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Abstract
Trees are among the most studied data structures and several techniques have consequently been
developed for comparing two trees belonging to the same category. Until the end of year 2020,
there was a serious lack of suitable metrics for comparing two weighted trees or two trees from
different categories. The problem of comparing two tree sets was not also specifically addressed.
These limitations have been overcome in a paper published in 2021 where a customizable metric
based on hidden Markov models has been proposed for comparing two tree sets, each containing a
mixture of trees belonging to various categories. Unfortunately, that metric does not allow the use
of non metric-dependent classifiers which take descriptor vectors as inputs. This paper addresses
this drawback by deriving a descriptor vector for each tree set using meta-information related to its
corresponding models. The comparison between two tree sets is then realized by comparing their
associated descriptor vectors. Classification experiments carried out on the databases FirstLast-
L (FL), FirstLast-LW (FLW) and Stanford Sentiment Treebank (SSTB) respectively showed best
accuracies of 99.75%, 99.75% and 87.22%. These performances are respectively 40.75% and
20.52% better than the tree Edit distance for FLW and SSTB. Additional clustering experiments
exhibited 54.25%, 98.75% and 75.53% of correctly clustered instances respectively for FL, FLW
and SSTB. No clustering was performed in existing work.

Keywords
Trees; Comparison of tree sets; Distance between trees; Hidden Markov Models; tree Edit dis-
tance; Classification; Clustering

I INTRODUCTION

Trees are among the most common and well-studied data structures. They are used in a great
variety of applications, including compiler design, graph transformation, automatic theorem
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proving, information retrieval, structured text database, pattern recognition, and signal process-
ing [1, 2]. Consequently, several techniques have been developed for comparing two labeled
or unlabeled trees belonging to the same category (i.e: rooted or unrooted, ordered or un-
ordered). Until the end of year 2020, these existing techniques were based on one of the 5
following concepts: tree Edit [3–14], tree Alignment [15, 16], tree Inclusion [17–21], tree pat-
tern matching [22–27] and Subtrees/supertrees similarity [28–34]. These existing techniques
unfortunately have the three following main drawbacks:

1. There is a serious lack of suitable metrics for comparing two weighted trees, and yet the
comparison of weighted trees is important for several applications such as the match-
making of agents in e-Business environments where product/service descriptions and
seller/buyer agents are represented as arc-weighted trees [35]. An attempt for compar-
ing such trees was proposed in [35], but that measure was limited because arc weights
were restricted to the interval [0, 1].

2. Existing techniques did not enable to compare two trees from different categories (e.g:
comparing a rooted ordered tree and an unrooted unlabeled tree).

3. The problem of comparing two tree sets was not specifically addressed. However, the
comparison of tree sets is important for several machine learning tasks including the hier-
archical clustering of tree data. Indeed, at each step of hierarchical clustering algorithms
like the Agglomerative Hierarchical Clustering (AHC) algorithm [36], the distance be-
tween every pair of clusters (tree sets) is computed in order to merge the two nearest
clusters into a new cluster. Existing cluster distances like the minimum, the maximum, the
average or the centroid linkage distances [37] are generally used for this purpose. But
such an approach does not consider the individual properties of the trees of each cluster.

4. Existing techniques did not enable to explicitly specify the targeted node properties on
which the tree comparison must be performed.

In 2021, these drawbacks have been overcome in [38] where a customizable metric based on
Hidden Markov Models (HMMs) was proposed for comparing two tree sets, each containing
a mixture of trees belonging to various categories. The metric proposed in that paper handles
labeled and unlabeled trees, as well as weighted and unweighted trees where each node/arc can
have several attributes (labels, weights). Unlike previous techniques, it allows the user to ex-
plicitly specify the targeted node properties on which the comparison should be performed and
there is no restriction on these properties. In that paper, one relies on the Depth-First Search
(DFS) traversal of a tree [39] to design the HMMs. The comparison between two tree sets is
finally performed by comparing their associated HMMs. That metric shows a perfect accu-
racy of 100% during flat classification experiments carried out on the two synthetic databases 1

FirstLast-L (FL) and FirstLast-LW (FLW) using the Nearest Neighbor (NN) classifier. This
performance is 41% higher than the one exhibited when the tree Edit distance is selected for
FL.

