended Resolution (LER) by
introducing the extension z ↔ l1 ∨ l2 if there exist previously derived clauses in the form
¬l1 ∨ α and ¬l2 ∨ β where α and β are disjunction of literals such that l ∈ α ⇒ ¬l /∈ β.
A clear limitation of this approach is that it uses clauses of particular form that might seldom
appear in the set of derived clauses. In addition, looking for such clauses can be difficult and
costly. For the latter reasons, the authors in their implementation restricted this lookup to a
small window of recent clauses, only looking for those of the form ¬l1 ∨ α and ¬l2 ∨ α. Some
implementation-level optimizations of LER are proposed in [19].

HUANG [16] proposed Extended Clause Learning (ECL), a general scheme which is a modifi-
cation of the CDCL algorithm where decisions to use the extension rule might be made (guided
by a heuristic) when the number of assigned literals is greater than 2. Besides ECL, they pro-
posed a concrete heuristic where the extension rule was used after learning clauses γ of size
greater than 2. Concretely, if the decision to make an extension is taken, then γ is split into
α ∨ β such that |α| ≥ 2 and |β| > 0 and the solver learns the clauses x ∨ β, x ↔ α where
x is a fresh variable. A restart is performed after each extension introduced in the solver. The
drawback of this is that it alters the restart strategy of the solver. Hence, if the heuristic used to
decide the time to make extensions is not well designed, it might compromise the completeness
of the CDCL SAT solver. For instance, if we decide to make an extension after each conflict,
the solver will never reach more than one conflict and the search will hardly progress in this
situation.

In [18], JABBOUR et al. proposed a method that mimics the principle behind extended resolu-
tion by detecting hidden Boolean functions introduced in the CNF during the encoding phase
[12, 14] and by using them to shorten learned clauses through substitution. This approach how-
ever does not use fresh variables at all and substitution is restricted to only literals which are the
input arguments of a detected Boolean function.
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IV EXTENDED CDCL

4.1 Motivation

The extension rule in combination with resolution has been theoretically shown to be useful for
shortening the proof size of unsatisfiable formulas. The contributions mentioned in the literature
try to reproduce this result in practice but the outcomes of most of them turn to be limited as
they seldom match the expectations. When looking at the extension rule as a means to reduce
the size of the proof, it might seem that it will be useful only for unsatisfiable formulas. We
adopt here a different view. Extensions are introduced within a solver in order to increase
its reasoning capabilities with the ultimate goal of enhancing solving times. When solving a
CNF formula, current CDCL SAT solvers proceed by assuming a selected variable to be true
or false and by evaluating the consequences of this assumption on the formula being solved.
Proceeding this way limits reasoning to a single semantic aspect of variables, notably their
truth values. We want the solver to be able to carry out reasoning on other semantic aspects of
formulas’ variables. That is, we want the solver in addition, to make other types of assumptions
such as assuming that two or more variables are equivalent, simultaneously true or false, one
variable implies the other etc. To achieve this without modifying the way solvers proceed, we
are going to use extensions to encapsulate these semantic aspects. Hence, the algorithm of
the solver will not change since it will still continue to carry out reasoning as usual; that is,
assigning true/false values to variables. The difference however is that when this reasoning is
performed on an extended variable, it will denote other semantic aspects. For instance, suppose
the extension x ↔ l1 ⇔ l2 has been made in the solver. When the solver picks the extended
variable x and assigns it value true, this means that it is assuming l1 and l2 to be equivalent.
Hence, after setting x to true, anytime in the search where one of the variables in {l1, l2} will
be given a value, then the other will also be given the same value via unit propagation. In this
way, we could expect an improvement of reasoning in the solver.

4.2 Description of the integration scheme

In order to integrate the extension rule in the CDCL framework, we should answer the following
questions: which variables should be chosen for extension and when should we perform these
extensions?

