Poda , Pasteur and Saoudi , Samir and Chonavel , Thierry and GUILLOUD , Frédéric and Tapsoba , Théodore , - Estimation non-paramétrique par méthode à noyau de la probabilité d'erreur binaire dans les systèmes de communication numériques : un estimateur pour le calcul du taux d'erreur binaire des systèmes MAQ codés

arima:4736 - Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, 3 août 2018, Volume 27 - 2017 - Numéro spécial CARI 2016
Estimation non-paramétrique par méthode à noyau de la probabilité d'erreur binaire dans les systèmes de communication numériques : un estimateur pour le calcul du taux d'erreur binaire des systèmes MAQ codés

Auteurs : Poda , Pasteur and Saoudi , Samir and Chonavel , Thierry and GUILLOUD , Frédéric and Tapsoba , Théodore ,

Les estimations de probabilités d'événements rares par la méthode de Monte Carlo classique souffrent de trop de temps de calculs. Des estimateurs à noyau se sont montrés plus efficaces sur des systèmes binaires en même temps qu'ils paraissent mieux adaptés aux situations où la fonction de densité de probabilité est inconnue. Nous proposons un estimateur de Probabilité d'Erreur Bit (PEB) à noyau pour les systèmes M-aires codés de Modulations d'Amplitude en Quadrature (MAQ). Nous avons défini des bits souples à valeurs réelles à partir desquels un estimateur à noyau d'Epanechnikov est conçu. Les simulations ont montré, par rapport à la méthode Monte Carlo, des estimées de PEB précises, fiables et efficaces pour des transmissions MAQ-4 et MAQ-16 sur canaux à bruit additif blanc Gaussien et à évanouïssements de Rayleigh sélectif en fréquence.


Source : oai:HAL:hal-01449035v3
Volume : Volume 27 - 2017 - Numéro spécial CARI 2016
Publié le : 3 août 2018
Déposé le : 6 mars 2018
Mots-clés : Monte Carlo method, Kernel estimator, Bit error rate, Probability density function, Méthode Monte Carlo,Bit error probability, Fonction de densité de probabilité,Probabilité d’erreur binaire, Taux d’erreur binaire, Estimateur à noyau,Bit error rate,Probability density function,Monte Carlo method,Kernel estimator, [ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing, [ SPI.OTHER ] Engineering Sciences [physics]/Other


Partager

Statistiques de consultation

Cette page a été consultée 5 fois.
Le PDF de cet article a été téléchargé 2 fois.