On considère les systèmes lents-rapides appartenant à un petit voisinage d’un problème non perturbé. On étudie le cas général où l’équation lente admet un sous-ensemble compact positivement invariant qui soit asymptotiquement stable tandis que l’équation rapide a des équilibres asymptotiquement stables (théorie de Tykhonov) ou des cycles limites stables (théorie de Pontryagin). La description des solutions est de ce fait donnée sur des intervalles de temps infinis. On examine les problèmes de stabilité découlant de ces résultats en introduisant la notion de stabilité pratique. On montre que certains sous-ensembles de l’espace de phases des systèmes singulièrement perturbés se comportent comme des ensembles asymptotiquement stables. Les résultats sont formulés classiquement mais sont démontrés dans le cadre de la théorie IST, une approche axiomatique de l’Analyse Non Standard.