
A Semantic Measure for Outlier Detection in Knowledge Graph

Bara DIOP1, Cheikh Talibouya DIOP1, Lamine DIOP2

1University Gaston Berger of Saint-Louis, Senegal
2University of Tours, France

*E-mail : {diop.bara,cheikh-talibouya.diop}@ugb.edu.sn, lamine.diop@univ-tours.fr

DOI : 10.46298/arima.8679
Submitted on November 5, 2021 - Published on March 20, 2022

Volume : 35 - Year : 2022
Special Issue : Volume 35, Data Intelligibilty, Business Intelligence and Semantic Web

Editors : Ghislain Atemezing, Gaoussou Camara, Bruce Watson

Abstract
Nowadays, there is a growing interest in data mining and information retrieval applications

from Knowledge Graphs (KG). However, the latter (KG) suffers from several data quality prob-
lems such as accuracy, completeness, and different kinds of errors. In DBpedia, there are several
issues related to data quality. Among them, we focus on the following: several entities are in
classes they do not belong to. For instance, the query to get all the entities of the class Person also
returns group entities, whereas these should be in the class Group. We call such entities “outliers.”
The discovery of such outliers is crucial for class learning and understanding. This paper proposes
a new outlier detection method that finds these entities. We define a semantic measure that favors
the real entities of the class (inliers) with positive values while penalizing outliers with negative
values and improving it with the discovery of frequent and rare itemsets. Our measure outperforms
FPOF (Frequent Pattern Outlier Factor) ones. Experiments show the efficiency of our approach.

Keywords
Knowledge graph; Pattern Mining; Itemset; Outlier Detection

I INTRODUCTION

Nowadays, the use of different Knowledge Graphs is becoming more and more important.
Knowledge Graph is defined as follows: “A knowledge graph (i) mainly describes real world
entities and their interrelations, organized in a graph, (ii) defines possible classes and relations
of entities in a schema, (iii) allows for potentially interrelating arbitrary entities with each other
and (iv) covers various topical domains” [19]. Knowledge Graphs are constructed from various
data sources using various ways. For example, DBpedia is built from the free encyclopedia
Wikipedia. In the Semantic Web, the term Knowledge Graph is often used to designate the
Knowledge Graphs of the Semantic Web [20]. In these, Semantic Web principles are used to

African Journal of Research in Computer Science and Applied Mathematics Page 1 of 21

mailto:
https://doi.org/10.46298/arima.8679


represent and publish publicly available data as Linked Open Data. Most Semantic Knowl-
edge Graphs (KG) are defined as classes (types) hierarchy where entities may belong to several
classes. For instance, in figure 2, we can see that entity Bob_Marley belongs to classes Artist,
Person, and Agent. Hence, the type prediction problem can be reformulated as a hierarchical
multi-label classification one [18]. In this context, one solution for entity type prediction is the
local classifier per node approach, which consists of training each node of the class hierarchy
separately and determining the overall type. However, it has been observed that type informa-
tion and, more generally, KG suffer from several issues related to data quality such as accuracy,
like typing error [21], completeness, like schema completeness and property completeness, and
different kinds of errors. In [22], a systematic literature review on Linked Data completeness
and an approach for Linked Data completeness assessment have been proposed. Among them,
we focus on the following: several entities are in classes they do not belong to. For instance,
let us consider the following query (figure 1) to get all the entities of the class Person. It also
returns group entities, whereas these should be in the class Group (see table 1). We call such
entities "outliers." Discovering such outliers is very important for correct class learning and
understanding. Outlier detection methods on semantic web data have been proposed to find
these outliers [24, 26]. These methods use outlier factors based on frequent pattern discovery
methods that have been proposed before [6, 13]. The idea behind this is that transactions that
contain more frequent patterns will have a big value of FPOF measure [6] and are unlikely to be
outliers. In contrast, transactions with small FPOF values are likely to be outliers. Let us con-
sider the following three entities of class Artist: https://dbpedia.org/resource/Masaba_Gupta,
https://dbpedia.org/resource/Bertram_Goodman, and https://dbpedia.org/resource/Mystik. Masaba
Gupta and Bertram Goodman are real artists, while Mystik is an outlier because it is a song.
However, as we will see in example 4, FPOF measure gives a value higher for Mystik than
for Masaba Gupta and Bertram Goodman. FPOF does not consider semantics aspects of the
entities, but these are very important in KG and specifically in DBpedia. The KG data is based
on a well-designed schema which is the ontology. The application of the FPOF measure on
semantic web data while completely ignoring the semantics behind the ontology has further
motivated our work. In a knowledge graph, ontology plays a very important role. It is a ref-
erence schema for organizing data while defining the concepts and relationships between these
concepts. Among its components, we have the classes, the attributes or properties, the relations,
etc. The role of the ontology here is to provide the semantics behind the properties describing
the entities. We propose a semantic measure based on properties (domain and range properties).

1 SELECT distinct ?entity
2 WHERE {
3 ?entity a dbo:Person.
4 }

Figure 1: Query to get all the entities of the class Person.

African Journal of Research in Computer Science and Applied Mathematics Page 2 of 21

https://dbpedia.org/resource/Masaba_Gupta
https://dbpedia.org/resource/Bertram_Goodman
https://dbpedia.org/resource/Mystik


Entities Person Group
http://dbpedia.org/resource/Les_Twins No Yes

https://dbpedia.org/resource/Nelson_Mandela Yes No
https://dbpedia.org/resource/Barack_Obama Yes No

... ... ...

Table 1: Some entities of the result of the query of Figure 1.

The main contributions of our paper are as follows :
• We define a semantic measure that favors the real entities of the class (inliers) with pos-

itive values while penalizing outliers with negative values and improving it with the dis-
covery of frequent and rare itemsets.

• We propose a generic algorithm for outlier detection based on the semantic measure in a
knowledge graph. This algorithm can be used for frequent or rare patterns.

• We present a set of experiments on DBpedia classes showing that our method outperforms
FPOF like ones.

The rest of the paper is organized as follows. Section II discusses related work. In section III,
we propose the basic definitions and problem reformulation. Section IV proposes our measure
and presents a generic algorithm for outlier detection in a knowledge graph while presenting a
theoretical analysis. Section V presents the results of our experiments, and section VI concludes
the paper.

Thing

Activity

Game Sales

Agent

Person

Athlete Artist

Bob_Marley

Figure 2: A sub-part of the DBpedia hierarchy

II RELATED WORK

In this section, we will present the different dimensions of linked data quality and the outlier
detection methods.

