Abdelwaheb Ifa ; Michel Rouleux - Regular Bohr-Sommerfeld quantization rules for a h-pseudo-differential operator. The method of positive commutators

arima:2593 - Revue Africaine de Recherche en Informatique et Mathématiques Appliquées, 13 décembre 2016, Volume 23 - 2016 - Numéro spécial pour LEM2I - https://doi.org/10.46298/arima.2593
Regular Bohr-Sommerfeld quantization rules for a h-pseudo-differential operator. The method of positive commutatorsCommunication dans un congrès

Auteurs : Abdelwaheb Ifa ; Michel Rouleux

    [en]
    We revisit in this Note the well known Bohr-Sommerfeld quantization rule (BS) for a 1-D Pseudo-differential self-adjoint Hamiltonian within the algebraic and microlocal framework of Helffer and Sjöstrand; BS holds precisely when the Gram matrix consisting of scalar products of some WKB solutions with respect to the " flux norm " is not invertible.

    [fr]
    Dans le cadre algébrique et microlocal élaboré par Helffer et Sjöstrand, on propose une ré-écriture de la règle de quantification de Bohr-Sommerfeld pour un opérateur auto-adjoint h-Pseudo-différentiel 1-D; elle s'exprime par la non-inversibilité de la matrice de Gram d'un couple de solutions WKB dans une base convenable, pour le produit scalaire associé à la " norme de flux " .


    Volume : Volume 23 - 2016 - Numéro spécial pour LEM2I
    Publié le : 13 décembre 2016
    Accepté le : 12 décembre 2016
    Soumis le : 12 décembre 2016
    Mots-clés : [MATH]Mathematics [math], [en] Semi-classical spectral asymptotics, quantization rules ; [fr] Analyse spectrale semi-classique, règles de quantification

    Statistiques de consultation

    Cette page a été consultée 634 fois.
    Le PDF de cet article a été téléchargé 635 fois.