An important limitation of the metric proposed in [38] is related to the fact that it does not
allow the use of non metric-dependent classifiers (i.e: Support Vector Machines [40], Decision
trees [41], etc.) which require descriptor vectors as inputs. The current paper addresses this lim-
itation by deriving a descriptor vector for each tree set from its associated models. Consider the
set P = {p1, . . ., pm} of targeted node properties. Given a node property pi∈P and the model
λi(T ) associated with a tree set T according to pi, we capture the overall proportion of time
spent by λi(T ) observing each symbol after a sufficiently long time, irrespective of the state
from which this symbol is observed as a characteristic of T . We apply this for all the properties

1http://perso-etis.ensea.fr/sylvain.iloga/FirstLast/index.html
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in P and the resulting values are sequentially gathered as the components of a descriptor vector−→
T . Finally, the comparison between two tree sets is realized by comparing their associated
descriptor vectors. The relevance of the proposed descriptor vectors is illustrated through clas-
sification and unsupervised clustering experiments carried out on two synthetic tree databases
and one real world tree database.

The rest of this paper is organized as follows: the state of the art on tree comparison is presented
in Section II, followed by a summarized presentation of HMMs in Section III. The description
of the proposed approach is realized in Section IV, while experimental results are exhibited in
Section V. The last section is dedicated to the conclusion.

II RELATED WORK AND PROBLEM STATEMENT

2.1 Related work

A tree can be defined as a connected acyclic graph. A detailed overview on graph theory and
applications is available in [42]. Many distances have yet been proposed for comparing trees
and they are based on one of the following concepts: tree edit, tree alignment, tree inclusion,
tree pattern matching, subtrees/supertrees similarity and HMMs.

The tree edit distance [3–14] is based on the analysis of the number of edit operations required
to transform a tree t1 into another tree t2. The three following edit operations are considered for
a given node: insertion, deletion and substitution. Tree alignment [15, 16] is a particular case
of tree edit where insertions are always performed before deletions. Let t1 and t2 be two rooted
trees with labeled nodes. t1 is included in t2 if there is a sequence S(t1, t2) of node deletions
performed on t2 which makes t2 isomorphic to t1. The tree inclusion problem is to decide if t1
can be included in t2 and the tree inclusion distance [17–21] is the sum of the costs of the delete
operations found in S(t1, t2). Tree pattern matching [22–27] consists in finding the instances
of a given pattern tree in a specific target tree. Subtrees and supertrees similarity [28–33] are
generally realized by finding the maximum agreement subtree, the largest common subtree or
the smallest common supertree.

Given a tree t and two positive user-defined integers p, q, the pq-extended tree tp,q is constructed
from t by 2: (1) adding (p− 1) ancestors to the root node, (2) inserting (q − 1) children before
the first and after the last child of each non-leaf node, (3) adding q children to each leaf node.
All newly inserted nodes are dummy nodes that do not occur in t and have the special label ∗.
Figure 1(b) shows the (2, 3)-extended tree t2,3 derived from the node-labeled tree t depicted in
Figure 1(a). A subtree of tp,q is a pq-gram g of t if and only if 3: (1) g has q leaf nodes and p
non-leaf nodes, (2) all leaf nodes of g are the children of a single node, (3) the leaf nodes of
g are consecutive siblings in tp,q. Figure 1(c) shows a (2, 3)-gram g of the node-labeled tree t
depicted in Figure 1(a). One can compare two trees by computing their pq-gram distance which
is the number of pq-grams that are not shared by the two trees [34] 4.