African Journal of Research in Computer Science and Applied Mathematics Page 3 of 21



Linked Data quality. [25] cites three approaches that are used to construct a Knowledge
Graph namely manual approaches, like Freebase [10] and Cyc [8], cooperative approaches,
like DBpedia [17], and Yago [11] and automatic approaches, like NELL [14]. The manual ap-
proaches denote that the construction of the Knowledge Graph is done completely by a human,
the automatic ones indicate that supervised or unsupervised learning techniques have been used
and the cooperative ones indicate that most of the tasks are done by a human [25]. For the
data quality of the Knowledge Graph, manual approaches tend to be more accurate compared to
other approaches [21]. With the extensive growth of data and the many domains they covered it
is impossible to build or maintain a knowledge graph by manual methods, automatic methods
seem more suitable although they are more likely to contain several errors. For example on
DBpedia several types of errors such as typing errors, incorrect numerical data, etc. have been
noted. In [1] the dimensions of data quality were classified into four categories:

• Intrinsic Category which allows to assess the validity and consistent of the data. In this
category, we have Accuracy, Consistency and Trustworthiness.

• Contextual category : “highlights the requirement that data quality must be considered
within the context of the task at hand" [1]. In this category we have Relevancy, Com-
pleteness, and Timeliness

• Representational Category : "A concept that data quality is related to the “format of the
data (concise and consistent representation) and meaning of data (interpretability and ease
of understanding)” [1].

• Accessibility Category : "Accessibility dimensions are about how easily accessible and
secure data is, such as availability and security." [22]

One of the solutions to the problem of data quality in KG is the language SHACL (Shapes
Constraint Language)1. SHACL is a W3C Recommendation that defines a language for validat-
ing RDF graphs against a set of conditions. For its use, a good understanding of the ontology is
necessary to define these conditions. Another problem is the scalability since each KG has its
ontology.

It is almost impossible to define a generic approach to assessing data quality across all di-
mensions, and one dataset may be suitable for one purpose but not for another [22]. Depending
on the application, it is imperative to address particular data quality issues. For class learning
and understanding, the problem we face is misclassified entities (Accuracy dimension). It is
very important to have suitable parameters to find misclassified entities in a given class.

Outlier detection. One solution for solving this problem of misclassified entities is outlier
detection. Outlier detection has been the topic of several surveys and reviews. In these sur-
veys, different classifications methodologies are presented. More cited categories are the fol-
lowing: Nearest Neighbour Based Outlier Detection techniques, Distance-Based Techniques,
Density-Based Techniques, Cluster-Based Techniques, Statistical Approach Based Techniques.
Distance-Based [2] and Nearest Neighbour Based Techniques [5] rely on the notion of distance.
A distance-based outlier in a dataset D is a data object with a given percentage of the objects
in D having a distance of more than dmin away from it [13]. Nearest Neighbour based out-
lier detection techniques require a distance or similarity measure between two data points. If
a point x has a short distance to its k neighbors, it is considered as normal otherwise it is con-
sidered as outlier. Density-based techniques measure density of a point x within a small region
by counting number of points within a neighborhood region. Breunig et al. [3] introduced the
concept of Local Outlier Factor (LOF), a score which is assigned to every point based on its

1https://www.w3.org/TR/shacl/

African Journal of Research in Computer Science and Applied Mathematics Page 4 of 21

https://www.w3.org/TR/shacl/


local density. All data points are sorted in decreasing order of LOF value. Points with high
scores are detected as outliers. In Cluster-Based Outlier detection techniques, a cluster repre-
sents a collection of data objects similar to one another within the same cluster and dissimilar
to the objects in other clusters. Inliers correspond to data in a cluster while outliers do not be-
long to any cluster. Statistical approach based technique assumes a distribution or probability
model for the given data and then identifies outliers with respect to the model using a discor-
dancy test [7]. Many of these techniques suffer from high dimensional space curse and high
computational cost [16]. More recently, a new trend has appeared, using frequent pattern tech-
nique. Several measures were consequently proposed. FPOF (Frequent Pattern Outlier Factor)
has been presented by [6]. The idea behind this measure is that transactions that contain more
frequent patterns will have a big value of FPOF measure and are unlikely to be outliers. In
contrast, transactions with small FPOF values are likely to be outliers. [13] proposed another
measure WCFPOF (Weighted Closed Frequent Pattern Outlier Factor) in order to overcome the
drawbacks of FPOF. According to this measure, transactions that contain more closed frequent
patterns are more likely to be inliers and those that contain less closed frequent patterns are
likely to be outliers. Another approach for overcoming the drawbacks of FPOF measurement
was formulated by [15]. According to this one, transactions that contain longer frequent pattern
(i.e. longer superset) are more likely to be inliers because they contain more subset frequent
patterns, while transactions that contain short frequent patterns are likely to be outliers. By ap-
proximating the Frequent Pattern Outlier Factor (FPOF) with sampled patterns, [26] proposes
a method for detecting misclassified entities. The observation is the same for these measures:
they do not consider semantics.

III PRELIMINARIES AND PROBLEM REFORMULATION

Knowledge graph. A knowledge graph is an RDF dataset described by a set of triples
(subject, predicate, object). It can be represented as a tuple K = (T ,A) where T is called a
Tbox formed by names and assertions about concepts (or classes) and roles (or predicates),
and A is called an ABox formed by assertions about individuals called entities and facts.
This paper focuses on DBpedia[12] TBox and its entities. For example, (dbo :Artist, rdfs :
subClassOf, dbo :Person) is an assertion in DBpedia TBox which means that the concept
Artist is a subclass of the concept Person (or Person is a superclass of Artist). In other
words, all artists are also persons. For example, (Bob_Marley, rdf :type, dbo:Artist) means
that Bob_Marley is an artist, then an entity of the class Artist. The triple (Bob_Marley,
spouse, Rita_Marley) is an assertion in DBpedia ABox which means that Bob_Marley has
spouse Rita_Marley. Given a class C ∈ T and an entity e ∈ A, (e, rdf : type, C) im-
plies that e is an instance of C. To better formalize and define all these notions and the oth-
ers we need to formulate our problem, we use the Description Logics (DL) [9] formal nota-
tions. In that case, the assertion (dbo:Artist, rdfs:subClassOf, dbo:Person) is denoted by
dbo :Artist ⊑ dbo :Person which means that dbo:Artist is subsumed by dbo:Person. dbo:
Artist(Bop_Marley) denotes that Bop_Marley is an instance (or entity) of the class Artist.
The relation spouse(Bob_Marley, Rita_Marley) materializes that the predicate spouse links
the subject Bob_Marley to the object Rita_Marley. We distinguish two types of predicates
from these examples: outgoing and incoming. If we have the triple (X,P, Y ), then we say that
P is an outgoing predicate for X and an incoming predicate for Y whatever the type of X and
Y . Then, there is a case where an outgoing predicate P is specific to subjects that instantiate
a class C. In that case, we say that C is the domain of P , denoted by ∃P.⊤ ⊑ C. Another
case is when an incoming predicate is specific to objects of a class C. Here, we say that C is

African Journal of Research in Computer Science and Applied Mathematics Page 5 of 21



the range of the predicate P , denoted by ⊤ ⊑ ∀P.C. The disjointness of two classes C1 and
C2 is denoted by C1 ⊑⌝C2. For example, according to the ontology of DBpedia, it should not
have entities belonging to both the class Person and the class Organization, then we have
Person ⊑⌝Organization. There are several types of knowledge graphs, but for this work, we
are interested in these where ABox and TBox are available and accessible by SPARQL queries
like DBpedia.

