Imtnan-Ul-Haque Qazi ; O. Alata ; J.-C. Burie ; A. Moussa ; Christine Fernandez-Maloigne - Segmentation d’Images Texturées Couleur à l’aide de modèles paramétriques pour approche la distribution des erreurs de prédiction linéaires

arima:1942 - Revue Africaine de Recherche en Informatique et Mathématiques Appliquées, 8 octobre 2011, Volume 14 - 2011 - Numéro spécial CARI'10 - https://doi.org/10.46298/arima.1942
Segmentation d’Images Texturées Couleur à l’aide de modèles paramétriques pour approche la distribution des erreurs de prédiction linéairesArticle

Auteurs : Imtnan-Ul-Haque Qazi 1; O. Alata ; J.-C. Burie ; A. Moussa ; Christine Fernandez-Maloigne 1

  • 1 Synthèse et analyse d'images

We propose novel a priori parametric models to approximate the distribution of the two dimensional multichannel linear prediction error in order to improve the performance of color texture segmentation algorithms. Two dimensional linear prediction models are used to characterize the spatial structures in color images. The multivariate linear prediction error of these texture models is approximated with Wishart distribution and multivariate Gaussian mixture models. A novel color texture segmentation framework based on these models and a spatial regularization model of initial class label fields is presented. For the proposed method and with different color spaces, experimental results show better performances in terms of percentage segmentation error, in comparison with the use of a multivariate Gaussian law.


Volume : Volume 14 - 2011 - Numéro spécial CARI'10
Publié le : 8 octobre 2011
Soumis le : 10 mars 2011
Mots-clés : Color texture segmentation, Wishart distribution, Multivariate Gaussian Mixture Model (MGMM), color space comparison.,[MATH] Mathematics [math],[INFO] Computer Science [cs]

Statistiques de consultation

Cette page a été consultée 318 fois.
Le PDF de cet article a été téléchargé 414 fois.