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Abstract
For more than one century, Aedes species are supposed to be a reservoir in dengue, yellow fever,
rift valley fever and west nile viruses transmission. In this article, we study an infinite dimension
ordinary differential equations system that models arbovirus vertical transmission in Aedes mosquito.
Relying of the positive semigroup theory, we show that the model is well-posed and compute a
threshold parameter known as the basic reproduction ratio R0. This parameter describes "the
average rate of secondary new cases of infected adult females from emergences in a breeding
habitat that are produced by an infected adult female via transovarial transmission during its
lifetime." In addition, we prove that the solution of the model goes to zero asymptotically if R0 < 1,
else it has the property of balanced exponential growth. Finally, a climate-environment effects
Index on model parameters and a diagram depicting the conditions of arboviruses persistence via
Aedes in nature is derived.
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I INTRODUCTION

In managing the risk of many Aedes mosquito borne diseases emergence and resurgence like
dengue, yellow fever, rift valley fever, west nile, it has been asked the role of vertical transmission
in mosquito species for epidemiological control since transovarial transmission was discovered
more than a century ago [2, 11, 13, 17, 22, 25, 27, 28, 30, 32]. Indeed, while known that only

African Journal of Research in Computer Science and Applied Mathematics Page 1 of 20

mailto:
https://doi.org/10.46298/arima.8714


adult females assure indirect horizontal transmission between vertebrate hosts from blood meals
involved in mosquito ovarian maturation and oviposition [3, 46]. Morever the Aedes subspecies
population involved in a specific arbovirus transmission can contamine its offsprings via eggs
[4, 16, 24, 40] . So, this mode of transmission, called transovarial transmission, provided in
nature a system of infected Eggs-Adults for floodwater Aedes mosquito species (shortly Aedes
spp.) which lay eggs on depressions, on damp soils or above mean high water [29, 33, 36, 38, 39].
In such systems, it has been recognized that eggs observe an irreducible period of drying or
diapause before hatching during their future submersions of water from rain or another source
[12, 20, 34, 41, 42]. But, hatching events are not known to be uniform for a given batch which
lifetime span from weeks to few years [10, 31, 37].

In this paper, we study a mathematical model describing a system composed of infected eggs
by transovarial transmission of floodwater Aedes divided into compartments of individuals that
experienced n flooding events and the class of infected adult females. We denote by un(t) the
density of infected eggs in the system that have experiencing n flooding event(s) and N(t) the
density of adult females at time t, respectively. We suppose that those individuals live in a closed
Aedes breeding habitat free of another reservoir of the arbovirus in interest with favorable climate
and environment conditions of adult females life and eggs development from laying to adult
juvenile emergences. Besides, we assume that there is not any infected or infectious active host
in the area of experimentation during this study and neglect mosquito aquatic stages without loss
generality. Then, the model describing transovarial transmission of an arbovirus between adult
females and eggs of Aedes spp. reads as follows:

8
>>><

>>>:

du0(t)
dt = �pN(t)� ↵0u0(t)� �0u0(t),

dun(t)
dt = �n�1un�1(t)� ↵nun(t)� nun(t)� �nun(t), n � 1,

dN(t)
dt =

+1X

n=1

nun(t)� µN(t).

(1)

with initial conditions

un(0) := u0
n � 0, for all n 2 Z+ := {0, 1, 2, ...} and N(0) := N0 � 0.

Here p and µ denote the female mosquito population probability of transovarial transmission
and mortality rate respectively. The expression �pN represents the production rate of infected
eggs in the system by adults where �p denotes the mean production rate of infected eggs by an
adult female and � denotes the egg-laying rate parameter. The model parameters ↵n, �n and n

denote the mortality rate of eggs in n-state of flooding, the transition rate between n and n+ 1-
states and the hatching rate of n-state compartment, respectively.

