In this work we develop a mathematical model of chronic myeloid leukemia including treatment with instantaneous effects. Our analysis focuses on the values of growth rate γ which give either stability or instability of the disease free equilibrium. If the growth rate γ of sensitive leukemic stem cells is less than some threshold γ * , we obtain the stability of disease free equilibrium which means that the disease is eradicated for any period of treatment τ 0. Otherwise, for γ great than γ * , the period of treatment must be less than some specific value τ * 0. In the critical case when the period of treatment is equal to τ * 0 , we observe a persistence of the tumor, which means that the disease is viable.