This tutorial paper is concerned with the design of macroscopic bioreaction models on the basis a quantitative analysis of the underlying cell metabolism. The paper starts with a review of two fundamental algebraic techniques for the quantitative analysis of metabolic networks : (i) the decomposition of complex metabolic networks into elementary pathways (or elementary modes), (ii) the metabolic flux analysis which aims at computing the entire intracellular flux distribution from a limited number of flux meaurements. Then it is discussed how these two fundamental techniques can be exploited to design minimal bioreaction models by using a systematic model reduction approach that automatically produces a family of equivalent minimal models which are fully compatible with the underlying metabolism and consistent with the available experimental data. The theory is illustrated with an experimental case-study on CHO cells.