The access to electricity for isolated communities is capital for improving life in those societies. The use of renewable energy sources (renewables) and energy storage systems is the key for clean energy supply in remote areas without the main grid. The standalone operation of renew-ables represents a challenge for operation and reliability, therefore the DC MicroGrid concept is seen as a powerful solution allowing renewables integration and reliable operation of the system is simple way. This paper proposes a distributed nonlinear control strategy for an isolated MicroGrid composed of renewables and different timescale storage systems to supply a DC load. The simulations results show the behavior of the proposed MicroGrid and a comparison with classical linear control is done to highlight the control performance.