A particular case study of this model (1), based on diapause of mosquito eggs phenomena is not
uniformly broken in water of reduced oxygen content during submersion of embryonate eggs
which have spent an irreducible drying period after one or successive cycles of flooding-drying
[20, 23, 31, 42], has been treated by Bicout et al in [10]. To overcome mathematical study
difficulties, they exhibited, by approximation, a particular and analytical solution of the model
when assumed in one hand that the flooding frequency (�) and the eggs lifetime (��1) are
constant. In the other hand, the adult mortality rate is supposed to be equal to egg-laying rate
parameter (� = µ) and the eggs hatching rate function increases linearly per flooding event
(n = n; constant). Thereafter, they derived a parameter playing likely the basic reproduction
rate number role from thresholding persistence time and numerical simulations.
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Actually, we have not in our disposal a theoretical study of the particular case study of (1).
But, several studies through famous deterministic and finite dimension host-vector infection
mathematical models examined the epidemiological or enzootic impacts of Aedes vertical
transmission in various arbovirual diseases outbreaks [1, 14, 15, 35]. Generally, these models
described, beyond the classic relations between health status compartments as susceptible-
exposed-infectious-recovered pattern for hosts and susceptible-exposed-infectious for vectors,
the vertical transmission in Aedes mosquito. They commonly consider Van Den Driessche [44]
or Diekmann [18, 19, 26] spectral radius of next generation matrix determination approach
and gave a threshold parameter coinciding sometime to May and Anderson basic reproduction
number definition[5], R0. They showed that if R0 < 1, then the equilibrium without disease is
locally asymptotically stable and the disease cannot invade host-vector populations; else unstable
and the disease possibly persists between them. These studies combined threshold parameters
sensitivity analyses and numerical simulations incorporated seasonality or diapause patterns
with troublesome host implications in the virus processes maintenance in ecosystems in order to
keep climate and environment effects (e.g see [14] for valley fever and [1] for dengue). They
suggested various and apparently reversed transovarial transmission epidemiologicalimpacts
according to the arbovirus, the Aedes subspecies, the hosts and the environmental conditions
involved.

The purpose of this work is to highlight the conditions of which Aedes mosquito can be a reservoir
or not for a specific arbovirus in different ecosystems by using perturbations and spectral theories
in positive semigroup approach. In this way, we shall prove that under suitable assumptions on
parameters, the model (1) describing only arbovirus transovarial transmission between Mosquito
Adult female and eggs is globally well-posed, extract the reproduction rate number (R0) of the
system and provide its solution possesses the properties of asynchronous exponential growth
when R0 � 1, in contrary it converges to zero as time tends to infinity. The spectral bound of the
differential system (1) operator that matches to the intrinsic growth value of Aedes population in
its environment [43, 47] is shown to be equivalent to R0 as bifurcation parameter. Thereafter,
we showed that results on asymptotic behavior of the model (1) govern the qualitative analysis
which maps, by a diagram, some conditions of arbovirus persistence in nature through only
floodwater Aedes vertical transmission. In the model under this study, we assume, more general
assumptions than Bicout and co-workers did in [10], for the death, transition, hatching and
egg-laying parameters of n-states in accordance to they vary in nature so that flooding does not
systematically hatch mosquito eggs (e.g, see [34]). Indeed, throughout this paper, we assume the
following hypotheses:
(H1) the eggs death rates are bounded i.e there exist two numbers ↵̂, and ↵̌ so that for any

integer n ( n 2 Z+):
0 < ↵̌  ↵n < ↵̂;

(H2) the flooding rates are bounded: there exists a number �̂ so that for all n 2 Z+

0 < �n  �̂;

(H3) the eggs hatching rates cannot only increasing and satisfy

8 n 2 Z+, n � 0 and 8 n0 2 Z+ 9 n � n0 so that n > 0;

(H4) the adults egg-laying and mortality rate parameters satisfy:

� > 0 and µ > 0.
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In addition, we consider the Banach space E = l1(Z+)⇥ R with norm
k(u,N)kE = kukl1(Z+) + |N | for all (u,N) 2 l1(Z+)⇥ R where Z+ = {0, 1, 2, · · · , },

l1(Z+) = {u = (un)n2Z+ ⇢ R :

1X

n=0

|un| < 1} and kukl1(Z+) =

1X

n=0

|un| 8 u 2 l1(Z+)

denote the set of positive integers, the absolutely convergent series of real numbers space and
norm, respectively. For keeping biological processes positivity, this space E is ordered by its
usual positive cone l1(Z+)+ ⇥ R+ = {u = (un)n2Z+ 2 l1(Z+) : 8n 2 Z+ un � 0}⇥ R+ as
x � y iff x� y 2 l1(Z+)+ ⇥ R+ which we denote by E+ = {x 2 E; x � 0} in order to define
positive vectors and a positive linear operator L on E as: 0  x 2 E implies Lx � 0 as well as
x >> y for x = (xi)i2Z+ and y = (yi)i2Z+ denotes xi > yi, 8i 2 Z+.
The standard following AL-space properties satisfied by E are also considered: every pair
x, y 2 E has both supremum and infimum

8x 2 E x = x+ � x� , |x|v = x+ + x�, (2)

where

x+ = max{x, 0}, x� = max{�x, 0} and |x|v = max{�x, x}; (3)

kxkE = k|x|vkE for all x 2 E, (4)

|x|v  |y|v implies kxkE  kykE for all x, y 2 E (5)

and

kx+ ykE = kxkE + kykE for all x, y 2 E+. (6)

Also, we denote Our first result considers the well-posedness of the model (1) as an initial value
problem which operator, denoted by A, will be defined in section II. It reads as follows.

Theorem I.1:
Let assumptions (H1), (H2), (H3) and (H4) be satisfied. Then, the operator A of (1) is generator
of an infinitesimal positive C0-semigroup, (TA(t))t�0, on E.

