Partant de son travail Mathematics of Infinity (1989), Martin-Löf a développé l'idée d'un lien conceptuel profond entre les notions de suite de choix et d'objet mathématique nonstandard. Précisément, il a défini une extension nonstandard de la théorie des types en ajoutant une série d'axiomes nonstandard conçue comme une sorte de suite de choix. Enfin, dans une communication de 1999, il a présenté les grandes lignes d'une théorie des types nonstandard plus générale et munie d'un fort contenu computationnel. Le présent travail est une tentative de donner un développement complet d'une théorie de ce genre. Cependant, dans le but de garder un fort contrôle sur la théorie résultante et notablement pour éviter quelques problèmes en rapport avec l'égalité définitionnelle, le champ des axiomes nonstandard est moins général que ceux proposés dans sa communication de 1999. L'étude présente est poussée jusqu'à l' introduction d'une notion de proposition externe qui joue le même rôle que les propriétés externes si utiles dans l'analyse nonstandard usuelle. Du fait que ce texte débute par une introduction à la théorie des types de Martin-Löf, il peut intéresser les mathématiciens non familiers avec ce sujet.