In the following, we show the transformation from RDF data to the transactional database
as done in [26].

Transactional database. Now, we will show how to represent a transaction from the predi-
cates that describe an entity. Since we are interested in predicates having domains, we consider
the transactional database defined on the set of items I = {P : (∃C ∈ T )(∃P.⊤ ⊑ C)}. An
itemset (or pattern), denoted by φ, is a non empty subset of I. Formally, we have φ ⊆ I. The set
of all patterns that can be generated from I is called the pattern language L = 2I \∅. In this pa-
per, a transaction is a couple (e, Ie) ∈ A×L where Ie is the set of all predicates describing the
entity e that appears in I. Formally, we have Ie = {P ∈ I : (∃C ∈ T )(C(e))(∃P.⊤ ⊑ C)}. In
the following, we denote such transaction as Ie. So in our context, a transactional database DC

is a multi-set of transactions defined in I where all items (predicates) of I describes an entity
of class C. It means that we are making a restriction in class C in which we look for whether
it contains outliers or not. For example, to find outliers in the class Artist, we only consider
entities that instantiate Artist.

Example 1:
For instance, DArtist in Table 2 is a toy dataset of 20 transactions from the class Artist
of DBpedia2(entities are prefixed by dbr(http://dbpedia.org/resource/) and predicates by
dbo(http://dbpedia.org/ontology/)). For instance, to obtain the transaction IBob_Marley, we run
the following SPARQL query on the Dbpedia endpoint (https://dbpedia.org/sparql/):

1 SELECT DISTINCT ?P WHERE {
2 <http://dbpedia.org/resource/Bob_Marley> ?P ?object.
3 ?P rdfs:domain ?C.
4 }

DArtist is built from the set of 38 items I = {deathPlace, deathDate, birthPlace,
birthDate, deathCause, partner, relative, child, parent, spouse, birthYear, deathYear, birth-
Name, nationality, field, training, residence, restingPlacePosition, restingPlace, cinematogra-
phy, director, producer, starring, writer, runtime, Work/runtime, artist, endingTheme, network,
openingTheme, previousWork, starring, subsequentWork, completionDate, numberOfEpisodes,
bandMember, formerBandMember, hometown}. Table 3 gives the domain and the range (if it
exists) of the set of items (predicates) in I.

The transaction IBob_Marley = {deathPlace, deathDate, birthPlace, birthDate, deathCause,
partner, relative, child, parent, spouse, birthYear, deathYear} contains 12 items. so, there are
212 − 1 patterns that appear in L(DArtist). For example, φ = {spouse, birthY ear} is one
among them. This pattern also belongs to the transaction IHank_Williams.

2Access in 18/10/2021

African Journal of Research in Computer Science and Applied Mathematics Page 6 of 21



Table 2: DArtist : an example of a transactional database from the class Artist of DBpedia

entity Itemset (set of predicates)
Bob_Marley {deathPlace, deathDate, birthPlace, birthDate, deathCause, partner, relative,

child, parent, spouse, birthYear, deathYear}
Omar_Kiam {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality}
Bertram_Goodman {field, training}
Giuliana_Camerino {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality}
Twice_as_Nice {cinematography, director, producer, starring, writer, runtime, Work/runtime}
Robin_Harris {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality}
Brett_Newski {birthDate, hometown}
LaWanda_Page {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality}
Frank_Suero {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality}
Josephus_Thimister {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality}
Sid_James {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality}
Masaba_Gupta {residence, spouse}
Hank_Williams {deathPlace, deathDate, birthPlace, birthDate, restingPlacePosition, death-

Cause, relative, restingPlace, spouse, birthName, birthYear, deathYear}
Children_of_Eve {cinematography, director, producer, writer, runtime, Work/runtime}
Greg_Giraldo {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality}
Mystik {artist, previousWork, producer, writer, runtime, Work/runtime}
Jerry_Clower {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality}
Mackenzie_Taylor {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality}
The_Lead {endingTheme, network, openingTheme, previousWork, starring, subsequent-

Work, completionDate, numberOfEpisodes, runtime, Work/runtime}
7icons {bandMember, formerBandMember, hometown}

Table 3: Domain and range (optional) of the predicates of our dataset DArtist (EduIns: EducationalInsti-
tution, TShow: TelevisionShow, Bcaster: Broadcaster, nonNegInt: nonNegativeInteger)

P dom(P ) range(P )
deathPlace Person Place
deathDate Person date
birthPlace Person Place
birthDate Person date
deathCause Person
partner Person Person
relative Person Person
child Person Person
parent Person Person
spouse Person Person

P dom(P ) range(P )
birthYear Person gYear
deathYear Person gYear
birthName Person langString
nationality Person Country
field Artist
training Artist EducationalInstitution
residence Person Place
restingPlacePosition Person SpatialThing
restingPlace Person Place
cinematography Film Person

P dom(P ) range(P )
director Film Person
producer Work Agent
starring Work Actor
writer Work Person
runtime Work double
Work/runtime Work minute
artist MusicalWork Agent
endingTheme TShow Work
network Bcaster Bcaster

P dom(P ) range(P )
openingTheme TelevisionShow Work
previousWork Work Work
subsequentWork Work Work
completionDate Work date
numberOfEpisodes TShow nonNegInt
bandMember Band Person
formerBandMember Band Person
hometown Agent Settlement

African Journal of Research in Computer Science and Applied Mathematics Page 7 of 21



We already remarked that, semantically, some of these entities such as Twice_as_Nice,
Children_of_Eve, Mystik, and The_Lead, are not artists, and yet they are instantiated in the
Artist class. We call them outliers while the others are well instantiated in Artist; they are
inliers.

Definition 1: Outlier, Inlier
Given two disjoint classes C and C ′ (C ⊑⌝C ′) and an entity e. If e is instantiated in C but really
defined as an entity of C ′, then e is an outlier. However, if really e is an instance of C, then it is
called an inlier.