The proof of this result will be given in Section II. This Theorem means that for any initial
positive conditions (u0, N0) 2 l1(Z+)+ ⇥ R+ at a starting time t0 � 0, we have the unique
solution (u(t), N(t)) of (1) remains positive for t � t0, i.e,

(u(t), N(t)) = TA(t)(u0, N0) 2 l1(Z+)+ ⇥ R+ 8 t � t0.

Our second result is devoted to the asymptotic behavior of model’s (1) solutions. Before stating
this result, we determine from real eigenvalue problem of (1), the formula of the reproduction
rate number (R0) as follows:

R0 =
�p

µ

+1X

n=1

n

↵n + n + �n

n�1Y

i=0

�i
↵i + i + �i

. (7)

This R0 states as a bifurcation parameter of the system (1) in the manner that our main result
reads as follows.
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Theorem I.2:
The positive C0-semigroup (TA(t))t�0 is irreducible and the following assertions hold:

i) if R0 < 1 then: 9 " > 0, M � 1 :

��TA(t)
��  Me�"t,

ii) if R0 � 1 then there exist �0 � 0, " > 0, M � 1 and a projector P such that:

PTA(t) = TA(t)P = e�0tP

and ��e��0tTA(t)(I � P )

��  Me�"t

where P (x) = �(x)V, 8x 2 E with V 2 E+ a quasi-interior point and � 2 E⇤

(topological dual of E) satisfying �(x) > 0, 8x > 0 and �(V ) = 1.

The proof of this result will be given in Section III.
Thereafter, the R0 formula and the assertions in the theorem allows to derive, as an illustrative
application, both a dimensionless Index, EC0, and a diagram mapping the conditions for which
an Aedes subspecies can be reservoir of a specific virus or not.

The layout of the rest part is as follows. In Section II, we reduce model (1) into an abstract
Cauchy problem and establish its well-posedness by means of strongly continuous positive
semigroups. In Section III, we prove that the solution of model (1) goes to zero in the vicinity
of infinity if R0 < 1, else it has asynchronous exponential growth. The conception of a map
designing the climatic and environmental effects on mosquito demographic parameters involved
in the maintain of arboviruses in nature by Aedes is shown in the section IV.

II WELL-POSEDNESS OF THE MODEL

In this section, we use the positive semigroup theory to show the well-posedness of the model
(1). Indeed, we shall recall some characteristics of the spectrum and the resolvent in infinite-
dimensional space and rewrite this model as an initial value Cauchy Problem before using
bounded and Desch perturbation Theorems (e.g, see [9, Proposition 11.6] and [45, Theorem0.1]).

First, we consider the following standard definitions and relations. For a given linear operator L
with D(L) defined in Banach space X , the spectrum of L is the set of spectral values
�(L) := {� 2 C;�I � L : D(L) �! X is not bijective or its inverse is not continuous}. The
subset P�(L) := {� 2 C;�I � L : D(L) �! X is not injective} of �(L) is called the point
spectrum of L and consists of eigenvalues. The spectral bound s(L) of L is
sup{Re� : � 2 �(L)} and the peripheral spectrum �0(L) is sup{�1 2 �(L) : Re�1 = s(L)}.
If L is closed and � is a spectral value, then the generalized eigenspace N�(L) is the smallest
closed subspace of X containing

S1
k=1 N((�I � L)k). The essential spectrum E�(L) is

{� 2 �(L) either (�I � L)(X) is not closed, � is a limit point of �(L), or N�(L)) is infinite-
dimensional}.
If L is bounded, the spectral radius r�(L) is sup{|�| : � 2 �(L)}, the essential spectral radius
rE�(L) is sup{|�| : � 2 E�(L)}. The resolvent set of L is ⇢(L) := C \ �(L) i.e

⇢(L) := {� 2 C;�I � L : D(L) �! Xis bijective with continuous inverse}.

So, for any � 2 ⇢(L) the operator �I � L has an algebraic inverse called the resolvent operator
of L at the point � denoted it by R(�, L) := (�I � L)�1. When L is defined in E, R(., L) is
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said to be positive if there exists w 2 R such that ]w,+1[⇢ ⇢(L) and R(�, L) � 0 8 � > w.
For instance, L generates a positive C0-semigroup T on E is equivalent to its operator resolvent
is positive by the relation

R(�, L)x =

Z +1

0

e��tT (t)xdt, � > s(L), x 2 E.