Until the end of year 2020, existing techniques for comparing two trees [3–34] embedded many
drawbacks which were overcome in 2021 by the customizable HMM-based metric proposed
in [38] for comparing two tree sets. This HMM-based technique is based on the fact that, as
DFS sequentially transits from one node depth to another and at each step, one can observe the

2See Definition 1 of [34]
3See Definition 2 of [34]
4See Section 3.3 of [34]
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((a)) The tree t ((b)) The tree t2,3 ((c)) The tree g

Figure 1: Derivation of a (2, 3)-gram g of a tree t

properties of the visited node. Consider the set P = {p1, . . ., pm} of targeted node properties.
For every property pi∈P , the observation above enables to transform any tree t into a Markov
chain δi(t) where the hidden states are the node depths, while the symbols are the values of
property pi for the nodes of t. When this principle is applied to a tree set T = {t1, . . ., tn}, the
set ∆i(T ) = {δi(t1), . . ., δi(tn)} of Markov chains is obtained. The content of ∆i(T ) is later
used to initialize and train the HMM λi(T ) associated with T according to property pi. Finally,
the comparison between two tree sets is performed through the comparison of their associated
HMMs for every property pi∈P . The main assets of that technique are listed below:

1. It is designed for comparing finite tree sets.
2. It handles rooted/unrooted as well as ordered/unordered trees.
3. It compares weighted/unweighted as well as labeled/unlabeled trees.
4. It allows each node/arc to have many labels/weights.
5. It requires the specification of the targeted nodes properties.
6. It outperforms the tree edit distance with 41% of accuracy gain.

All the distances between two trees reviewed in this section can be used for performing the
hierarchical clustering of tree data which involves the comparison of tree sets (clusters) as stated
at the paper Introduction.

2.2 Problem statement

An important limitation of that technique is related to the fact that it does not allow the use
of non metric-dependent classifiers which absolutely require descriptor vectors as inputs. The
current paper tackles this limitation by deriving a descriptor vector for each tree set from its
associated models. The comparison between two tree sets is then realized by comparing their
respective associated descriptor vectors.

III HIDDEN MARKOV MODELS

3.1 HMM definition

A HMM λ = (A,B, π) is fully characterized by [43]:
1. The number N of states of the model. The set of states is S = {s1, s2, . . . , sN}. The state

of the model at time x is generally noted qx ∈ S.
2. The number M of symbols. The set of symbols is ϑ = {v1, v2, . . . , vM}. The symbol

observed at time x is generally noted ox ∈ ϑ.
3. The state transition probability distributionA = {A[si, sj]}whereA[si, sj] = Prob(qx+1 =
sj|qx = si) with 1≤i, j≤N .
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4. The symbols probabilities distributionsB = {B[si, vk]}whereB[si, vk] = Prob(vk at time x|qx =
si) with 1≤i≤N and 1≤k≤M .

5. The initial state probability distribution π = {π[si]} where π[si] = Prob(q1 = si) with
1≤i≤N .

3.2 Manipulation of a HMMs

Consider a sequence of symbols O = o1o2. . .oX and a HMM λ = (A,B, π). The proba-
bility Prob(O|λ) to observe O given λ is efficiently calculated by the Forward-Backward al-
gorithm [43] which runs in θ(X.N2). Given a sequence of symbols O = o1o2. . .oX , it is
possible to iteratively re-estimate the parameters of a HMM λ = (A,B, π) in order to max-
imize the value of Prob(O|λ), where λ = (A,B, π) is the re-estimated model. The Baum-
Welch algorithm [43] is generally used to perform this re-estimation. This algorithm runs in
θ(β.X.N2) where β is the user-defined maximum number of iterations. The Baum-Welch al-
gorithm can also train a HMM for multiple sequences. The algorithm maximizes the value of
Prob(O|λ) =

∑K
k=1 Prob(O

(k)|λ) where O = {O(1), . . . , O(K)} is a set of K sequences of
symbols and O(k) = o

(k)
1 . . .o

(k)
Xk

is the kth sequence of symbols of O. In the case of multiple

sequences, this algorithm runs in θ
(
β.(
∑K

k=1Xk).N
2
)

. In this paper, the value β = 100 is
selected following [38].