Definition 2: Frequency of a pattern
Given a transactional database DC = {(e1, Ie1), · · · , (en, Ien)} of a class C and a pattern
φ ∈ L(DC). The frequency of φ is the number of transactions of D containing φ. Formally,

freq(φ,DC) = |{(ei, Iei) ∈ DC : φ ⊆ Iei}|.

Example 2:
The frequency of φ = {spouse, birthY ear} in DArtist is 2 because only IBob_Marley

and IHank_Williams contain φ. The frequency of φ1 = {spouse} is freq(φ1,DArtist) =
|{Masaba_Gupta,Bob_Marley,Hank_Williams}| = 3.

According to the frequency, one can judge a pattern as frequent or rare (not frequent) in a
dataset.

Definition 3: Frequent and Rare pattern
Let us consider a datasetDC of class C, a minimum support threshold α ∈ [0, 1], and φ a pattern
of L(DC). We say that :

• φ is frequent in DC if and only if freq(φ,DC) ≥ α× |DC |.
• φ is rare in DC if and only if 0 < freq(φ,DC) < α× |DC |.

Example 3:
If we consider a minimum threshold α = 4/20, then φ = {spouse, birthY ear} is a rare pattern
in DArtist because freq(φ,DArtist) =

2
20

< 4
20

but the pattern φ′ = {birthDate, birthName}
is frequent in DArtist because freq(φ,DArtist) =

11
20

> 4
20

.

In this paper, we focus on two interestingness measures frequency and rare. So, given
an interestingness measure m it is possible to extract a set of interesting patterns. We denote
by q(·), such that q(·) ∈ {true, false}, the constraint that a pattern of DC should respect
according to the interestingness measure m. Therefore, on the one hand, the set of all frequent
patterns given a minimum threshold α can be formulated by Pset(DC , freqα) = {φ ∈ L(DC) :
q(freq(φ,DC) ≥ α) = true}. On the other hand, the set of all rare patterns given a minimum
threshold α can be formulated by Pset(DC , rareα) = {φ ∈ L(DC) : q(0 < freq(φ,DC) <
α× |DC |) = true}.

Now we present FPOF in the knowledge graph as done in [26] to detect outliers.

African Journal of Research in Computer Science and Applied Mathematics Page 8 of 21



FPOF : Frequent Pattern Based Outlier Factor. As it was introduced in Section II, FPOF
is based on frequent patterns. The main idea behind this approach for transactional databases
is that inliers will contain most of the frequent patterns while most of the patterns that outliers
contain will have a low frequency. So, they formulate the following metric.

Definition 4:
Given a transactional databaseDC = {(e1, Ie1), ..., (en, Ien)} and a minimum frequency thresh-
old α > 0, the frequent pattern outlier factor of the transaction (e, Ie) denoted by fpof(e,DC)
is defined as follows:

fpof(e,DC) =
1

|Pset(DC , freqα)|
×

∑
φ∈Pset(DC ,freqα)∧φ⊆Ie

freq(φ,DC)

|DC |

Example 4:
Let us consider the database DArtist shown in Table 2. Each entity is described by a set of prop-
erties. For example, the entity Sid_James is described by the properties birthDate, birthName,
deathDate, birthPlace, and nationality. Considering the minsup 0.2 (4/20), the fpof values are
calculated in Table 4 (column 3).

Table 4: DArtist : an example of transactional database of the class Artist of DBpedia with fpof values

Artist Properties FPOF
Sid_James {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality} 0,5129
Mackenzie_Taylor {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality} 0,5129
Giuliana_Camerino {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality} 0,5129
Jerry_Clower {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality} 0,5129
Robin_Harris {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality} 0,5129
Greg_Giraldo {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality} 0,5129
LaWanda_Page {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality} 0,5129
Frank_Suero birthDate, birthName, birthPlace, deathDate, deathPlace, nationality} 0,5129
Josephus_Thimister {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality} 0,5129
Omar_Kiam {birthDate, birthName, birthPlace, deathDate, deathPlace, nationality} 0,5129
Hank_Williams {deathPlace, deathDate, birthPlace, birthDate, restingPlacePosition,

deathCause, relative, restingPlace, spouse, birthName, birthYear,
deathYear}

0,2704

Bob_Marley {deathPlace, deathDate, birthPlace, birthDate, deathCause, partner,
relative, child, parent, spouse, birthYear, deathYear}

0,1371

Brett_Newski {birthDate, hometown} 0,0098
Children_of_Eve {cinematography, director, producer, writer, runtime, Work/runtime} 0,0090
Mystik {artist, previousWork, producer, writer, runtime, Work/runtime} 0,0091
Twice_as_Nice {cinematography, director, producer, starring, writer, runtime,

Work/runtime}
0,0091

The_Lead {endingTheme, network, openingTheme, previousWork, starring,
subsequentWork, completionDate, numberOfEpisodes, runtime,
Work/runtime}

0,0091

Masaba_Gupta {residence, spouse} 0
Bertram_Goodman {field, training} 0
7icons {bandMember, formerBandMember, hometown} 0

African Journal of Research in Computer Science and Applied Mathematics Page 9 of 21



Based on the frequency of the itemsets, the FPOF measure gives a higher score to the
entity Mystik (which is an outlier) than to entities Masaba_Gupta and Bertram_Goodman
(which are inliers). The FPOF measure is based only on the frequency of items that describe
transactions while ignoring the semantics.

In knowledge graphs, the frequency of items only does not allow to find the outliers of a
set because semantics are decisive for entity definition. For example, birthName is a predicate
that defines a person, which is less frequent than the predicate abstract, which is generally used
by the entities of all classes.

The problem that we want to solve in this paper can be formulated as follows:

Given a class C of knowledge graph K = (T ,A), letDC be its transactional database,
and Pset(DC ,mα) a set of interesting patterns built with an interestingness measure m,

Q1: which metric can be used to favor the inliers and penalize the outliers?

Q2: how to benefit from the semantic of the TBox T to improve the metrics?

Table 5: Notations

Symbol Definition
e An entity
I The set of items of the database
Ie All the items of the entity e
φ A pattern of items (a non empty subset of I )
A The ABox
T The TBox
K The Knowledge Graph
C A class
DC A transactional database from the class C
m An interestingness measure
α A minimum frequency threshold
Pset(DC ,mα) The set of all frequent (rare) patterns given a minimum threshold α
k The number of super-classes
C The set of concepts
C≤k(C) The set of concepts containing C, its super-classes at a level at most

equal to k and its sub-classes.
SCℓ The set of super-classes
SCℓ≤k(C) The set of super-classes of C which are located at a level less than or

equal to k with respect to C.
setOut The set of outliers
setIn The set of inliers

IV ONTOLOGY AND PATTERN-BASED OUTLIER DETECTION IN KNOWLEDGE
GRAPH

This section shows how to take advantage of semantic relationships that arise in ontology to
improve the mined pattern according to a measure of interest. However, let us introduce the
idea behind the rare patterns for detecting outliers.

