2 Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l'Ingénieur [Tunis]
L’objectif est d’utiliser une méthode itérative de Richardson préconditionnée comme une technique de régularisation pour le problème de complétion de données. Le problème est connu pour être sévèrement mal posé qui rend son traitement numérique ardu. L’approche adoptée est basée sur le cadre variationnel de Steklov-Poincaré introduit dans [Inverse Problems, vol. 21, 2005].L’algorithme obtenu s’avère être équivalent à celui de Kozlov-Maz’ya-Fomin parû dans [Comp. Math. Phys., vol. 31, 1991]. Nous menons une analyse complète pour le choix du critère d’arrêt, et établissons des estimations optimales sous les Conditions Générale de Source sur la solution exacte. Nous discutons, enfin, quelques exemples numériques qui confortent les pertinence de la méthode.