3.3 Stationary distribution of a HMM

A vector ϕ = (ϕ[s1], . . . , ϕ[sN ]) is a stationary distribution of a HMM λ = (A,B, π) if [44] 5:

1. ∀j, (ϕ[sj] ≥ 0) and
(∑

jϕ[sj] = 1
)

2. ϕ = ϕ.A⇔ (ϕ[sj] =
∑

iϕ[si]×A[si, sj],∀j)
ϕ[sj] estimates the overall proportion of time spent by λ in state sj after a sufficiently long time.
ϕ can be extracted from any line of the matrix Aw = A×A×. . .×A (w times) when w→+∞.
Therefore, the computation of ϕ requires θ(w.N3) arithmetic operations.

IV THE PROPOSED APPROACH

4.1 Main idea

Consider the set P = {p1, . . ., pm} of targeted nodes properties and let us assume that the DFS
traversal of a tree t is executed by a robot r. For each property pi∈P , the robot r sequentially
transits from one node depth to another and at each step, r can observe the value pi(y) of the
currently visited node y∈t [38]. The MC δi(t) resulting from this traversal of t executed by
the robot r according to property pi embeds relevant information related to the overall behav-
ior (movements, observations) of r. Given a tree set T = {t1, . . ., tn} and its corresponding
set ∆i(T ) = {δi(t1), . . ., δi(tn)} of MCs, the HMM λi(T ) is trained with the Baum-Welch al-
gorithm to learn and to simulate the overall behavior of r during the traversal of the trees in
T .

The main idea of the current paper is that, one can capture the behavior of r from λi(T ) by
evaluating the overall proportion of time spent by r observing each possible value of pi after a
sufficiently long time, irrespective of the node depth from which this value is observed. More
precisely, we evaluate the probability γ(o|λi(T )) of observing a symbol o after a sufficiently

5See Definition 9.1 of [44]
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long time, given the model λi(T ), irrespective of the state from which o is observed. When
this principle is applied for every property pi∈P and for every possible symbol, the resulting
probabilities are sequentially saved as the components of the descriptor vector

−→
T associated

with the tree set T .

4.2 Method

Consider a tree set T = {t1, . . . , tn} and the set P = {p1, . . ., pm} composed of m user-defined
targeted node properties. The method applied in the current paper for deriving the descriptor
vector

−→
T associated with T can be summarized in the three following steps:

1. Tree modeling: For each property pi∈P , the tree modeling principle proposed in [38] 6

is used to obtain the model λi(T ). Therefore, this step is not described in the following
sections.

2. Probability computing: Let ϑi be the set of symbols of λi(T ). For every property pi
and for every symbol o∈ϑi, we compute the probability γ(o|λi(T )) of observing o after
a sufficiently long time, given the model λi(T ), irrespective of the state from which o is
observed.

3. Construction of the descriptor vector: All the probabilities computed at step 2 are se-
quentially saved as the components of the descriptor vector

−→
T associated with T . Figure 2

summarizes the main steps of the proposed method.

Figure 2: Method for deriving the descriptor vector
−→
T associated with a tree set T .

4.3 Probability computing

Consider a tree set T and its associated model λi(T ) = (ATi , B
T
i , π

T
i ) according to property

pi∈P , where P = {p1, . . ., pm} is the user-defined set of targeted nodes properties. In order
to compute γ(o|λi(T )), one must first evaluate the overall proportion of time spent by λi(T )
observing o in state sj after a sufficiently long time as follows:

1. Evaluate the overall proportion of time spent by λi(T ) in state sj after a sufficiently long
time. This proportion is given by the jth component ϕTi [sj] of the stationary distribution
of λi(T ).

6See Section 4.3 and Figure 4 of [38]
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2. Multiply the result of step 1 by the probability of observing o in state sj which isBT
i [sj, o].