In a similar way to the FPOF metric, the rare patterns can be used to detect outliers from
the transactional database. A naive method is to sum, for any transaction, the frequency of the

African Journal of Research in Computer Science and Applied Mathematics Page 10 of 21



rare patterns it contains. In that case, the outliers will have high scores while the inliers will
have low scores. But, the main problem with this basis metric follows from the fact that many
inliers will have null scores. This is why in this paper, we will introduce semantics on metrics,
particularly on items forming patterns that are nothing other than properties that appear in the
ontology. It is important to note that all the properties that we use to make up the patterns have
domains, and some of them also have ranges. In the rest of this paper, the metrics as well as the
algorithm that we are going to introduce are valid for both rare and frequent patterns.

Intuition behind this method. Our approach is based on the fact that a property P with
domain C must necessarily be an outgoing property of an entity of the class C when it is used.
It is very important to note that P can also be an outgoing property of any entity of a subclass
of C (C ′ ⊑ C) or of a super-class of C located at a certain level k ≥ 0. We say that a super-
class C ′ of the class C is at level k with refer to C if there are k − 1 classes {C1, ..., Ck−1},
with Ci ̸= Cj for all i ̸= j, in T such that C ⊑ C1 ⊑ ... ⊑ Ck−1 ⊑ C ′. Indeed, the
fact of favoring all the super-classes of C will distort the calculations because there will be
outliers who will benefit from it. For example, Artist and Athlete are two classes in the same
level that have super-classes Person (of level k = 1), Agent (of level k = 2) and Thing (of
level k = 3). When searching for outliers in Artist, it is not interesting to consider properties
that have Thing as its domain, because the latter is the parent class of all classes in DBpedia.
However, properties that have Agent as their domain are only interesting if the outliers are in
a twin class C ′ (Activity for instance) or one of sub-classes of C ′ (Game, Sales, ...). The same
is true for properties that have Person as their domain, if some outliers really belong in class
Organization, then they are useful for detecting outliers. If, on the other hand, the real class of
the outliers is Athlete, then the properties having Person as their domain are not interesting to
detect the outliers. So, the properties which can allow us to verify if an entity is an outlier or
not, are not obvious. It is why retrieving these properties is a real problem of efficiency for our
method because we do not know apriori at what level k ≥ 0 we must stop to detect outliers since
we ignore their real classes. To solve this problem, we propose to vary the value of k to find
the most relevant properties to detect outliers. In practice, the value of k is small. Therefore,
we denote by SCℓ≤k(C) = {C ′ ∈ T : (∃i, 1 ≤ i ≤ k)(Ci ∈ T )(C ⊑ C ′ ⊑ Ci)} the set of
super-classes of C which are located at a level less than or equal to k with respect to C. So,
SCℓ≤∞(C) = {C ′ ∈ T : C ⊑ C ′}.

Let us denote by C≤k(C) the set of concepts containing C, its super-classes at a level at
most equal to k and its sub-classes: C≤k(C) = {C} ∪ {C ′ ∈ T : C ′ ⊑ C} ∪ {C ′ : C ′ ∈
SCℓ≤k(C)}. The semantic judgment we have on a property P that appears in a pattern φ can
be formulated as follows:

• (a) If a property P is interesting enough to well describe an inlier e of a class C in a
certain level k then it must necessarily have a domain which is part of C≤k(C). The set
of predicates in the pattern φ that meet this intuition is defined by {P ∈ φ : (∃C ′ ∈
C≤k(C))(∃P.⊤ ⊑ C ′)}.

• (b) An entity found in class C which has an outgoing property P whose domain does not
belong to C≤∞(C) is likely to be poorly described, and looks like an outlier if most of the
properties it contains have this tendency. The set of predicates in the pattern φ that meet
this intuition is defined by {P ∈ φ : (∄C ′ ∈ C≤∞(C))(∃P.⊤ ⊑ C ′)}.

• (c) If a property P that matches the intuition in (a) additionally has a range that is in
C≤k(C), then it is determinant for class C. The set of predicates in the pattern φ that meet
this intuition is defined by {P ∈ φ : (∃C ′ ∈ C≤k(C))(∃P.⊤ ⊑ C ′)(∃C ′′ ∈ C≤k(C))(⊤ ⊑
P.C ′′)}.

African Journal of Research in Computer Science and Applied Mathematics Page 11 of 21



• (d) If a property P that matches the intuition in (b) additionally has a range that is part
of C≤k(C), then the use of P is ambiguous. The set of predicates in the pattern φ that
meet this intuition is defined by {P ∈ φ : (∄C ′ ∈ C≤∞(C))(∃P.⊤ ⊑ C ′)(∃C ′′ ∈
C≤k(C))(⊤ ⊑ ∀P.C ′′)}.

Based on these intuitions, we can now define our algorithm which combines the mined
patterns and the semantic relationships from ontology to detect outliers.

A generic algorithm for outlier detection in knowledge graph. We propose an algorithm
based on the four intuitions presented in the previous section. To be in agreement with these
intuitions, we say that a predicate that verifies intuition (a) brings a bonus of 1 to the score of
the entity that it describes while that which verifies (b) brings a penalty of 1 to the entity’s score.
On the other hand, a predicate that verifies intuition (c) brings a bonus of 2 (bonus of 1 for the
domain and of 1 for the range) while a predicate that verifies intuition (d) brings a penalty of
2 for the entity it describes (penalty of 1 for the domain and 1 for the range). Thereby, given a
pattern we introduce the notion of reliability, a metric to compute the total score a pattern brings
to an entity for a given class.

Definition 5: Reliability
Let e be an entity of a class C described by a certain predicates that belong to I, a pattern φ ⊆ I
and k a positive integer. The reliability of the pattern φ to the entity e with respect to the class
C is defined as follows:

reliability(φ, e, C, k) =



0 if φ ̸⊆ Ie

|{P ∈ φ : (∃C ′ ∈ C≤k(C))(∃P.⊤ ⊑ C ′)}|
+|{P ∈ φ : (∃C ′ ∈ C≤k(C))(∃P.⊤ ⊑ C ′)(⊤ ⊑ P.C ′)}|
−|{P ∈ φ : (∄C ′ ∈ C≤∞(C))(∃P.⊤ ⊑ C ′)}|
−|{P ∈ φ : (∄C ′ ∈ C≤∞(C))(∃P.⊤ ⊑ C ′)

(∃C ′′ ∈ C≤k(C))(⊤ ⊑ ∀P.C ′′)}| otherwise

(1)

It is clear that the reliability of a pattern is the sum of the contribution of all the predicates
it contains. Now, we can present the algorithm exploring this metric to capture the outliers that
disturb the veracity of all the instances in a given class. Let us recall that the goal of this paper
is not to find frequent or rare patterns, we just reuse the existing methods.