We propose to use extensions at restarts and to choose for each extension, two variables from
two different decision levels (in our implementation, we chose the most active decision variables
i.e. the ones with the highest VSIDS scores [9]). At this level, extensions can be performed us-
ing any binary connective; for instance x↔ l1 ∨ l2, x↔ l1 ∧ l2, x↔ l1 ⇒ l2, x↔ l1 ⇔ l2 etc.
The solver can then make assumptions on the extended variables resulting in an implicit mean-
ing on variables on which extension is performed (for instance, they are/are not equivalent, one
implies/does not imply the other, they are both false/true, etc.) and evaluates the consequences
on the other variables of the formula being solved. By choosing variables of different decision
levels instead of any two variables, we aim to give the solver the ability to carry out reasoning
on variables that apparently seem not to be dependent and avoid some useless extensions such
as extensions where the value of one literal is already known or extensions where the extended
variable is immediately forced to a given value. We further provide a substitution mechanism
that can be cheaply performed in order to favor the use of extended variables within the solver.
This substitution consists in replacing any pair {l1, l2} of literals in a clause c by the literal l
provided that the extension l↔ l1∨l2 has been made in the solver. This substitution can be seen
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as an application of hyper-resolution [11] involving the original clause and some binary clauses
encoding the extensions. It has as effect the shortening of the clause as well as the increase of
its propagation power. In fact, as illustrated in [15], if we consider the clause c = l1∨ l2∨α and
the extension l ↔ l1 ∨ l2, then the clause c′ = l ∨ α obtained from c by replacing l1 ∨ l2 with l
unlike the clause c itself will become unit once all literals in α are set to false. The substitution
mechanism is performed on each asserting clause derived after conflict analysis and Proposi-
tion 1 ensures that after substitution, the resulting clause will remain asserting and the asserting
level will be kept.

Proposition 1:
Let S = (F ,∆, δ) be the state of a solver and c = a ∨ α an asserting clause w.r.t. S where a
is the asserting literal. Let x↔ l1 ∨ l2 be an extension such that {l1, l2} ⊆ α. Then, the clause
c′ = a ∨ x ∨ β where β = α \ {l1, l2} is asserting w.r.t. S. Furthermore, the asserting levels of
c and c′ are identical.

The proof of Proposition 1 uses the following lemma:

Lemma 1:
Let x ↔ l1 ∨ l2 be an extension introduced in a solver. If literals x, l1 and l2 are all assigned,
with x set to false, then the decision level of x is the maximum decision level of l1 and l2.

Proof. Since x = false and x ↔ l1 ∨ l2, then l1 and l2 are set to false as well. If x is first set
to false by the solver or set to false after setting either of l1 or l2 to false (no matter the decision
level), then the values of l1 and/or l2 will immediately be deduced by unit propagation through
the clauses x ∨ ¬l1 and x ∨ ¬l2. In this case, the decision levels of x and l1 or x and l2 will be
identical. If l1 and l2 are first set to false, then x = false will be inferred by unit propagation
via the clause ¬x∨ l1 ∨ l2. This occurs as soon as the last literal of {l1, l2} is assigned. In either
of the previous cases, the level of x is the same as that of the most recently assigned literal of
{l1, l2}, that is level(x) is the maximum of level(l1) and level(l2).

Proof of Prop. 1. c = a ∨ α is an asserting clause, hence all its literals are false. Since
x ↔ l1 ∨ l2 is an extension introduced in the solver and {l1, l2} ⊆ c, then x is false as
well. By Lemma 1, level(x) = max(level(l1), level(l2)). In addition, level(l1) < level(a)
and level(l2) < level(a), hence, level(x) < level(a) which means that a still has the high-
est decision level in c′ = a ∨ x ∨ β where β = α \ {l1, l2}. c′ therefore remains asserting.
Furthermore, the second highest decision level of literals in c′ remains the same as in c since
max({level(y), y ∈ α}) = max({level(y), y ∈ (β ∪ {x})}).

