Editeurs : Mourad Bellassoued, Nabil Gmati , Mohamed Jaoua, and Gilles Lebeau
In this paper we proved the existance and uniqness of strong generalized solution of mixed problems wih integral condition for singular parabolic equaions depending on a theorem proved in [1] in which a priori estimaion of the solution for such problems was derived.
Dans ce papier, on a prouvé une estimation de stabilité de type Höldérienne pour un problème inverse de détermination du terme source de l'équation de la chaleur à l'aide d'une inégalité de Carleman pour un système d'équations hyperbolique-parabolique couplé. ABSTRACT. In this paper we consider a coupled system of mixed hyperbolic-parabolic type which describes the Biot consolidation model in poro-elasticity. Using a local Carleman estimate for a coupled hyperbolic-parabolic system, we prove the uniqueness and a Hölder stability in determining the heat source by a single measurement of solution over ω × (0, T), where T > 0 is a sufficiently large time and a suitable subbdomain ω ⊂ Ω such that ∂ω ⊃ ∂Ω. MOTS-CLÉS : Problème inverse, estimation de Carleman, système couplet
Dans le cadre algébrique et microlocal élaboré par Helffer et Sjöstrand, on propose une ré-écriture de la règle de quantification de Bohr-Sommerfeld pour un opérateur auto-adjoint h-Pseudo-différentiel 1-D; elle s'exprime par la non-inversibilité de la matrice de Gram d'un couple de solutions WKB dans une base convenable, pour le produit scalaire associé à la " norme de flux " .
Dans ce papier, on a prouvé une estimation de stabilité pour le problème inverse de dé-termination du champ magnétique dans l'équation des ondes donné sur un domaine non borné à partir de l'opérateur de Dirichlet-to-Neumann. On a montré un résultat de stabilité pour ce problème inverse, dont la démonstration est basée sur la construction de solutions optique géométrique pour l'équation des ondes avec un potentiel magnétique 1-périodique. ABSTRACT. We consider the boundary inverse problem of determining the aligned magnetic field appearing in the magnetic wave equation in a periodic quantum cylindrical waveguide from boundary observations. The observation is given by the Dirichlet to Neumann map associated to the wave equation. We prove by means of the geometrical optics solutions of the magnetic wave equation that the knowledge of the Dirichlet-to-Neumann map determines uniquely the aligned magnetic field induced by a time independent and 1-periodic magnetic potential. We establish a Hölder-type stability estimate in the inverse problem.
Nous considérons un modèle de chimiothérapie pour une population de cellules avec ré-sistance. Nous considérons le cas de deux médicaments le premier avec effet impulsif et le deuxième avec effet continu. Nous étudions la stabilité des solutions périodiques triviales et l'apparition des solutions périodiques nontriviales en utilisant la bifurcation de Lyapunov-Schmidt
Cette contribution dans ce papier est une extension des travaux initiés dans [1], qui pré-sente une stratégie pour l'estimation de la volatilité locale. En raison du principe de la différence de Morozov [6], le problème de la régularisation de Tikhonov introduite dans [7] est reformulé comme un problème de minimisation de l'inégalité des contraintes. Une procédure Uzawa est proposé de remplacer ce dernier par une séquence de problèmes non contraints traités dans la procédure de régularisation Thikonov modifié dans [1]. Des tests numériques confirment la cohérence de l'approche et l'importante accélérer le processus de détermination de la volatilité locale.
Dans ce papier, nous présentons un nouvel algorithme parallèle pour les problèmes dépendantdu temps basé sur le couplage du pararéel avec les méthodes de décomposition de domainesans recouvrement afin d’augmenter le parallélisme dans le temps et l’espace. Nous nous concentronssur les méthodes itératives de parallélisation en espace pour résoudre le problème d’interfacepar la méthode de Neumann-Neumann. Dans ce nouvel algorithme, le propagateur grossier est définiesur le domaine global et la méthode de Neumann-Neumann est choisi pour le propagateur finavec quelques itérations. Nous présentons l’analyse rigoureuse de convergence du nouvel algorithmecouplé sur un intervalle de temps borné. Des expèriences numériques illustrent les performances dece nouvel algorithme et confirment notre analyse.
This paper deals with an hyperbolic inverse problem of determining a time-dependent coefficient a appearing in a dissipative wave equation, from boundary observations. We prove in dimension n greater than two, that a can be uniquely determined in a precise subset of the domain, from the knowledge of the Dirichlet-to-Neumann map.
Nous nous intéressons à un problème de Cauchy mal posé, celui de la complétion de données frontières pour les équations de Stokes. Nous voulons reconstituer les données manquantes sur une partie non accessible de la frontière du domaine à partir de données peu surdéterminées sur la partie accessible. Nous formulons ce problème inverse sous forme de minimisation d'une fonctionnelle de type énergie. Les conditions d'optimalité du premier ordre sont écrites en termes d'équation d'interface utilisant les opérateurs de Stecklov-Poincaré. Nous donnons des résultats numériques attestant l'efficacité de la méthode.