The value of γ(o|λi(T )) is finally obtained by repeating this process for every state sj and
summing the resulting proportions as shown in Equation 1. An analog probability computing
scheme was performed in [45] where the authors used HMMs for realizing human activity
recognition 7.

γ(o|λi(T )) =
N∑
j=1

ϕTi [sj]×BT
i [sj, o] (1)

4.4 Construction of the descriptor vector

The descriptor vector
−→
T associated with T is constructed by sequentially saving the values of

γ(o|λi(T )) for every property pi∈P and for every symbol o∈ϑi as described in Algorithm 1.
The first line of Algorithm 1 initializes the index of the components of the descriptor vector.
Line 2 browses the properties, while line 3 browses the symbols for each property. The value of
γ(o|λi(T )) is computed at line 4 according to Equation 1 and saved as the current component of
the descriptor vector at line 5. Line 6 moves to the index of the next component of the descriptor
vector. The descriptor vector is finally returned at line 9.

Algorithm 1 V ector
Inputs: T, P = {pi}, {λi(T )}, {ϑi}, {ϕTi } with (1≤i≤m)

Output:
−→
T

1: k ← 1
2: for each (pi ∈ P ) do
3: for each (o ∈ ϑi) do
4: γ(o|λi(T ))←

∑N
j=1 ϕ

T
i [sj]×BT

i [sj, o]

5:
−→
T [k]← γ(o|λi(T ))

6: k ← k + 1
7: end for
8: end for
9: return

−→
T

A consequence of Algorithm 1 is that the dimension of the descriptor vector
−→
T denoted in this

paper as α is the sum of the numbers of symbols of all its |P | associated models as shown in
Equation 2. It can be easily demonstrated that Algorithm 1 requires θ(α.N) arithmetic opera-
tions.

α =

|P |∑
i=1

|ϑi| (2)

The following conventional property is adopted here to associate a descriptor vector with the
empty set: ’The descriptor vector associated with ∅ according to the set P = {p1, . . ., pm} of
targeted nodes properties is (

−→
∅ =

−→
0 ∈Rα).’

7See Section IV-E of [45]
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4.5 Comparison of tree sets

The comparison between two tree sets T1 and T2 according to the set P = {p1, . . ., pm} of
targeted nodes properties is performed here by calculating the value of any existing distance
or similarity measure between their associated descriptor vectors

−→
T1 and

−→
T2. Equation 3 shows

how this can be done with the Euclidean distance and the Manhattan distance. Several other
possible distance and similarity measures are available online 8.

dP (T1, T2) =

√√√√ α∑
k=1

(
−→
T1[k]−

−→
T2[k])2 (Euclidean)

dP (T1, T2) =
α∑
k=1

|
−→
T1[k]−

−→
T2[k]| (Manhattan)

(3)

V EXPERIMENTAL RESULTS

5.1 Classification and clustering algorithms

The flat classification and clustering experiments realized in the current work are both realized
with the WEKA software [46]. Unlike [38] where only the Nearest Neighbor classifier was
experimented, two additional non metric-dependent classifiers have also been experimented
here. Thus, the three following classifiers have been experimented, their corresponding names
in WEKA are in brackets: Nearest Neighbor (IBk), Support Vector Machines with polynomial
kernels (SMO) and Decision Trees (J48). These classifiers have been used in WEKA with
their default settings and a 10 fold cross-validation (90% − 10%) has been applied for each
experiment.

TheKmeans [47] and the Expectation-Maximization (EM) [48] clustering algorithms have been
selected here to evaluate to what extent the proposed descriptor vectors can enable to accurately
organize the experimental data (trees) into their corresponding classes (clusters) in an unsuper-
vised process. The selected clustering algorithms have been used in WEKA with their default
settings except the desired number of clusters which was initially fixed to the number of classes
in each database.

The Euclidean and the Manhattan distances have been both experimented as metrics for the
Nearest Neighbor classifier and the Kmeans clustering algorithm.