Second, let us introduce the linear operators in E defined as follows: B1(u,N) = (B0u,�µN),
B2(u,N) = (0l1(Z+), Fu), L1(u,N) = (L0u, 0) and
L2(u,N) = (�pN, 0l1(Z⇤

+)) = N((�p�n,0)n2Z+ , 0), where B0u = (anun)n2Z+ ,

L0u = (0, (�n�1un�1)n2Z⇤
+
) and Fu =

+1X

n=1

nun, for all n 2 Z+ with an = �(↵n + n + �n)

and �n,0 = 1 if n = 0 else �n,0 = 0 (�n,0 is a Kronecker symbol). When assumptions (H1) (H2)
and (H3) are satisfied, It follows that the domains of operators B0, B1, B2, L0, L1, L2 and F are
D(B0) := {(un)n2Z+ 2 l1(Z+) : (nun)n2Z+ 2 l1(Z+))}, D(B1) = D(B0)⇥ R,
D(B2) = D(B1), for i = 0, 1, 2D(Li) = l1(Z+)⇥R and D(F) = D(B0) respectively. Besides,
the linear operators B0, B1, B2 and F are unbounded in E contrary to L1 and L2.
Note that under assumptions (H1) and (H2), the domain of the operator B0 becomes
D(B0) = {(un)n2Z+ 2 l1(Z+) : (anun)n2Z+}.
Now, let us set A = B + L where B = B1 + B2 and L = L1 + L2. Using these notations,
it follows that the set of equations (1) can be rewritten in the AL � space E as the following
abstract initial value problem:

⇢
dU(t)
dt = AU(t), t > 0,

U(0) = x.

where x = (u0, N0) 2 D(A) \ E+ and for all t � 0 U(t) = (u(t), N(t)). Thus, to prove that
the model (1) is mathematically and ecologically well-posed in E, we only need to show that the
operator A with domain D(A) = D(B0)⇥ R ✓ l1(Z+))⇥ R, generates a strongly continuous
positive semigroup in E.

Lemma II.1:
The operator B is the generator of a positive C0-semigroup.

Proof. It’s obvious that B1 is a multiplication operator so that, from (H1) and positivity of all
parameters ↵n, �n, n and � (see (H1)-(H3)), it holds

8 n 2 Z+ an < �↵̌.

Therefore, from [9, Proposition.9.21], B1 is the generator of the infinitesimal (precisely analytic)
positive C0-semigroup

(TB1(t)(u,N))t�0 := ((e antun)n2Z+ , e
�µtN))t�0

satisfying
kTB1(t)k  e�min(↵̌,µ)t.

Thus, TB1(t) � 0 implies R(�, B1) � 0 for � > s(B1).
But, B2 is a positive operator. So, to obtain the expected result, it is sufficient to show that
B = B1 +B2 is positive operator resolvent. If this holds, it follows from Desch’s theorem [45,
theorem 0.1] that B1 +B2 is the generator of a positive C0-semigroup.
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Now, we are going to establish that B is resolvent positive. Since B1 is resolvent positive
operator and B2 is a positive operator on its domain D(B1) a subspace of the AL-space E, by
[45, Theorem 1.1], sufficient to show that r�(B2R(�, B1)) < 1 for � > s(B1).
So, let � > s(B1). From the following spectral radius properties

r�(B2R(�, B1)) = lim

k!+1
k(B2R(�, B1))

kk 1
k
= lim

k!+1
kBk

2 (R(�, B1))
kk 1

k .

and
B2

2(u,N) = B2(0l1(Z+),Fu) =) B2
2(u,N) = (0l1(Z+), 0),

we thus obtain r�(B2R(�, B1)) = 0 < 1.

Lemma II.2:
L is a linear, bounded and positive operator on E so that

kLkL(E)  max(�p, �̂).

Proof. Note that

kL(u,N)kE = |�pN |+
+1X

n=1

|�n�1un�1|

Then from (H2), we obtain

kL(u,N)kE  �p|N |+ �̂kukl1(Z+)

kL(u,N)kE  max(�p, �̂)(|N |+ kukl1(Z+))

kL(u,N)kE  max(�p, �̂)k(u,N)kE.

Hence
kLkL(E)  max(�p, �̂).

Finally, by the lemma II.1, lemma II.2 and [9, Corollary 11.7], A = B + L is then the generator
of a positive C0-semigroup denoted it by (TA(t))t�0.

III BALANCED EXPONENTIAL GROWTH OF SOLUTIONS

In this section, we give the basic reproduction number formula and show which ranges of its
values induce balanced exponential growth and null asymptotic behavior of solutions exclusively.