Example 5:
Let us consider this two patterns φ1 = {birthDate, birthName} and φ2 =
{bandMember, hometown}. We are now going to compute the reliability of the transactions
(Robin_Harris, IRobin_Harris) and (7icons, I7icons) with refer to the class Artist and with dif-
ferent values of k. We have :
reliability(φ1, Robin_Harris, Artist, 0) = 0 because none of the properties in φ1 has
a domain that belongs in C≤0(Artist) = {Artist} but in C≤∞(Artist). These pred-
icates are neutral since they have a domain that is a superclass of Artist. However,
reliability(φ1, Robin_Harris, Artist, 1) = (+1) + (+1) = +2 because birthDate and
birthName have a domain that belongs in C≤1(Artist) = {Artist, Person} then (+1).
reliability(φ2, 7icons, Artist, 0) = −1 because, in one hand, the domain of the property
bandMember doesn’t belong in C≤∞(Artist) while its range doesn’t belong in C≤0(Artist).
In other hand, the domain of the property hometown belongs in the set C≤∞(Artist) but not in

African Journal of Research in Computer Science and Applied Mathematics Page 12 of 21



C≤0(Artist). Let us now compute reliability(φ2, 7icons, Artist, 1). We know that the range
of bandMember belongs in C≤1(Artist) while its domain doesn’t belong in C≤∞(Artist). So,
this property gives a score of ((-1)+(-1)) to the entity 7icons. The property hometown gives the
same score like in k = 0. So, we have reliability(φ2, 7icons, Artist, 1) = (−1)+(−1) = −2.

Algorithm 1 ONTOPOD (Ontology and Pattern-based Outlier Detection)

Input: A set of patterns Pset(DC ,mα) obtained from the transactional database DC of
a class C of a knowledge graph K = (T ,A) and an interestingness measure mα with
α ∈ [0, 1] and a positive integer k
Output: A set of entities weigted by their scores setOut (for outliers ) and setIn (for
inliers) obtained from DC

1: setOut← ∅ ▷ The set of outliers
2: setIn← ∅ ▷ The set of inliers
3: for (e, Ie) ∈ DC do
4: score(e, C, k)← reliability(Ie, e, C, k)+

∑
φ∈Pset(DC ,mα)∧φ⊂Ie reliability(φ, e, C, k)

5: if score(e, C, k) < 0 then
6: setOut← setOut ∪ {(e, score(e, C, k))}
7: else
8: setIn← setIn ∪ {(e, score(e, C, k))}
9: return setOut

Algorithm 1, named ONTOPOD, computes and returns a set of entities likely to be outliers.
It takes as input the transactional database obtained from the entities of a class C of a given
knowledge graph K = (T ,A), an interestingness measure mα, with α the minimum threshold,
and a positive integer k for the maximum level of superclasses to be considered for C. In the
end, it returns all the entities that have a negative score, and therefore likely to be outliers. Then,
it computes the score of each entity e according to its transaction Ie and the extracted patterns
Pset(DC ,mα) if it is not empty (line 4). Finally, all the entities having a negative score are
retrieved and stored in the setOut variable (line 6) which is finally returned at output (line 9).
Interestingly, it is also possible to easily flip inliers (those with positive scores) in the setIn
variable (line 8). We maintain the idea that the method fails to judge entities that have a score
equal to zero (0). We specifically use three variants of ONTOPOD. The first is ONTOPOD−No
which means that Pset(DC ,mα) is empty. The second is ONTOPOD − Freq that corresponds
to the case where the interestingness measure is the frequency, Pset(DC , freqα). The last is
ONTOPOD −Rare which means that the rare patterns are used Pset(DC , rareα).

Example 6:
Table 6 gives the scores of ONTOPOD applied in the dataset of Table 7 that corresponds to the
Artist class by promoting the super-class at level 1 (Person) (mα = no means that there is no
interestingness measure that has been provided). As we can see it, our method manages to find
outliers that the FPOF method failed to judge (Masaba_Gupta, Bertram_Goodman, 7icons). It
is also important to note that without an interestingness measure, certain entities risk to have
a score equal to zero (Brett_Newski), hence the interest in finding frequent or rare patterns for
deciding. Moreover, with frequent patterns, ONTOPOD finds all the outliers while with rare
patterns, it adds an inlier (Brett_Newski) to the outliers.

Theoretical analysis of Algorithm 1. In this section, we give the theoretical analysis of
our algorithm ONTOPOD. As we said earlier, we do not consider the complexity of pattern

African Journal of Research in Computer Science and Applied Mathematics Page 13 of 21



Table 6: DArtist : an example of transactional database from the Artist class of DBpedia with fpof and
ONTOPOD values

ONTOPOD with Pset(DArtist,mα) and k = 1
Artist FPOF mα = no mα = freq0.2 mα = rare0.2

Sid_James 0,5129 6 198 6
Mackenzie_Taylor 0,5129 6 198 6
Giuliana_Camerino 0,5129 6 198 6
Jerry_Clower 0,5129 6 198 6
Robin_Harris 0,5129 6 198 6
Greg_Giraldo 0,5129 6 198 6
LaWanda_Page 0,5129 6 198 6
Frank_Suero 0,5129 6 198 6
Josephus_Thimister 0,5129 6 198 6
Omar_Kiam 0,5129 6 198 6
Hank_Williams 0,2704 14 94 28606
Bob_Marley 0,1371 17 49 34801
Brett_Newski 0,0098 1 2 2
Children_of_Eve 0,0090 -9 -13 -293
Mystik 0,0091 -7 -11 -227
Twice_as_Nice 0,0091 -11 -15 -711
The_Lead 0,0091 -11 -15 -5639
Masaba_Gupta 0 3 3 9
Bertram_Goodman 0 2 2 6
7icons 0 -4 -4 -20

mining, which depends on the used pattern mining algorithm. However, the complexity of
our method also depends on the size of the set of mined patterns. Generally, to compute the
score of an transaction (e, Ie), we first compute the reliability of the itemset Ie with refer to
the corresponding entity e in O(|I|). Then, we compute the reliability of each pattern φ in
Pset(DC ,mα) to a transaction (e, Ie) with a complexity in O(|I| × |Pset(DC ,mα)|). Thereby,
the complexity of ONTOPOD is in O(|I| × |DC |) +O(|I| × |DC | × |Pset(DC ,mα)|). So, the
complexity of ONTOPOD is generally in O(|I| × |DC | × (1 + |Pset(DC ,mα)|)).