8https://numerics.mathdotnet.com/Distance.html
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5.2 Databases

The two synthetic tree databases selected during the experiments of the current work are FL and
FLW 1 which have both been constructed and experimented in [38]. Each database is composed
of 4 classes, each containing 100 rooted ordered trees. FL contains node-labeled trees and the
set of node labels is {1, 2, . . . , 26}. FLW contains the same trees found in FL, with weighted
arcs. The trees in these two databases are characterized by non-trivial properties 9.

The Stanford Sentiment Treebank (SSTB) tree database has also been used in the current work.
This is a real world tree database originally proposed in [49] and containing 11.855 node-
labeled binary trees associated with sentences from movie reviews organized into 5 classes
according to sentiments: very negative (1510 trees), negative (3140 trees), neutral (2242 trees),
positive (3111 trees) and very positive (1852 trees). These classes are considered as node labels
represented as integers belonging to {0, 1, 2, 3, 4}. In this database, each tree has the following
recursive brackets representation: (label (left subtree)(right subtree)) where the leftmost label
is the overall sentiment of the sentence. Leaf nodes are of the form (label token) where token
is a word of the sentence. During the experiments, the label of the root node of each tree was
replaced by a new unique label (here 5) and tokens were removed from all the leave nodes
following [34].

5.3 Experimental settings

We realized 2 main experiments for the databases FL and FLW. During the first one, the specific
properties verified by each node in FL and FLW are intentionally ignored. During the second
main experience, these specific properties are considered. The sets PL = {p1, p2}, PLW =
{p1, p2, p3}, PL = {p1, . . . , p8} and PLW = {p1, . . . , p12} of targeted node properties selected
in [38] 10 for these experiences are preserved in the current work.

The 3 following sub-datasets of SSTB have been used and Table 1 presents the size of each
class in these sub-datasets:

1. SSTB5: all the 5 original classes of sentiments are considered.
2. SSTB3: the content of the original classes very negative and negative (resp. very positive

and positive) are merged to obtain one single class named negative (resp. positive). Thus,
three classes are considered.

3. SSTB2: This is SSTB3 where the class neutral is removed. Therefore, only two classes
are considered here.

Table 1: Size of each class in the experimental sub-datasets of SSTB

Very negative Negative Neutral Positive Very positive
SSTB5 1510 3140 2242 3111 1852

SSTB3 4650 2242 4963

SSTB2 4650 0 4963

Only the default set P̃ = {p̃1, p̃2} of targeted nodes properties has been experimented for the
database SSTB, irrespective of its considered sub-dataset. For every node y of a tree in SSTB,
p̃1(y) is the degree of y and p̃2(y) is the label of y. A detailed description of the experiments
realized on the database SSTB and the corresponding data are available online 11.

9See Table 5 of [38]
10See Section 5.2.2 of [38]
11http://perso-etis.ensea.fr/sylvain.iloga/index.html
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In the context of each experiment and considering each tree t of the experimental databases as
the singleton {t}, we have executed Algorithm 1 to construct the descriptor vector

−→
t associated

with t. The resulting descriptor vectors have then been saved into online available ’arff ’ files 1,11

which are taken as inputs by the soft WEKA.

5.4 Classification results

Classification results are presented in Tables 2a, 2b and 2c respectively for FL, FLW and SSTB.
Tables 2a and 2b reveal that best accuracy obtained for FL and FLW is 99.75%. This is quite
close to the 100% obtained in [38]. Table 2c reveals that the proposed approach also exhibits
good performance for the database SSTB with accuracies always greater than 70% for the two
non metric-dependent classifiers applied to SSTB3 and SSTB2, the best accuracy being 87.22%.
This performance is 20.52% better than the 66.7% obtained in [14] for SSTB2 12. These per-
formances demonstrate the relevance of the proposed approach for classification, even with a
default set of targeted node properties.

Table 2: Classification results. Accuracies are in (%), best values are in Bold.

(a)- FL (b)- FLW
IBk

SMO J48
Eucli. Manha.