Notice that, for the C0 semigroup (TA(t))t�0 generated by A, the growth bound and the essential
type of A defined as

w0(A) := inf{! 2 R, 9M! > 1 : kS(t)k  M!e
!t, 8t � 0}

and

w1(A) := inf{! 2 R, 9M! > 1 : inf{kTA(t)�Kk : K is compact}  M!e
!t, 8t � 0}
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respectively exist and it holds the following identities:

!0(A) = lim

t!1

log(kTA(t)k)
t

,

!1(A) = lim

t!1

log(✓[TA(t)])

t

and
!0(A) = max{!1(A) , sup

�2�(A)�E�(A)
Re�}

where ✓[L] = inf✏>0{L(B) can be covered by a finite number of balls of radius  ✏}, is a
Hausdorff measure of non compactness (e.g., see [7, 8] for details) satisfying ✓(L) = 0 if L is a
compact operator and B is the unit ball of E.
Moreover, (TA(t))t�0 is said to be irreducible if 8U 2 E, 8W 2 E⇤ (the linear and topological
dual of E), U > 0, W > 0 , we have that < TA(t0)U,W >> 0 for some t0 > 0, where
< ., . > denotes the dual product between E and E⇤ (see [6, C-III, Definition 3.1 ]). In order
to use these relations in the following, we first decompose the semigroup (TA(t))t�0 in the
next theorem, show thereafter that (TA(t))t�0 is quasi-compact (i.e, w1(A) < 0) and thereafter
give R0 formula from the characteristic equation before giving its relations with the asymptotic
behavior of model (1) solutions.

Theorem III.1:
If assumptions (H1), (H2), (H3) and (H4) are satisfied, then there exist a positive C0-semigroup,
(TC(t))t�0 and a family of compact operators (V (t))t�0 such that the positive C0-semigroup,
(TA(t))t�0 generated by A is written as

TA(t)x = TC(t)x+ V (t)x 8 t � 0 8 x 2 E

where
kTC(t)k  e�↵̌t

Proof. Here, we consider the following decomposition of A :

A = C + L3

where C = A� L3 and L3 is defined by

L3(u,N) = N(�p(�n,0)n2Z+ , ↵̌� µ).

Note that L3 is a compact operator because rank one and bounded linear operator. Also, Desch’s
theorem ( see [45, Theorem 0.1]) and bounded perturbations theorem (see [9, Proposition 11.6])
of the operator B1 give that C generates a positive C0-semigroup, denoted by (TC(t))t�0. This
semigroup is related to the positive semigroup generated by A, (TA(t))t�0, by this equation

TA(t)x = TC(t)x+ V (t)x, t � 0, x 2 E (8)

where

V (t) =

Z t

0

TC(t� s)L3TA(s)ds. (9)
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Since L3 is compact and TA(t) 2 L(E) for all t � 0, the map t 7! L3TA(t) is then compact.
Thus, for the same reasons, it results V (t) is a compact operator for all t � 0.

Now, we show that
kTC(t)k  e�↵̌t 8t � 0.

Let x 2 E+, t � 0 and U(t) = (u(t), N(t)) 2 E+ so that U(0) = x.

dU(t)

dt
= CU(t) ()

8
<

:

du0
dt = �(↵0 + �0)u0,
dun
dt = anun + �n�1un�1, for n � 1,
dN
dt = �↵̌N + F(u).

For a fixed m 2 Z⇤
+, we consider the m-states system with �m = 0 without loss generality and

set

Sm(t) =

mX

n=0

dun(t)

dt
and S(t) =

+1X

n=0

dun(t)

dt
, for all t � 0.

Therefore, it holds

Sm(t) = �
mX

n=0

(↵n + n)un(t)  0.

Thus, the sequence of continuous functions (Sm(t))m2Z+ is convergent to S(t) which is continu-
ous on [0,+1[. This convergence is uniform on any compact set of [0,+1[. Using (H1) and
(H3), it results

d

dt
kU(t)k  �↵̌kU(t)k, for all t � 0,

It follows that
kU(t)k  e�↵̌tkU(0)k, for all t � 0.

So, we have

8x 2 E+ kTC(t)xk  e�↵̌tkxk, for all t � 0 (10)

Now, let x 2 E. The properties (5) imply that

kTC(t)xk  kTC(t)x+k+ kTC(t)x�k with x = x+ � x�and x+, x� 2 E+

Using again (5), we thus obtain this inequality

kTC(t)x+k+ kTC(t)x�k  e�↵̌t
(kx+k+ kx+k)

which implies from (6) the result

8x 2 E kTC(t)xk  e�↵̌tkxk, for all t � 0.

This Theorem III.1 implies the following lemma about the quasi-compactness of (TA(t))t�0 (see
[21, Chapter V, Definition 3.4]).

Lemma III.2:
The semigroup (TA(t))t�0 is quasi-compact such that w1(A)  �↵̌.
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Proof. From Theorem III.1, obvious that hypotheses of [47, Proposition 2.4] hold. Therefore,
it happens w1(A)  �↵̌ < 0, by [21, Chapter V, Proposition 3.5], the semigroup (TA(t))t�0 is
quasi-compact.

In the following lemma, we give the basic reproduction number formula which will be, in the
proof of the Theorem I.2, associated to the spectral bound s(A) of the operator A.