The resulting scheme that we call Extended CDCL (ECDL in short) is described in Algorithm 1.
All in this algorithm are as in CDCL except that we introduce extensions at restarts (lines 14–
17) and substitution of literals with extended literals for asserting clauses derived from conflicts
(line 8). At line 17, the extension operator ◦ can be any binary connective and in this paper we
take ◦ ∈ {∨,∧,⇒;⇔}. Note that an extension is not systematically added at each restart but
only when the solver finds it necessary (through a heuristic) and when the maximum number
of extensions (introduced as a parameter of the algorithm) is not yet reached. Hence, by exten-
sion needed we mean the moment the solver decides to make an extension typically through
a heuristic. Function substituteExtendedLits which carries out substitution is described in Al-
gorithm 2. In order to perform substitution, all extensions are converted so that they use the
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Algorithm 1: Extended CDCL
Input: A CNF formula F
Result: SAT or UNSAT

1 begin
2 dl← 0; ∆← ∅;
3 while true do
4 conf ← unitPropagation(F ∪∆);
5 if conf ̸= null then
6 if dl = 0 then return UNSAT;
7 (c, btLevel)← analyze(conf ); /* return an asserting clause and the

backtracking level */
8 c← substituteExtendedLits(c);
9 ∆← ∆ ∪ {c}; /* learn clause c */

10 backtrack to btLevel;
11 else
12 if all variables are assigned then return SAT;
13 if time to restart then
14 if extension needed and not reached max number of extensions then
15 let δ be the current interpretation;
16 choose a fresh variable x and a not yet extended pair {l1, l2} from δ such that

level(l1) > 0, level(l2) > 0, level(l1) ̸= level(l2) ;
17 F ← F ∪ clauses(x↔ l1 ◦ l2) ; /* encode the extension as

clauses and add to the formula */

18 restart();

19 pick an unassigned variable and assign it a value;
20 dl← dl + 1;

Algorithm 2: substituteExtendedLits
Input: An asserting clause c
Result: A clause

1 begin
2 a← the asserting literal of c ;
3 c′ ← {a};
4 c← c \ {a};
5 while ∃{l1, l2} ⊆ c such that the extension l↔ l1 ∨ l2 is present in the solver do
6 c← c \ {l1, l2};
7 c′ ← c′ ∪ {l};
8 c′ ← c′ ∪ c;
9 return c′;
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connective ∨. Hence, the extensions l ↔ l1 ∧ l2 and l ↔ l1 ⇒ l2 are respectively converted to
¬l ↔ ¬l1 ∨ ¬l2 and l ↔ ¬l1 ∨ l2. As far as the extension l ↔ l1 ⇔ l2 is concerned, we use
two auxiliary variables {l′, l′′} for its conversion which lead to the extensions ¬l ↔ ¬l′ ∨ ¬l′′,
l′ ↔ ¬l1∨ l2 and l′′ ↔ l1∨¬l2. It is worth mentioning that substitution here is not performed on
unary or binary clauses since it requires that the clause contains at least two literals in addition
to the asserting literal. Notice that function substituteExtendedLits will return the clause as is if
called with an unary or a binary clause or even when no extension has yet been introduced in
the solver. Another thing to point out in Algorithm 1 is that extensions are made with only two
literals. This does not mean that reasoning in solvers is limited to at most two literals at a time.
In fact, in Algorithm 1, extensions can be made using other extended literals as well. Hence,
extensions with more literals such as l ↔ l1 ◦ l2 ◦ · · · ◦ ln can be represented by a sequence of
two-literal extensions. The drawback here is that several fresh variables need to be introduced
in the solver for that.

Unlike Extended Clause Learning (ECL) which performs a restart after each extension made
after conflicts analysis, ECDCL does not alter the restart policy of the CDCL solver and hence
eliminates the completeness issue related to an uncontrolled restart strategy. Furthermore, since
we limit the number of extensions that can be used, ECDCL remains complete.