PL 73.75 78 67.5 74.75

PL 99.75 99.75 87.5 93.75

IBk
SMO J48

Eucli. Manha.

PLW 84 87.25 90.75 89.75

PLW 99.75 99.75 99.75 99.5

(c)- SSTB using P̃
IBk

SMO J48
Eucli. Manha.

SSTB5 39.47 39.67 46.29 44.98
SSTB3 63.11 63.27 70.65 77.22
SSTB2 82.98 83.16 87.22 87.17

5.5 Clustering results

Clustering results are presented in Tables 3a, 3b and 3c respectively for FL, FLW and SSTB.
Tables 3a and 3b reveal that best clustering performance obtained for FL is 54.25%, while
a quasi perfect performance of 98.75% is obtained for FLW. Given that the trees in FL are
only characterized by properties related to the topology and the node-labels, these results show
that this database does not embed enough information to distinguish the 4 classes during an
unsupervised clustering process. But when the arc-weights are considered in FLW, the 4 classes
are accurately identified during the unsupervised clustering process with up to 98.75% correctly
clustered instances when the 12 properties in PLW are considered.

Table 3c reveals that the Kmeans clustering algorithm applied with the Manhattan distance
always exhibits the best clustering results for SSTB5, SSTB3 and SSTB2 which have respec-
tively 33.33%, 49.02% and 75.53% correctly clustered instances. These performances illustrate
the accuracy of the proposed approach in clustering, even with a default set of targeted nodes
properties.

12See Table 1 of [14]
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Table 3: Clustering results. Correctly clustered instances are in (%), best values are in Bold.

(a)- FL (b)- FLW (c)- SSTB using P̃
Kmeans

EM
Eucli. Manha.

PL 47.5 47.25 54.25

PL 45.5 44 42

Kmeans
EM

Eucli. Manha.

PLW 54.25 55.25 42.25

PLW 86.5 92 98.75

Kmeans
EM

Eucli. Manha.
SSTB5 32.63 33.33 29.17
SSTB3 40.43 49.02 46.36
SSTB2 50.97 75.53 61.73

5.6 Time cost

The time cost of the proposed technique for deriving the descriptor vector
−→
T of a tree set T

according to the set P of targeted node properties can be estimated as follows:
1. Design the |P | HMMs associated with T which runs in θ

(
|P |.β.(

∑
t∈T |t|).N2

)
accord-

ing to [38] 13, where |t| is the number of nodes in the tree t.
2. Compute the stationary distributions of the |P | HMMs which runs in θ(|P |.w.N3) with
w→+∞. In the current work, the value w = 100 has been selected.

3. Construct the descriptor vector
−→
T associated with T using Algorithm 1 which runs in

θ(α.N).

Equation 4 gives the expression of the theoretical time cost Time(
−→
T ) of the proposed approach.

Time(
−→
T ) = θ(a.N3 + b.N2 + α.N) where

N = max{depth(t) | t∈T}+ 1

a = |P |.w

b = |P |.β.

(∑
t∈T
|t|

) (4)

5.7 Comparisons with existing techniques

We have compared the proposed approach with:
1. [38] where the authors designed in 2021 the databases FL and FLW. They also proposed

the original HMM-based technique for tree sets comparison which is improved in the
current work.

2. [14] which is a work published in 2018 where the authors proposed a learning version of
the tree Edit distance and experimented it on the dataset SSTB2.

It is important to mention that the dataset SSTB2 was more recently experimented in 2020
for tree classification in [34], but we performed no comparison with that work because the
authors only randomly selected 100 trees for each class during their experiments. The technique
proposed in the current paper:

1. Is based on the HMMs designed in [38] for comparing two tree sets. It consequently
inherits the main assets of that technique 14.

2. Unlike [38], it associates a descriptor vector
−→
T ∈Rα whose components are interpretable

with every tree set T such that all the operations that are applicable to vectors in Rα are
now also applicable to tree sets.

