De nombreuses expériences ont déjà montré qu'une forte amélioration du taux de reconnaissance des systèmes MMC (Modèles de Markov Cachés) traditionnels est observée lorsque plus de données d'apprentissage sont utilisées. En revanche, l'augmentation du nombre de données d'apprentissage pour les modèles hybrides MMC/RNA (Modèles de Markov cachés/Réseaux de Neurones Artificiels) s'accompagne d'une forte augmentation du temps nécessaire à l'apprentissage des modèles, mais pas ou peu des performances du système. Pour pallier cette limitation, nous rapportons dans ce papier les résultats obtenus avec une nouvelle méthode d'apprentissage basée sur la fusion de données. Cette méthode a été appliquée dans un système de reconnaissance de la parole arabe. Ce dernier est basé d'une part, sur une segmentation floue (application de l'algorithme c-moyennes floues) et d'une autre part, sur une segmentation à base des algorithmes génétiques.