W.E. Wansouwé ; C.C. Kokonendji ; D.T. Kolyang - Nonparametric estimation for probability mass function with Disake: an R package for discrete associated kernel estimators

arima:1984 - Revue Africaine de Recherche en Informatique et Mathématiques Appliquées, 16 novembre 2015, Volume 19 - 2015 - Numéro spécial - CRI'13 - https://doi.org/10.46298/arima.1984
Nonparametric estimation for probability mass function with Disake: an R package for discrete associated kernel estimatorsArticle

Auteurs : W.E. Wansouwé 1; C.C. Kokonendji 2; D.T. Kolyang 1

Kernel smoothing is one of the most widely used nonparametric data smoothing techniques. We introduce a new R package, Disake, for computing discrete associated kernel estimators for probability mass function. When working with a kernel estimator, two choices must be made: the kernel function and the smoothing parameter. The Disake package focuses on discrete associated kernels and also on cross-validation and local Bayesian techniques to select the appropriate bandwidth. Applications on simulated data and real data show that the binomial kernel is appropriate for small or moderate count data while the empirical estimator or the discrete triangular kernel is indicated for large samples.


Volume : Volume 19 - 2015 - Numéro spécial - CRI'13
Publié le : 16 novembre 2015
Soumis le : 10 mai 2015
Mots-clés : R package, standard discrete associated kernel, cross-validation,[INFO] Computer Science [cs],[MATH] Mathematics [math]

Statistiques de consultation

Cette page a été consultée 362 fois.
Le PDF de cet article a été téléchargé 904 fois.