13Cf. Section 5.3 of [38]
14Cf. Section 5.4 of [38]
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3. Performs a finer characterization of a tree set than [38]. Indeed, a tree set was character-
ized in [38] by its associated HMMs themselves. In the current paper, a tree set is rather
characterized by meta-information related to the overall behavior of these HMMs after a
sufficiently long time.

4. Exhibits good classification performances (78% for FL and 90.75% for FLW) with the
default sets PL and PLW of targeted nodes properties, unlike [38] where lower perfor-
mances were obtained (44.25% for FL and 36% for FLW) in identical conditions.

5. Shows an excellent classification accuracy of 99.75% for FL and for FLW when the suit-
able sets PL and PLW of targeted nodes properties are selected. This performance is quite
identical to the 100% obtained in [38].

6. Exhibits a good classification accuracy (87.22%) on the real world tree dataset SSTB2,
this is 20.52% better than the 66.7% obtained in [14] for this same dataset.

7. Is capable to correctly cluster 54.25%, 98.75% and 75.53% of the instances of FL, FLW
and SSTB2 respectively. No clustering was performed in [14, 38].

VI CONCLUSION

The goal of this paper was to improve the HMM-based technique recently proposed in [38] for
comparing two tree sets. Given a tree set T and a set P = {p1, . . . , pm} of targeted node prop-
erties, the principle of the DFS algorithm is used to associate |P | HMMs with T , each HMM
λi(T ) learning how much the nodes of the trees in T verify property pi [38]. The resulting
models are finally compared to derive a distance between the two sets of trees. The technique
proposed in [38] overcame the main limitations of the other existing techniques developed be-
fore its publication. Unfortunately, it did not allow the use of non metric-dependent classifiers
which absolutely require descriptor vectors as inputs.

In order to derive the descriptor vector
−→
T associated with a tree set T in the current paper,

we capture the behavior of its associated HMMs by evaluating the overall proportion of time
spent by every HMM observing each symbol o after a sufficiently long time, irrespective of
the state from which o is observed. The resulting proportions are then sequentially saved as
the components of the descriptor vector. The comparison between two tree sets is finally real-
ized by comparing their associated descriptor vectors. Classification experiments carried out on
the databases FL, FLW and SSTB respectively showed best accuracies of 99.75%, 99.75% and
87.22%. These performances are respectively 40.75% and 20.52% better than the widespread
tree Edit distance respectively for FLW and SSTB2. Additional clustering experiments exhib-
ited 54.25%, 98.75% and 75.53% of correctly clustered instances respectively for FL, FLW and
SSTB2. These performances illustrate the accuracy of the proposed approach in classification
and clustering.

The following perspectives can be explored by future work:
1. The implementation of a modified version of the proposed approach which considers the

user-defined importance granted to each node property.
2. The design of manual and automatic techniques for discovering the optimal set of targeted

node properties that the best describes the trees in each tree set.
3. The extension of the proposed approach to graph comparison.
4. The reduction of the time cost through the implementation of a parallel computation

scheme of the proposed descriptor vectors. This can be achieved by using parallel ver-
sions of the Baum-Welch algorithm executed on a cluster of computers following [50] or
on a Field-Programmable Gate Array (FPGA) chip following [51].
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5. The visualization of the elements of a tree set T as points scattered in the 2D/3D space
using techniques like Multidimensional Scaling (MDS) [52]. MDS is a mathematical
method which allows easier analysis of data by performing some sort of dimensionality
reduction to map high-dimensional data into a lower-dimensional space in such a way
that the distances between low-dimensional objects resemble the original similarity infor-
mation in the high-dimensional space 15. If each tree t∈T is considered as the singleton
{t}, the proposed approach enables to generate the descriptor vector

−→
t associated with

{t}. The tree set T will consequently be viewed as the collection T̃ = {−→t | t∈T} of
high-dimensional descriptor vectors. MDS to the 2D/3D space can finally be used for
visualizing the vectors in T̃ as points scattered in the 2D/3D space.
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