V EXPERIMENTAL RESULTS

In order to evaluate ECDCL, we conducted a first stage of experiments on the 400 applica-
tion benchmarks1 drawn from the 2018 SAT Competition2. For these experiments, we im-
plemented ECDCL on top of the state-of-the-art CDCL SAT solver Glucose-3.03. Glucose-
3.0 was chosen because it is one of the most used today as a base for many CDCL SAT
solvers. We distinguished several different versions obtained by varying the type of exten-
sion and the maximum number of extended variables allowed in the solver: We designated
by Glucose-3.0_exT_◦_maxExtVars_K the version of our solver where the extension operator
is ◦ with ◦ ∈ {∨,∧,⇒,⇔} and the maximum number of extended variables allowed set to
K ∈ {100, 500, 1000}. In our implementations, we used a very straightforward heuristic to
decide when the extensions are made: it consists of making an extension at every restart per-
formed when the current interpretation contains at least two decision levels, starting from the
beginning of the search until the maximum number of allowed extensions is reached. This
heuristic deserves a further study but we leave it for future investigations. When performing an
extension l ↔ l1 ◦ l2, we set the VSIDS score of l to the sum of the scores of l1 and l2 so that
when making a decision in the solver, the extended variable l is prioritized overs l1 and l2. It is
worth mentioning that in our modified solvers, all the other parameters of Glucose-3.0 were left
unchanged. The base solver, referred to as Glucose-3.0_default was used with its default con-
figuration. Preprocessing was enabled for all versions of Glucose-3.0 used in the experiments
including the default one.

All our experiments were carried out on the StarExec4 [21] cluster infrastructure running Red
Hat Enterprise Linux Server version 7.2 (Maipo). Each node of this infrastructure has 128 GB
of memory and two Intel processors with 4 cores (2.4 GHz) each. For each solver, we set a time
limit of 1800 seconds and a memory limit of 24GB for the resolution of each benchmark.

1http://sat2018.forsyte.tuwien.ac.at/benchmarks/Main.zip
2http://www.satcompetition.org/
3https://www.labri.fr/perso/lsimon/downloads/softwares/glucose-3.0.tgz
4https://www.starexec.org/
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The results obtained at the end of these experiments are summarized in Table 1. The table
indicates for each extension type and maximum number of extended variables allowed, the
number of satisfiable instances solved (#S), the number of unsatisfiable instances (#U), the
total number of instances solved (#T) as well as the PAR-2 score. The PAR-2 score is defined
as the sum of all runtimes for solved instances + 2 × timeout for unsolved instances. The
line default in the table represents the performance of Glucose-3.0_default which are repeated
for every limit on the number of extended variables to ease the comparisons. We see in this
table that all our solvers outperformed the original solver on the total number of instances
solved (up to 14 additional instances solved for our best performing solver). The second remark
is that our solvers are very efficient on satisfiable instances (our best performing solver on
satisfiable instances solved 12 more satisfiable instances than the original solver) meaning that
the extension rule greatly helped improve the resolution of satisfiable instances.

Number of extended vars ≤ 100 Number of extended vars ≤ 500 Number of extended vars ≤ 1000
#S #U #T PAR-2 #S #U #T PAR-2 #S #U #T PAR-2

exT_∨ 83 71 154 2436.36 82 69 151 2454.71 76 69 145 2499.94
exT_∧ 73 71 144 2515.47 78 70 148 2472.11 75 68 143 2518.84
exT_⇒ 80 70 150 2455.51 79 70 149 2484.04 75 67 142 2521.33
exT_⇔ 74 67 141 2531.56 75 68 143 2505.41 84 68 152 2456.92
default 72 68 140 2526.22 72 68 140 2526.22 72 68 140 2526.22

Table 1: Performance of Glucose-3.0 and Glucose-3.0_exT_◦_maxExtVars_K on the 2018 SAT Compe-
tition’s benchmarks when substitution is carried out on all learned clauses

This table also shows that the number of solved instances generally decreases as the limit on the
number of extended variables increases when substitution is carried out on all learned clauses.
There is however an exception for the extension operator⇔ where the performance increased
with the limit on the number of extended variables.

When considering another performance metric, notably the average PAR-2 score5 currently
used for ranking solvers at SAT competitions, we also notice that all our solvers outperformed
the original solver except for Glucose-3.0_exT_⇔_maxExtVars_100.

Fig. 1 shows the cactus plots of all the solvers on the 400 application benchmarks of the 2018
SAT competition. It clearly appears on these plots that the use of the extension rule was ben-
eficial for our solvers since they still outperformed the original solver Glucose-3.0_default for
various solving time limits in term of number of solved instances. Fig. 2 shows the scatter plot
comparing the original solver Glucose-3.0_default and our best performing integration namely
Glucose-3.0_exT_∨_maxExtVars_100. It appears on this plot that the run time of many in-
stances has been significantly improved: this is noticeable through the presence of many points
in the upper triangle that are far from the diagonal. However there are still a number of instances
where the original solver is faster.