Lemma III.3:
Let a real � be in the point spectrum of A. Then, basic reproduction ratio of the model (1) is
given by

R0 := f(0) =
�p

µ

+1X

n=1

n

↵n + n + �n

n�1Y

i=0

�i
↵i + i + �i

, (11)

and the characteristic function associated to A

f(�) =
�p

�+ µ

+1X

n=1

n

�+ ↵n + n + �n

n�1Y

i=0

�i
�+ ↵i + i + �i

.

satisfies the following assertions:
a) � < 0 () R0 < 1;
b) � > 0 () R0 > 1;
c) � = 0 () R0 = 1.

Proof. Let � be a eigenvalue of A, then it exists v 6= 0E so that Av = �v. Consequently, it results
from little algebra calculations the characteristic equation is f(�) = 1 where the characteristic
function f is defined by

f(�) =
�p

�+ µ

+1X

n=1

n

�+ ↵n + n + �n

n�1Y

i=0

�i
�+ ↵i + i + �i

.

Since the real valued function � 7! f(�) is strictly decreasing, we obtain assertions a), b), and c)
whenever we set R0 := f(0).

We give the proof of the Theorem I.2

Proof. First, we prove that (TA(t))t�0 is irreducible i.e it exists t0 > 0 such that

< T (t0)U,U
⇤ >> 0 .

Let A be rewritten as A = G+H with

G(u,N) = (B0u,�µN), and H(u,N) = (L0u+ (�pN�n,0)n2Z+ ,Fu).

Therefore, we have the multiplication operator G is generator of a positive C0-semigroup. Then,
from A = H +G is positive resolvent and H is a positive operator, it holds for any � > s(G)

R(�, A) = R(�, G)

1X

n=0

(HR(�, G))

n.
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To prove that (TA(t))t�0 is irreducible, sufficient to show that for any U > 0,
HR(�, G)U > 0 for some �. In fact, even if � > max(�↵̌,�µ) it holds:

R(�, G)(u,N) =

 ✓
un

�+ ↵n + n + �n

◆

n2Z+

,
N

�+ µ

!

then

HR(�, G)(u,N) =

 
�pN

�+ µ
,

✓
�n�1

�+ ↵n�1 + n�1 + �n�1
un�1

◆

n�1

,
+1X

n=1

n

�+ ↵n + n + �n
un

!
.

So, from applying HR(�, G) to each element of the canonical basis of E, it holds for any
� > max(�↵̌,�µ) and U > 0: HR(�, G)U > 0. Therefore, we obtain for any U > 0 and
U⇤ > 0, < R(�, A)U,U⇤ >=

R1
0 e��s < TA(s)U,U

⇤ > ds > 0 for � > max(�↵̌,�µ) it
yields the claim.
Next, we prove i) and ii) respectively.
Before, let us establish two useful results and a remark. First, by [9, Theorem 12.17], A is the
generator of the positive C0-semigroup (TA(t))t�0 on the AL-space E implies s(A) = w0(A).
Second, since (TA(t))t�0 is positive and irreducible in the Banach Lattice E = l1(Z+)⇥ R, it
results, from [6, C.III, Theorem 3.7], that the spectrum �(A) is not empty. So, it follows
s(A) > �1. Therefore, since (TA(t))t�0 satisfies hypotheses of [21, Chapter VI, 1.10 Theorem],
on the AL space E, we get s(A) is in the spectrum of A.
Thirty, note that only the result in i) holds (with s(A) < 0) whenever w0(A) = w1(A). In fact,
from the inequalities !1(A)  �↵̌ < 0 established in Lemma III.2 and w0(A) = s(A), it results
s(A) < 0. So, it holds Re(�) < 0 for any � 2 �(A) and 9 " > 0, M � 1 :

��TA(t)
��  Me�"t.

In the following, we suppose that !1(A) < w0(A). This inequality implies from [47, Proposition
2.5] that �0 = s(A) is in the point spectrum of A and �0(A) = {s(A)}.
(i) Assume that R0 < 1. Since s(A) is in the point spectrum of A, from Lemma III.3, it results
s(A) = w0(A) < 0 it yields the claim.
(ii) If R0 � 1, from Lemma III.3, it holds �0 = s(A) � 0. Therefore, (TA(t))t�0 is quasi-
compact and s(A) � 0 provide (see [21, Chapter V, 3.7 Theorem]) s(A) is a pole of R(., A),
the resolvent of A. But, (TA(t))t�0 is irreducible on the AL-space E, then from applying [9,
Proposition 14.12] and [47, Proposition 2.3] consecutively, it yields the claim.

