Dans cet article, nous considérons le problème inverse de reconstruction des coefficients de Lamé constants par morceaux à partir de mesures au bord. Nous reformulons le problème inverse en un problème de minimisation utilisant une fonctionnelle de type Kohn-Vogelius. Nous étudions la stabilité des paramètres lorsque le saut de la discontinuité est perturbé. En utilisant les outils du calcul de forme, nous donnons un résultat de stabilité quantitative pour une la solution optimale locale.