We noticed during our experiments that the substitution operations were very time consuming
despite our optimizations. To address this issue, we decided to restrict the substitutions to the
learned clauses that were most likely to remain in solvers for a longer time. Thus, we restricted
the substitutions to clauses whose LBD values at the time of their learning were less than or
equal to an empirically chosen threshold set to 20. With this new optimization, we conducted a
second phase of experiments, this time with an extended set of benchmarks including those of

5Solvers with the lowest scores are the best performing
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Figure 2: Scatter plot Glucose-3.0_exT_∨_maxExtVars_100 vs Glucose-3.0_default

the SAT competitions 20186 and 20207. Moreover, we integrated ECDCL with this optimiza-
tion in one of the current top performing SAT solvers, MapleLCMDistChronoBT8, in order to

6http://sat2018.forsyte.tuwien.ac.at/benchmarks/Main.zip
7https://satcompetition.github.io/2020/downloads/sc2020-main.uri
8http://sat2018.forsyte.tuwien.ac.at/solvers/
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evaluate the impact on its performance. The versions of the solvers used in these experiments
were named in the same way as before, i.e. MapleLCMDistChronoBT_exT_◦_maxExtVars_K
is the version of MapleLCMDistChronoBT integrating ECDCL where the extension operator
is ◦ with ◦ ∈ {∨,∧,⇒,⇔} and the maximum number of extended variables allowed set to
K ∈ {100, 500, 1000}. The default version of MapleLCMDistChronoBT as far as it is con-
cerned was named MapleLCMDistChronoBT_default. For all these versions of MapleLCMDist-
ChronoBT including the default one used in our experiments, we set the --chrono option to
-1 and enabled preprocessing. The experiments were conducted under the same conditions as
described in the first phase and the results obtained are reported in Table 2 and Table 3. Each
of these tables has two parts respectively for the benchmarks of the SAT Competition 2018
(SC2018) and for the SAT Competition 2020 (SC2020).

Number of extended vars ≤ 100 Number of extended vars ≤ 500 Number of extended vars ≤ 1000
#S #U #T PAR-2 #S #U #T PAR-2 #S #U #T PAR-2

SC
20

18

exT_∨ 78 72 150 2465.88 80 74 154 2426.68 80 74 154 2427.34
exT_∧ 72 71 143 2494.51 83 71 154 2433.98 81 70 151 2448.30
exT_⇒ 75 69 144 2493.24 79 73 152 2455.69 80 69 149 2466.28
exT_⇔ 71 71 142 2498.26 81 71 152 2443.35 73 72 145 2490.11
default 72 68 140 2526.22 72 68 140 2526.22 72 68 140 2526.22

SC
20

20

exT_∨ 50 61 111 2778.94 54 64 118 2732.46 50 62 112 2765.89
exT_∧ 49 67 116 2749.18 50 60 110 2788.62 51 62 113 2757.20
exT_⇒ 45 68 113 2761.84 52 66 118 2747.27 43 63 106 2821.51
exT_⇔ 49 67 116 2750.60 47 64 111 2773.05 58 63 121 2706.09
default 47 65 112 2773.01 47 65 112 2773.01 47 65 112 2773.01

Table 2: Performance of Glucose-3.0 and Glucose-3.0_exT_◦_maxExtVars_K on the 2018 and 2020 SAT
Competitions’ benchmarks when substitutions are carried out only on learned clauses having LBD lower
than or equal to 20

Number of extended vars ≤ 100 Number of extended vars ≤ 500 Number of extended vars ≤ 1000
#S #U #T PAR-2 #S #U #T PAR-2 #S #U #T PAR-2

SC
20

18

exT_∨ 114 86 200 2025.28 111 84 195 2045.07 113 84 197 2042.22
exT_∧ 108 86 194 2066.72 119 88 207 1953.83 116 87 203 1986.98
exT_⇒ 118 86 204 1983.04 111 88 199 2038.26 110 88 198 2034.79
exT_⇔ 118 84 202 1993.29 117 85 202 1987.66 112 86 198 2031.29
default 115 86 201 1986.70 115 86 201 1986.70 115 86 201 1986.70