IV ILLUSTRATIVE ASSESSMENT OF ARBOVIRUSES MAINTENANCE IN ENVI-
RONMENT VIA AEDES

In determining how persist arboviruses in ecosystems by the way of transovarial transmission,
necessary to know what’s happened in a crosscut impact factors and floodwater Aedes demo-
graphic ones. From the Lemma III.3, the impact factors and egg-Adult demographic parameters
in interest here are both directly related to the basic Reproduction rate number R0 (11) of the
growth model (1). Specifically, the R0 is explicitly the ratio of adult females parameters (�/µ)
times the transovarial transmission probability (p) times a factor denoted by EC0 as we define
Eggs Climate-Environment Reactivity Index

EC0 :=
+1X

n=1

n

↵n + n + �n

n�1Y

i=0

�i
↵i + i + �i

. (12)
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(a) Types of cross lines from q and EC0
axes: disappearance (solid cross solid) and
persistence (crossing curve or outside of
solid cross solid).

(b) Areas of washing arbovirus (right) and potential
maintenance (left) from crossing lines typology: per-
sistence and disappearance.

Figure 1: Maintain of arbovirus Topography based on a complete map of relations between parameters
µ/� (the inverse of a specific Aedes adult female oviposition rate), p (transovarial transmission probability)
and EC0 (Eggs Climate-Environment Reactivity Index) in its admissible interval [EC0min; �̂/↵̌] where
EC0min, �̂ and 1/↵̌ represent the minimum of EC0, the maximal flooding frequency and the long lifetime
expectancy of eggs in their breeding habitat respectively. The line q = qc (qc = 1 � pc representing
the complementary probability of, pc, critical transovarial transmission probability) marks separation
of free area of arbovirus maintain via eggs and the potential zone of persistence. The Illustrative
cases of unconditional disappearance with EC00 and conditioned persistence by the minimal transovarial
transmission probability pi = 1� qi with EC0i (i = 1, 2).

This index contains only eggs parameters of the model affected by environment and climate
factors variations. Note that EC0 is not only dimensionless but is less than �̂/↵̌. Also, when
the transovarial transmission is inhibited (p = 0), it obviously holds R0 = 0, then the model
(1) converge to zero by assertion i) of the Theorem I.2. This confirms that when p = 0 the
system is always free of considered arbovirus under any climate and environment variations of
the breeding habitat.

The situation of interest here is when transovarial transmission exists and is not inhibited
(0 < p  1). In this case, if R0 is unity (R0 = 1), the Index EC0 gives a specific Aedes
spp-arbovirus critical value, EC0, of the Eggs Climate-Environment Reactivity Index defined as

EC0 =
µ

�
⇥ 1

1� q
(13)

where q is the complementary probability of p (i.e. p + q = 1). Therefore, when p varies the
expression of EC0 becomes an increasing function of q denoted by ¯EC0(q), from EC0  �̂/↵̌, this
function, ¯EC0(q), is upper limited by ¯EC0(qc) where qc = 1� (↵̌µ)/(�̂�). From the Theorem I.2,
it hence holds that for a fixed q or p, the quantity ¯EC(q) is a bifurcation value of the model (1)
with respect to EC0 according to its relation with R0.

For instance, when p = 1 it holds that the critical value, EC0(0), of the Index EC0 is µ/�. So,
if EC0 < µ/� holds then the model (1) converges to zero (i.e, the arbovirus disappear in the
habitat), else it converges to non null projector (i.e, the arbovirus persists in the system by the
transovarial transmission way), by analogy for each p such that pc < p  1, it results similar
conclusions about persistence and disappearance in Aedes breeding habitat of any arbovirus
subject of transovarial transmission depicted in Figure.1(a) and Figure.1(b).
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(a) Conditions of free maintain arbovirus
in breeding site 1 via eggs with maximal
flooding frequency �̂1 and critical vertical
transmission probability, pc1 = 1� qc1
(pc1 > p = 1� q̄).

(b) Conditions of maintain arbovirus in
breeding site 2 via eggs with maximal flood-
ing frequency �̂2 and critical vertical trans-
mission probability, pc2 = 1� qc2
(pc2 < p = 1� q̄).

Figure 2: Maintain (right) and free of maintain (left) of arbovirus topography statements based on a
complete map of relations between model (1) parameters of two different Aedes breeding habitats in
flooding frequencies (�̂1 < �̂2). Transovarial transmission probability p = 1� q̄ (pc2 < p < pc1), total
oviposition of specific Aedes adult female during its lifetime �/µ and maximal lifetime of eggs 1/↵̌
parameters are the same.

These Figures (1(a) and 1(b)) show that a transmitted arbovirus will die out under any climate-
environment conditions in the Aedes breeding habitat in interest when the probability of transo-
varial transmission is less than the quantity pc = (↵̌µ)/(�̂�). Else, it can persist or disappear
according to the Index EC0 value. Note that the critical vertical transmission probability, pc, may
vary from an Aedes breeding habitat to another as it is depicted for instance in Figures (2(a) and
2(b)), when two Aedes breeding habitats ( site 1 and site 2) are only different in terms of maximal
flooding frequency, �̂1 and �̂2 respectively. It is obvious seen that their critical probabilities
satisfy pc2 < pc1 if �̂1 < �̂2.