In the case of ONTOPOD−No, where the set of patterns Pset(DC ,mα) is empty, the
complexity is only in O(|I| × |DC |).

V EXPERIMENTS

We will show in this section the effectiveness of our method by presenting the dataset used and
the different measures to evaluate our measure.

Datasets. We use two DBpedia datasets for our experiments: online and benchmark datasets
[23]. The benchmark dataset lacks information on the properties of the entities, which is why
we use the online dataset.

DBpedia Online: DBpedia Online is a set of human-understandable online RDF schema
descriptions accessible to applications. The data is organized in a hierarchical structure. In
this dataset, we will extract, for a class C, its entities (name, properties, domain, and range of
properties), its super-classes, and sub-classes. As already stated these classes contain outliers.
We will use the benchmark dataset to test the performance of our methods.

African Journal of Research in Computer Science and Applied Mathematics Page 14 of 21



Benchmark dataset: This benchmark dataset is a reference database containing 342,781
data instances that can be used for hierarchical classification tasks. It has 3 levels l1, l2, l3,
with respectively 9, 70, and 219 classes. We will focus on some classes of level 2. This dataset
contains the real classes of the entities but does not cover the data of the online database.

Extracting information from DBpedia online. We have chosen to work with some DBpedia
classes. These are the classes «Animal,» «Artist,» «Athlete,» «Company,» «EducationalInsti-
tution,» «Group,» «Politician,» and «NaturalPlace.» We first choose a class C of these classes
for the online extraction and then use SPARQL queries to extract its entities, super-classes, and
sub-classes. The entities of the sub-classes of C are also part of the entities of C. The properties
of each entity and the domains and ranges are also extracted. For instance, for the Artist class,
the following SPARQL queries were executed:

1 SELECT distinct ?e ?P ?domain ?range
2 WHERE {
3 ?e a dbo:Artist.
4 ?e ?P ?objet.
5 ?P rdfs:domain ?domain.
6 OPTIONAL { ?P rdfs:range ?range }
7 }

1 SELECT distinct ?C
2 WHERE {
3 dbo:Artist rdfs:subClassOf* ?C.
4 }

1 SELECT distinct ?C
2 WHERE {
3 ?C rdfs:subClassOf+ dbo:Artist.
4 }

After the extraction of the online information, for a class C, we keep only the resources
having at least two properties that are in the gold standard since it is these resources whose real
class is known.

In Table 7, we give the number of entities, the number of outliers, and the number of inliers
in each class. A set of properties describes each entity.

African Journal of Research in Computer Science and Applied Mathematics Page 15 of 21



Table 7: Number of outlier and inlier entities in classes

D |Entities| |Outliers| |Inliers|
Animal 1991 20 1971
Artist 2484 96 2388
Athlete 3040 16 3024
Company 7848 1013 6835
EducationalInstitution 3477 15 3462
Group 1519 386 1133
Politician 6920 210 6710
NaturalP lace 8195 12 8183

Frequent and rare patterns extraction and Evaluation metrics. To detect frequent and
rare patterns, we used the fpgrowth [4] algorithm to find all supports of the patterns in the
database. Then we separated the database into frequent and rare patterns using the average
support as a separation threshold.

For the evaluation of the methods, we used three metrics: the inliers rate IR, the outliers
rate OR and the harmonic mean of the IR and the OR called F-score. For each method B, we
calculate IR(B), OR(B) and F-score(B).

IR(B) =
niB
niT

OR(B) =
noB
noT

F−socre = 2∗ IR ∗OR

IR +OR

Where niB is the number of inliers found by the method B, and niT is the total number of
inliers in the database, and noB is the number of outliers found by the method B and noT is the
total number of outliers in the database.

There are two sets of experiments conducted in each class to evaluate the performance of
the methods. The first one is the variation of the f-score of the methods according to the value
of k and the second one is the outlier rate and the f-score of the methods for the best value of k.

F-scores evolution according to k. Figure 3 shows the evolution of the F-scores of the
methods according to the value of k. We notice that, in general, the best values of the F-
score correspond to k = 0. The figures show that our method outperforms the FPOF method.
For some classes, the FPOF method cannot even find outliers. Most outliers are entities of
superclasses, and their properties are very frequent.

African Journal of Research in Computer Science and Applied Mathematics Page 16 of 21



(a) (b)

(c) (d)

(e) (f)

African Journal of Research in Computer Science and Applied Mathematics Page 17 of 21



(g) (h)

Figure 3: F-score of methods for each class

Performance of the methods on the different classes. Figure 4 shows the performance
of the methods on the different classes. Figure 4(b) is the result of figure 3 for the maximum
f-score value (which generally corresponds to k = 0). Figure 4(a) shows the outlier rate for
each method in each class. For the classes Company, EducationalInstitution, Politician, and
NaturalPlace our method greatly outperforms the FPOF method. The outliers have frequent
properties that are why the FPOF method fails to find them.

(a)

African Journal of Research in Computer Science and Applied Mathematics Page 18 of 21



(b)

Figure 4: Outlier rate and F-score per class

VI CONCLUSION

This paper proposed a generic semantic measure of outlier detection that favors some entities
and disfavors others from the semantics behind the ontology (especially the properties and class
hierarchy). We have tested our measure on a gold standard dataset of DBpedia. The experi-
ments showed the effectiveness of our approach. In semantic web knowledge graphs, ontology
plays a vital role that should not be neglected. Our measure is based on the domains and ranges
of properties, the hierarchy of classes, the frequency of properties which are excellent parame-
ters to find the entities outliers. If there are instances classified in class C that have (frequent)
properties which have for a domain (and range) the class C (or its super-classes), we can rea-
sonably suppose that this increases the precision of their membership in C. It is clear that if the
ontology is not complete (i.e., it does not contain all the classes and properties of the data) or
the real entities are poorly described (for instance, they have few properties), the performance
of our measure decreases.

In our future work, we will add a preprocessing step using this outlier detection measure
in the automatic classification process of DBpedia resources. Indeed, to build the learning base,
it is necessary to select positive and negative examples. The measure will allow us to find true
positive examples. Finally, we will apply this method to other Knowledge Graphs like Yago
and Wikidata.

African Journal of Research in Computer Science and Applied Mathematics Page 19 of 21



REFERENCES

Publications

[1] Y. Wand and R. Y. Wang. “Anchoring data quality dimensions in ontological founda-
tions”. In: Commun. ACM 39 (1996), pages 86–95.

[2] E. M. Knorr and R. T. Ng. “Algorithms for Mining Distance-Based Outliers in Large
Datasets”. In: VLDB. 1998.

[3] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. “LOF: Identifying Density-Based
Local Outliers”. In: Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’00. Dallas, Texas, USA: Association for Computing
Machinery, 2000, pages 93–104. ISBN: 1581132174.

