Michel Fliess
-
Questioning the signal to noise ratioin digital communications
arima:1908 -
Revue Africaine de Recherche en Informatique et Mathématiques Appliquées,
October 22, 2008,
Volume 9, 2007 Conference in Honor of Claude Lobry, 2008
-
https://doi.org/10.46298/arima.1908
Questioning the signal to noise ratioin digital communications
Authors: Michel Fliess 1,2
NULL
Michel Fliess
1 Algebra for Digital Identification and Estimation
2 Laboratoire d'informatique de l'École polytechnique [Palaiseau]
The signal to noise ratio, which plays such an important rôle in information theory, is shown to become pointless for digital communications where the demodulation is achieved via new fast estimation techniques. Operational calculus, differential algebra, noncommutative algebra and nonstandard analysis are the main mathematical tools.
Volume: Volume 9, 2007 Conference in Honor of Claude Lobry, 2008
Published on: October 22, 2008
Submitted on: April 17, 2008
Keywords: noncommutative algebra, nonstandard analysis., differential algebra, operational calculus, estimation, signal to noise ratio, noises, demodulation, modulation, symbols, carriers, signal processing, digital communications,Information theory,porteuses,symboles,modulation,démodulation,bruits,estimation,rapport signal à bruit,calcul opérationnel,algèbre différentielle,algèbre non commutative,analyse non standard,Théorie de l’information,traitement du signal,communications numériques,[INFO] Computer Science [cs],[MATH] Mathematics [math]
8 Documents citing this article
Source : OpenCitations
Liu, Chang; Liu, Dayan; Boutat, Driss; Wang, Yong, 2022, Fast And Robust State Estimator For A Kind Of Nonlinear Systems: One Method From Two Perspectives, 2022 41St Chinese Control Conference (CCC), 10.23919/ccc55666.2022.9902307.
Liu, Da-Yan; Laleg-Kirati, Taous-Meriem, 2015, Robust Fractional Order Differentiators Using Generalized Modulating Functions Method, Signal Processing, 107, pp. 395-406, 10.1016/j.sigpro.2014.05.016.
Liu, Da-Yan; Tian, Yang; Boutat, Driss; Laleg-Kirati, Taous-Meriem, 2015, An Algebraic Fractional Order Differentiator For A Class Of Signals Satisfying A Linear Differential Equation, Signal Processing, 116, pp. 78-90, 10.1016/j.sigpro.2015.04.017.
Liu, Da-Yan; Gibaru, Olivier; Perruquetti, Wilfrid, 2011, Differentiation By Integration With Jacobi Polynomials, Journal Of Computational And Applied Mathematics, 235, 9, pp. 3015-3032, 10.1016/j.cam.2010.12.023.
Liu, Da-Yan; Gibaru, Olivier; Perruquetti, Wilfrid, 2012, Convergence Rate Of The Causal Jacobi Derivative Estimator, Curves And Surfaces, pp. 445-455, 10.1007/978-3-642-27413-8_28.
Morales, Rafael; Segura, E.; Somolinos, José; Núñez, L.R.; Sira-Ramírez, H., 2016, Online Signal Filtering Based On The Algebraic Method And Its Experimental Validation, Mechanical Systems And Signal Processing, 66-67, pp. 374-387, 10.1016/j.ymssp.2015.06.021.
Tian, Yang; Wei, Yan-Qiao; Liu, Da-Yan; Boutat, Driss, 2019, Fast And Robust Estimation For Positions And Velocities From Noisy Accelerations Using Generalized Modulating Functions Method, Mechanical Systems And Signal Processing, 133, pp. 106270, 10.1016/j.ymssp.2019.106270.