Afin de limiter le coût de calcul lié aux méthodes variationnelles d’assimilation de données, nous nous intéressons ici à l’utilisation de méthodes multigrilles pour la résolution de systèmes de contrôle optimal. Sur un modèle simple d’advection linéaire, nous étudions l’impact du terme de régularisation du contrôle optimal ainsi que l’impact des erreurs de discrétisation sur l’efficacité de la correction grille grossière introduite par cette méthode. En particulier, nous montrons que pour un modèle numérique parfait, le problème de contrôle optimal est elliptique mais que les erreurs de discrétisation introduisant une diffusion implicite peuvent altérer les performances de la méthode multigrille. Enfin, sur une équation de Burgers, non linéaire, nous étudions l’influence des différents paramètres inhérents aux méthodes multigrilles et montrons que ces méthodes sont robustes et convergent beaucoup plus rapidement que les méthodes monogrilles.