Systems that operate in different modes with quick transition are usually studied through discontinuous systems. We give a model of a smoothing of the transition between two vector fields along a separation line, allowing perturbations of the vector fields and of the separation line. In this model there appears a canard phenomenon in certain macroscopically indeterminate situations. This phenomenon gives a new point of view on some situations usually studied through discontinuous bifurcations. We also study the dynamics near the transition line through an associated slow-fast system and compare the slow dynamics with the classical theory, namely, sliding mode dynamics in variable structure systems and equivalent control.