[4] J. Han, J. Pei, and Y. Yin. “Mining Frequent Patterns without Candidate Generation”. In:
SIGMOD Rec. 29.2 (May 2000), pages 1–12. ISSN: 0163-5808.

[5] S. Ramaswamy, R. Rastogi, and K. Shim. “Efficient Algorithms for Mining Outliers from
Large Data Sets”. In: SIGMOD Rec. 29.2 (May 2000), pages 427–438. ISSN: 0163-5808.

[6] Z. He, X. Xu, J. Z. Huang, and S. Deng. “FP-outlier: Frequent pattern based outlier
detection”. In: Comput. Sci. Inf. Syst. 2 (2005), pages 103–118.

[7] Z. abu bakar, R. Mohemad, A. Ahmad, and M. Mat Deris. “A Comparative Study for
Outlier Detection Techniques in Data Mining”. In: July 2006, pages 1–6.

[8] C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira. “An Introduction to the Syntax
and Content of Cyc.” In: Jan. 2006, pages 44–49.

[9] F. Baader, D. Calvanese, D. Mcguinness, D. Nardi, and P. Patel-Schneider. The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications. Jan. 2007.

[10] K. Bollacker, R. Cook, and P. Tufts. “Freebase: A Shared Database of Structured General
Human Knowledge.” In: Jan. 2007, pages 1962–1963.

[11] F. Suchanek, G. Kasneci, and G. Weikum. “YAGO: a core of semantic knowledge”. In:
Jan. 2007, pages 697–706.

[12] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann.
“DBpedia - A crystallization point for the Web of Data”. In: Journal of Web Semantics
7.3 (2009). The Web of Data, pages 154–165. ISSN: 1570-8268.

[13] J. Ren, Q. Wu, C. Hu, and K. Wang. “An Approach for Analyzing Infrequent Software
Faults Based on Outlier Detection”. In: 2009 International Conference on Artificial In-
telligence and Computational Intelligence. Volume 4. 2009, pages 302–306.

[14] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka, and T. Mitchell. “Toward an
Architecture for Never-Ending Language Learning.” In: volume 3. Jan. 2010.

[15] W. Zhang, J. Wu, and J. Yu. “An Improved Method of Outlier Detection Based on Fre-
quent Pattern”. In: 2010 WASE International Conference on Information Engineering.
Volume 2. 2010, pages 3–6.

[16] A. M. Said, D. D. Dominic, and B. B. Samir. “Outlier Detection Scoring Measurements
Based on Frequent Pattern Technique”. In: Research Journal of Applied Sciences, Engi-
neering and Technology 6 (2013), pages 1340–1347.

[17] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. Mendes, S. Hellmann,
M. Morsey, P. Van Kleef, S. Auer, and C. Bizer. “DBpedia - A Large-scale, Multilingual
Knowledge Base Extracted from Wikipedia”. In: Semantic Web Journal 6 (Jan. 2014).

[18] A. Melo, H. Paulheim, and J. Völker. “Type Prediction in RDF Knowledge Bases Using
Hierarchical Multilabel Classification”. In: Proceedings of the 6th International Confer-
ence on Web Intelligence, Mining and Semantics (2016).

African Journal of Research in Computer Science and Applied Mathematics Page 20 of 21

http://dx.doi.org/10.1145/342009.335388
http://dx.doi.org/10.1145/342009.335388
http://dx.doi.org/10.1145/335191.335372
http://dx.doi.org/10.1145/335191.335437
http://dx.doi.org/10.1145/335191.335437
http://dx.doi.org/10.1109/ICCIS.2006.252287
http://dx.doi.org/10.1109/ICCIS.2006.252287
http://dx.doi.org/10.1145/1242572.1242667
http://dx.doi.org/https://doi.org/10.1016/j.websem.2009.07.002
http://dx.doi.org/10.1109/AICI.2009.345
http://dx.doi.org/10.1109/AICI.2009.345
http://dx.doi.org/10.1109/ICIE.2010.97
http://dx.doi.org/10.1109/ICIE.2010.97
http://dx.doi.org/10.3233/SW-140134
http://dx.doi.org/10.3233/SW-140134


[19] H. Paulheim. “Knowledge graph refinement: A survey of approaches and evaluation
methods”. In: Semantic Web 8 (Dec. 2016), pages 489–508.

[20] P. Ristoski. “Exploiting semantic web knowledge graphs in data mining”. In: Studies on
the Semantic Web. 2018.

[21] D. Caminhas, D. Cones, N. Hervieux, and D. Barbosa. “Detecting and Correcting Typing
Errors in DBpedia.” In: DI2KG@ KDD. 2019.

[22] S. Issa. “Linked data quality : completeness and conciseness”. Theses. Conservatoire
national des arts et metiers - CNAM, Dec. 2019.

[23] D. Ofer. DBPedia Classes : Hierarchical Taxonomy of Wikipedia article classes. htt
ps://www.kaggle.com/danofer/dbpedia-classes. [Online; accessed
02-November-2021]. 2019.

[24] L. Diop, C. Diop, A. Giacometti, and A. Soulet. “Pattern Sampling in Distributed Databases”.
In: Aug. 2020, pages 60–74. ISBN: 978-3-030-54832-2.

[25] F. Al-Aswadi, S. Mishra Tiwari, and D. Gaurav. “Recent trends in knowledge graphs:
theory and practice”. In: Soft Computing 25 (July 2021).

[26] L. Diop, C. Diop, A. Giacometti, and A. Soulet. “Pattern on demand in transactional
distributed databases”. In: Information Systems 104 (Oct. 2021), page 101908.

A ACKNOWLEDGEMENTS
This research was supported by the Partnership for skills in Applied Sciences, Engineering and Technology
(PASET) - Regional Scholarship and Innovation Fund (RSIF).

African Journal of Research in Computer Science and Applied Mathematics Page 21 of 21

http://dx.doi.org/10.3233/SW-160218
http://dx.doi.org/10.3233/SW-160218
https://tel.archives-ouvertes.fr/tel-02513652
https://www.kaggle.com/danofer/dbpedia-classes
https://www.kaggle.com/danofer/dbpedia-classes
http://dx.doi.org/10.1007/978-3-030-54832-2_7
http://dx.doi.org/10.1007/s00500-021-05756-8
http://dx.doi.org/10.1007/s00500-021-05756-8
http://dx.doi.org/10.1016/j.is.2021.101908
http://dx.doi.org/10.1016/j.is.2021.101908

	I Introduction
	II Related work
	III Preliminaries and Problem reformulation
	IV Ontology and pattern-based outlier detection in knowledge graph
	V Experiments
	VI Conclusion
	A Acknowledgements