SC
20

20

exT_∨ 63 74 137 2585.92 57 69 126 2656.81 60 70 130 2636.93
exT_∧ 60 73 133 2616.19 54 70 124 2670.61 58 70 128 2648.66
exT_⇒ 62 71 133 2608.55 61 72 133 2601.37 59 72 131 2617.42
exT_⇔ 59 71 130 2621.29 62 72 134 2610.89 62 72 134 2599.70
default 59 75 134 2592.51 59 75 134 2592.51 59 75 134 2592.51

Table 3: Performance of MapleLCMDistChronoBT and MapleLCMDistChrono-
BT_exT_◦_maxExtVars_K on the 2018 and 2020 SAT Competitions’ benchmarks when substitutions
are carried out only on learned clauses having LBD lower than or equal to 20

We can see in Table 2 that for the SAT Competition 2018 benchmarks, the PAR-2 scores as
well as the number of solved unsatisfiable instances have been significantly improved com-
pared to those of the first phase experiments in Table 1. This clearly indicates that it is more
favorable to perform substitutions on clauses with low LBD scores. In Tables 2 and 3 it ap-
pears that the most notable improvements still reside at the level of satisfiable instances both
for those of the 2018 and the 2020 SAT Competitions. We see for instance in Table 2 that
the solver Glucose-3.0_exT_∧_maxExtVars_500 (resp. Glucose-3.0_exT_∨_maxExtVars_500)
solved 11 (resp. 7) satisfiable instances of the SC2018 (resp. SC2020) more than the base solver
Glucose-3.0_default and in Table 3 that MapleLCMDistChronoBT_exT_∧_maxExtVars_500
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(resp. MapleLCMDistChronoBT_exT_∨_maxExtVars_100) solved 4 (resp. 4) more satisfiable
instances of the SC2018 (resp. SC2020) than the base solver MapleLCMDistChronoBT_default.
Even if we can see clear improvements on the unsatisfiable instances of the SAT Competition
2018 in Table 2, we still notice a decrease in performance at the level of those of the SAT
Competition 2020. This same observation is made on Table 3 for the solvers MapleLCMDist-
ChronoBT_exT_◦_maxExtVars_K. From Table 3, we can see that the gain in performance for
the solvers MapleLCMDistChronoBT_exT_◦_maxExtVars_K is not as important as that for
Glucose-3.0_exT_◦_maxExtVars_K solvers and even sometimes we observe a decrease in per-
formance. This is justifiable because the base solver MapleLCMDistChronoBT is a highly
optimized and therefore more difficult to improve.

The scatter plots in Fig 3 compare the performance of some of our best integrations with the
base solvers. We see on these plots in general that many instances were solved with run times
almost similar to those of the base solvers. This is noticeable through the presence of several
points near the diagonals. However, with the presence of many points above the diagonals,
we note that the solving times of many instances have been improved. It is also important to
mention that for all these plots, there are many points at the top and right borders indicating the
instances solved by one of the solvers and not by the other.
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Figure 3: Scatter plots comparing some of our best integrations with the base solvers. At the left (resp.
right) we have the comparison using the SC2018 (resp. SC2020) benchmarks

VI CONCLUSION AND FUTURE WORK

We presented in this paper a new integration scheme of the extension rule within CDCL called
extended CDCL (ECDCL) which, unlike the state-of-the-art integrations, uses extensions to
enhance reasoning in solvers. ECDCL also allows to substitute literals in asserting clauses
with extended literals while preserving their asserting nature as well as the asserting levels.
We showed experimentally that the extension rule helps improve the resolution of satisfiable
instances and in some cases unsatisfiable instances as well.

This work opens doors to many other investigations. For instance, an interesting research di-
rection is to determine if our algorithm seen as a proof system is theoretically strictly more
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powerful than general resolution. Additionally, it might be interesting to see whether the proof
system implemented in our algorithm p-simulates ER. Some extensions introduced in the solver
might already exist in the original formula in the form of Boolean functions [18]. So it would be
interesting to detect and use them instead of making new extensions with fresh variables which
unnecessarily increase the formula size.
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