Finally, this qualitative analysis from the model (1) reveals that it always exists lowest transovarial
transmission rates range on which a considered arbovirus living in a floodwater Aedes spp
breeding habitat should not be maintained via eggs. But, out of this range, the arbovirus
maintenance in a system via Aedes vertical transmission depends greatly on specific adult female
reproduction rate and EC0 index values.

V CONCLUSION

In this work, we study by positive semigroup approach an infinite dimension ordinary differential
equations system describing the transmission of arbovirus between eggs under flooding events
and adult females of Aedes mosquito by vertical-transovarial infection. Using positive semigroup
theory, we proved that the model is mathematically and ecologically well posed, analyzed by
spectral theory and perturbations technics its asymptotic behavior and gave an illustrative appli-
cation in a contributive diagram to the assessment of an arbovirus maintenance in ecosystems by
the way of mosquito’s transovarial transmission. To extend these results, it would be interesting
to model resource-induced competition during mosquito aquatic stages by nonlinear term and
study the corresponding semi-linear problem. This perspective might also be considered in a
future work.
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VII APENDIX

7.1 The computation of R0

For all � > max(�↵̌,�µ), if � 2 �p(A), then there is v 6= 0E such that Av = �v. Thus, let

v :=

✓
(un)n2Z+

N

◆
. Then it derives that:

0

BBB@

�(↵0 + �0)u0 + �pN
(�(↵n + n + �n)un + �n�1un�1)n�1

+1X

n=1

nun � µN

1

CCCA
=

0

@
�u0

�(un)n�1

�N

1

A .

Hence 8
>>><

>>>:

(↵0 + �0 + �)u0 = �pN,
(↵n + n + �n + �)un = �n�1un�1, n � 1,

(�+ µ)N =

+1X

n=1

nun.

For i 2 {0, 1, 2......., n}, by taking the product of the member-to-member equations, we obtain:

8
>>>><

>>>>:

nY

i=0

(↵i + i + �i + �)un = �pN
n�1Y

i=0

�i,

(�+ µ)N =

+1X

n=1

nun,

()

8
>>>>>>>>><

>>>>>>>>>:

un = �pN

n�1Y

i=0

�i

nY

i=0

(↵i + i + �i + �)

,

(�+ µ)N =

+1X

n=1

nun,
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and therefore

(�+ µ)N =

+1X

n=1

n�pN

n�1Y

i=0

�i

nY

i=0

(↵i + i + �i + �)

= �pN
+1X

n=1

n

(↵n + n + �n + �)

n�1Y

i=0

�i
(↵i + i + �i + �)

.

Thus, we obtain

�p

�+ µ

+1X

n=1

n

(�+ ↵n + n + �n)

n�1Y

i=0

�i
(�+ ↵i + i + �i)

= 1.

Let us pose

R0 := f(0) =
�p

µ

+1X

n=1

n

(↵n + n + �n)

n�1Y

i=0

�i
(↵i + i + �i)

,

with

f(�) =
�p

�+ µ

+1X

n=1

n

(�+ ↵n + n + �n)

n�1Y

i=0

�i
(�+ ↵i + i + �i)

.

Note that � 7! f(�) is a decreasing function and so we have the following equivalences:
a) � < 0 () R0 < 1;
b) � > 0 () R0 > 1;
c) � = 0 () R0 = 1.

7.2 Abstract formulation of system (1)

Note that

dU

dt
=

0

B@
(�(↵n + n + �n)un + �pN�n,0 + �n�1un�1.1{n�1})n2Z+

+1X

n=1

nun � µN

1

CA

and therefore

dU

dt
=

✓
B0u
�µN

◆
+

✓
0l1(Z+)

Fu

◆
+

✓
L0u
0

◆
+

✓
(�pN�n,0)n2Z+

0

◆

with

B0u = (�(↵n + n + �n)un)n2Z+ , Fu =

+1X

n=1

nun and L0u =

⇢
�n�1un�1 if n � 1

0 if n = 0 .

Thus, it becomes:
dU

dt
= B1U +B2U + L1U + L2U,

African Journal of Research in Computer Science and Applied Mathematics Page 18 of 20



where

B1U =

✓
B0u
�µN

◆
, B2U =

✓
0l1(Z+)

Fu

◆
, L1U =

✓
L0u
0

◆
et L2U =

✓
(�pN�n,0)n2Z+

0

◆
.

Thus, let us pose
A = B + L with B = B1 +B2 and L = L1 + L2.

Then, one can obtain :
dU

dt
= AU.
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